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We report the results of experiments on low-
temperature alkali plasmas in strong magnet-
ic fields and their interpretation in terms of
collisional drift modes, in which diffusion over
the transverse wavelength, resulting from ion-
ion collisions, ' plays an important role.
Collisional drift modes' arise in the presence

of a density gradient perpendicular to the mag-
netic fieM and result from the combined effects
of ion inertia, electron-ion collisions, and
mean electron kinetic energy along the magnet-
ic-field lines.
Our experiments determine frequencies, am-

plitudes, and azimuthal mode numbers of steady-
state drift waves as functions of magnetic field
strength and ion density. Their interpretation
is based on a theory which includes the effects
of ion-ion collisions on the ion motion. Although
the observed relative wave amplitudes are not
small, the linearized approximation is expect-
ed and found to predict correctly frequencies
and the abrupt appearance of certain modes
as functions of the various physical parameters
(density, magnetic field, temperature, and ion
mass).
The principal experimental results are the

consistent observations of single-mode steady-
state oscillations, which we have identified as
drift modes, and, at certain critical values of
the magnetic-field strength, sudden changes
of both the azimuthal mode number and frequen-
cy' of the oscillations. We have explained these
results by a theory, which predicts abrupt sta-
bilization of a particular mode with decreasing
magnetic field as a result of increased diffusion
over the transverse wavelength due to ion-ion
collisions. This type of diffusion, in fact, sup-
presses the instability when the ion gyroradi-
us reaches a critical size relative to the trans-
verse wavelength of the mode.
The experimental work has been performed

on the Princeton Q-1 device. 7 The plasma con-
sists of ions produced by surface ionization
of cesium or potassium atomic beams incident
on hot tungsten plates located on both ends of
the plasma column and of thermionic electrons
emitted from the same plates. The alkali va-
por pressure is cryogenically reduced to below snl/st+u1. Vn+u. Vn1= 0,1i& i (1c)

10 Torr and the residual pressure is main-
tained at approximately 10 ' Torr, so that the
plasma, is fully ionized. The plasma column
is 3 cm in diameter and 128 cm long. Plasma
(center) densities ranged from 5x10" to 5x10"
cm ', plasma (ionizer-plate) temperatures
from 2100 to 2900'K, and magnetic fields from
2 to 6.5 kG. Electric fields are not applied to
the plasma, and the thermionic voltage between
end plates is maintained below 5 mV. The waves
are detected as either ion-density or plasma-
potential fluctuations with Langmuir probes.
Special effort was directed towards conclusive
identification of the drift wave, since it was
recognized that a plasma rotation comparable
with the electron diamagnetic velocity is pres-
ent in Q machines for certain ranges of plas-
ma temperature and density. ' Our experiments
differ from most previous drift-wave work in
that the neutral beam was collimated to reduce
the ion density at the edge of the ionizer plate
where the temperature gradient is large. This
procedure spatially separates the effects of
temperature and density gradients. ' The oscil-
lations reported here are confined to the region
where only the density gradient is important.
The experiments have shown that the relevant

modes are localized in the radial direction with
the amplitude maximum at approximately —,

' of
the plasma radius. Then, for these localized
modes we can carry out the theory simulating
cylindrical geometry by a one-dimensional "slab"
model, with density gradient in the g direction
and magnetic field in the z direction. We adopt
the electrostatic approximation E = -V'y valid
when p = 8mp/B «1, as is the case here (p & 10 8).
The time-independent electric field (experimen-
tally found to be constant in the region where
temperature gradients are negligible) is ignored
because it only produces a Doppler shift in the
relevant frequencies. We use the following lin-
earized equations adopting a standard notation:

nm(su . )/st p, V 'u, = —v p—+(J xB/c), (la)lid x z lid i1
—V (n KT —en' )—v .nm u =0,

II 1 e 1 ei e 1eIl
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sn /8t+u ~ Vn+u ~ Vn +nV g =0,lei es 1 )) le li
(ld)

u = -Vy xBcB s+KTc(eB n) 'Vn x B, (le)le& 1 1

u. =ETc(+eBan) iVn &B.i, e
Perturbed quantities are indicated by the sub-
script 1. Ion motion and electron inertia along
the lines of force have been ignored. 0 The
effects of ion-ion diffusion across the field e n-
ter through the coefficient p& which is given
by pi = —,'(nETvf/Qi k~ ) for our experimental
conditicns, "with Qi the ion gyrofrequency and
hz a dimensionless coefficient tabulated in Ref.
11. For simplicity we assume a WEB-type
solution y = (pi epx(ifk dxx+ikyy+ikiiz+i~t) and
consider modes such that kx»n ~(dn/dx). This
implies mode localization in. the x direction
and will restrict us to modes with azimuthal
mode number m ) 1, since those with m = 1,
equivalent to an off-axis shift of the whole plas-
ma column, are less localized and cannot be
simulated in a plane geometry. Moreover, in
the experiments, k)i=m/L, where L is the length
of the plasma column. By expressing J1& and
J1ti in terms of cp, one derives for Te = Tz the
dispersion relation in its simplest form,
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values of magnetic field only one single mode
is dete cte d, but in the mode transition regions
two separate modes are observed. The rapid
rise of y =-Im(a) with increasing magnetic
field, once the condition b&b~ is satisfied, is
evident. The second point is that the maximum
growth rate is found to correspond to frequen-
cies Re(a) = —0.5k vd. In particular, we find
that for b(b, the growth rate y is maximized
for the dimensionless parameter ZO =ALII KT
x (mev&&kyvdb) slightly above unity, me
being the electron mass. At this point, the
magnitude of y is -0.2k&gd and is comparable
with the instability frequency. Figure 1(b) shows
that the observed frequencies are proportion-
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where vd = -(1/n)(dn/dx)(cKT/eB) is the elec-
tron diamagnetic velocity, 5 =-,'(kx +k ')aL
is assumed to be smaller than unity, al = (2KT/
M)imam/Qf is the ion Larmor radius, and ve&
=2(M/ms)iI vlf, taking for v&f the definition
of Ref. 11. Here we have neglected terms of
order k)) ET(mevefkyv&) i in comparison with 1.
This dispersion relation is a quadratic equa-
tion whose roots are easily evaluated numer-
ically, and reveals two important points. First,
there exists a critical value of b given by bz
=4k')'KT(meve;vlf) ' such that the linearized
growth rate is positive only for b &b~. In con-
nection with this, we display in Fig. 1 some
experimental results for fixed neutral-beam
flux and plasma temperature, i.e., for approx-
imately constant ion density. Note that for most
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FIG. 1. (a) Observed oscillation amplitudes are com-
pared with theoretical growth rates as a function of mag-
netic field strength for various azimuthal mode num-
bers. The absolute value of the magnetic field strength
for the theoretical (slab model) curves has been scaled
by a factor of -1.5 to give a good fit to the data. The
relative amplitude is defined as the ratio of the maxi-
mum density fluctuation to the central density. (b) The
oscillation frequency (after subtraction of the rotational
Doppler shift) is compared with the drift frequency vd
=kyvd/2m as a function of the magnetic field strength.
The drift frequency, which has an uncertainty of +0.5
kc/sec, is computed from the experimental values of
k, T, snd n ~(dn/dx). The data, are for a potassium
p asma, no ——3.5&&10 cm 3, T =2800'K.
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al to, but less than, k vd. These considerations
indicate that the criterion" g =&~, which can
be written as

2 +k 2)l/2
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describes the onset of the single modes. In
Fig. 2(a) we plot the experimental values at
instability onset of B/k& vs n'~' and find agree-
ment between the experiments and this theoret-
ical prediction, including the numerical coef-
ficient. In addition, other measurements have
shown dependence on plasma temperature and
ion mass as predicted by the transition crite-
rion, Eq. (3). ln Fig. 2(b), the radial extent
of the oscillation is shown as a function of mag-
netic field. The extent of the oscillation in the
radial direction was found to increase for de-
creasing values of ~, as expected from the
full analysis of the normal-mode equation and
corresponding to (a/Bg) -k&. The position of
the amplitude maximum does not coincide with
the position of maximum density gradient and
may be determined by the radial dependence
of the growth rate, taking into account both the
variations of n and dn/dx.
It is evident from our treatment that the lin-

earized approximation is inadequate to explain
the large experimental amplitudes (typically
n, /no-ep/KT-20%) at which the growth of the
waves ceases. However, there are good argu-
ments for predicting that the saturation stage
is reached when the perturbed (ExB)c/B' drift
velocity becomes of the order of the diamagnet-
ic velocity (in our case -2x10' cm/sec). This
point is confirmed by the experiment and, in
addition, it is shown [see Fig. 1(a)] that the
pattern of the measured amplitudes follows
closely that of the calculated growth rates a,s
a function of the magnetic field. If we consid-
er this as an indication that at the saturation
stage the amplitude is proportional to a pow-
er of the growth rate, '4 we can associate the
observed frequency with that of the maximum
growth rate. '
On the other hand, if we make use of a quasi-

linear approximation" in treating the problem
and include higher order terms in the disper-
sion relation (see Ref. 12), we observe that
at the saturation level the frequency of oscil-

0
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I I
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lation is l~i-k&vd. In this connection we notice
that more detailed measurements than those
given in Fig. 1(b) have shown &u/k&vd = —~.
The observation of one single mode at a giv-

en magnetic field is explained, within the lim-
its of the linearized theory, by the fact that
only one mode has appreciable growth rate out-
side the mode-transition regions.
Several important considerations of general

nature arise from this work. First, the agree-
ment of the theoretically predicted frequencies
with observations, coupled with the fact that
the mode amplitudes maximize when 5, = 1,
implies that the large growth rates given by
the linearized approximation y= 0.2k gd-Re(&u)

FIG. 2. (a) The ratio of magnetic field strength to
perpendicular wave number is plotted versus the square
root of the density for the stabilization points of sever-
al modes. Theory I.Eq'. (3)] gives a proportionality fac-
tor of 9.7 X 10 . (b) The measured radial (~z) and azi-
muthal (~0} wavelengths of the perturbation are dis-
played as a function of the magnetic field.3
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FIG. 1. Stability characteristics of density-gradient-driven 
collisional drift waves. Contour lines are lines of constant 
growth rate. Potassium plasma, T = 2800 oK, no = 1011 em-a, 
'\lno/no = -1 em-I. 

diffusion, it may be stabilized as a result of increased 
axial wavelength. In the limit of short All, the phase 
difference between density and potential waves 
approaches zero when the stability condition is 
approached. It should be noted that stabilization at 
short All occurs before the wavelength becomes so 
short that the assumption of neglect of ion parallel 
motion breaks down, i.e., at stabilization the parallel 
phase velocity is still larger than the ion sound-wave 
velocity. 

The stability characteristics of the collisional drift 
wave according to linear theory are shown in Fig. 1, 
in which B /ky is plotted against All for constant 
growth rates. We note that for the experimental 
conditions (All 2£ = 256 cm) the long-wavelength 
stabilization criterion expressed by the inequality 
(13) represents a good approximation. For a given 
All, a given azimuthal mode may be stabilized 
abruptly with decreasing B as shown by the steep 
decline of growth rate near 1m w = 0, resulting from 
the ion diffusional transport rate being inversely 
proportional to the fourth power of the magnetic 
field, Eq. (15). For a given magnetic field, the axial 
boundary conditions determine the value of the 
parallel wavelength, which in turn determines the 
allowable perpendicular wavenumbers. Results of 
linear theory, therefore, predict that only a limited 

spectrum of wavenumbers IS unstable for given 
plasma parameters. 

III. EXPERIMENT 

The experimental work was performed on the 
Princeton Q-1 device.24 The magnetically confined 
plasma consists of ions produced by surface ioniza-
tion of Cs or K atomic beams incident on hot 
tungsten ionizer (end) plates at both ends of the 
plasma column and of thermionic electrons emitted 
from these plates. The 3-cm-diam end plates are 
aligned perpendicular to the magnetic field. The 
plasma column is 128 cm long. The alkali-metal 
vapor pressure is cryogenically reduced to below 
10-8 Torr and the residual pressure is maintained 
at 10-7 Torr, so that the plasma is fully ionized. 

External perturbations on the plasma are avoided. 
Four collimated atomic beams impinge on each end 
plate, resulting in an axisymmetric plasma density 
distribution with the density at the edge approxi-
mately 10% of the center density, and in separation 
of the regions dominated by either density or tem-
perature gradient, as discussed below in more detail. 
The ion input flux at either end of the plasma column 
is measured using collector plates. By equalizing 
both input fluxes, axial particle drifts are reduced. 
The input flux can be kept constant with a deviation 
of less than 1%. The end-plate temperature distri-
bution is measured with an optical pyrometer cali-
brated for the experimental optical path and is found 
to be axisymmetric with radial gradient of 30oK/cm 
(at ,-....J 23000 K) to 100oK/cm (at ,-....J 29000 K). One 
end plate is generally grounded and the other float-
ing. By monitoring the thermionic voltage between 
plates and adjusting plate temperatures, the poten-
tial difference between end plates is reduced to below 
3 mY. The magnetic field (up to 7 kG) is constant, 
straight, and uniform with a deviation of less than 
0.3%. No voltage is applied to the plasma column. 

The plasma diagnostics consist of eight electrically 
shielded Langmuir probes and a microwave bridge. 
Probes and end plates are aligned relative to the 
magnetic field with an error of less than 0.5 mm, 
utilizing the measured sharp drop in floating poten-
tial at the edge of the plasma column. Evaluation of 
probe density measurements is based on a recent 
probe theory,25 which results in agreement with (our) 
microwave and spectroscopic26 measurements. For a 

24 N. Rynn, Rev. Sci. Instr. 35, 40 (1964). 
25 J. G. Laframboise, University of Toronto Institute 

for Aerospace Studies Report No. 100 (1966). For previous 
probe theory, see F. F. Chen in Plasma Diagnostic Techniques, 
R. H. Huddlestone and S. L. Leonard, Eds. (Academic Press 
Inc., New York, 1965), p. 113. 

26 G. Grieger (private communication). 
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Collisional Drift Waves-Identification, Stabilization, and 
Enhanced Plasma Transport 

H. W. HENDEL, * T. K. CHU, AND P. A. POLI'l'ZER 

Plasma !,hysics Laboratory, Princeton University, Princeton, New Jersey 
(Received 24 January 1967; final manuscript received 3 July 1968) 

drift waves are identified by the dependences of wand k on 
?enslty, field, and ion and by.comparisons with a linear theory which 
mcludes res18tiVlty and vIscosity. Abrupt stablhzatlOn of aZlmuthal modes is observed when the sta-
bilizing ion diffusion over the transverse wavelength due to the combined effects of ion Larmor radius 
and ion-ion (viscosity) balances the destabilizing electron-fluid expansion over the parallel 
wavelength, electron-i.on collisions (resistivity). The finite-amplitude (n/no 10%) 
cohere?-t oSClllatlOn, entire plasma body, shows a phase difference between density and 

waves (whlCh 18 predlCted by lmear theory for growing perturbations). The wave-induced 
radial transport ex,ceeds classical diffusion, but is below the Bohm value by an order of magnitude. 
Although observations have been extended to magnetic fields three times those for drift-wave onset 
turbulence has not been encountered. ' 

1. INTRODUCTION 

Drift waves can arise in fully ionized, magnetically 
confined, 10w-!3 (13 = 87rp/B2 which is the ratio of 
plasma pressure to magnetic pressure) plasmas as a 
result of the combined effects of density gradient, ion 
inertia, and electron parallel motion. According to 
linear theory, the driving mechanism depends on the 
existence of a phase difference between wave electric 
field and plasma density oscillations. In the collision-
less regime such phase difference is produced by inter-
action between resonant electrons and the wave, and 
in the collision-dominated regime by electron-ion 
collisions (resistivity). The mechanism for stabiliza-
tion, according to linear theory, is provided in the 
collisionless regime by ion Landau damping and in 
the strongly collisional regime by the combined 
effects of ion Larmor radius and ion-ion collisions 
(viscosity). The specific damping mechanism which 
limits the wave amplitude to its saturation level can 
only be deduced from nonlinear theory, and is out-
side the scope of the present discussion. Here, "col-
lisional drift waves" designate drift waves in the 
strongly collision-dominated regime for which both 
parallel resistivity and transverse viscosity must be 
considered. 

The importance of drift waves derives from their 
possible causal relation to enhanced particle losses 
observed in 10w-!3 plasmas, i.e., losses above the 
lower limit set by classical binary-collision diffusion. 
To explain anomalously high plasma losses in arc 
discharges, in 1949 Bohm1 proposed the existence of 

* Permanent address: RCA Laboratories, Princeton, New 
Jersey. 

1 D. Bohm, E. H. S. Burhop, H. S. W. Massey, and R. W. 
Williams, The Characteristics of Electrical Discharges in M ag-
netic Fields, A. Guthrie and R. K. Wakerling, Eds. (McGraw-
Hill Book Company, New York, 1949). 

a loss mechanism based on the electric field fluctua-
tions of turbulent plasma instabilities. Although this 
view currently prevails and the Bohm diffusion 
coefficient appears to be close to an experimental and 
theoretical upper limit, enhanced plasma losses have 
been related to specific instabilities in only a few 
cases,2 and the main loss mechanism for many plasma 
devices remains obscure. In low-!3 plasmas, therefore, 
special interest is attached to drift waves, which: 
(1) can occur in the absence of currents; (2) are of 
sufficiently low frequency (Re w « Qi = eB/Mc) to 
convect ions; (3) are driven only by density (or 
temperature) gradients; (4) have large instability 
growth rates (I' = 1m w ro../ Re w for collisional drift 
waves); and (5) have large perpendicular wave-
lengths (A.l comparable to the density gradient scale 
length no/V no). Drift-wave experiments in thermally 
ionized alkali plasmas are significant since ion 
Larmor radius, wavelength, and growth rate can be 
made comparable to those in fusion plasmas. 

Early theoretical work on instabilities in inhomo-
geneous 10w-!3 plasmas led to the prediction of drift 
instability in collisionless3 and in resistive plasmas.4

,5 

The effect of viscosity associated with transverse ion 
motion was discussed as favoring stability.6,7 An 
interpretation of observed stabilization of azimuthal 
modes, based on ion diffusion over the transverse 

2 For reviews see: F. Boeschoten, J. Nuc!. Energy, Pt. C6, 
339 (1964); V. E. Golant, Usp. Fiz. Nauk 79, 377 (1963) [Sov. 
Phys.-Usp.6, 161 (1963)]; F. C. Hoh, Rev. Mod. Phys. 34, 
267 (1962); F. F. Chen, Phys. Today 10, 115 (1957). 

3 For a review see: B. B. Kadomtsev, Plasma Turbulence 
(Academic Press Inc., New York, 1965). 

4 S. S. Moiseev and R. Z. Sagdeev, Zh. Eksp. Teor. Fiz. 44, 
763 (1963) [Sov. Phys.-JETP 17, 515 (1963)]. 

6 F. F. Chen, Phys. Fluids 7, 949 (1964). 
6 A. A. Galeev, S. S. Moiseev, and R. Z. Sagdeev, J. Nuc!. 

Energy, Pt. C6, 645 (1964). 
7 A. B. Mikhailovskii and O. P. Pogutse, Dokl. Akad. 

Nauk SSSR 156, 64 (1964) [Sov. Phys.-Dok!. 9,379 (1964)]. 
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ion-ion collisions and finite ion Larmor radius) and 
resistivity (due to electron-ion collisions). We con-
sider low-frequency (Re w « ni ) localized waves. Ion 
motion along lines of force (kllVi ,th « Re w), electron 
inertia (ne = eB/mec » Re w), and perpendicular 
resistivity (V'i « ne) are neglected. The convective 
term and the collision-free part of the ion-fluid stress 
tensor may be omitted because their contributions 
to the equation of continuity for ions cancel.S

•
18 The 

first-order linearized equations thus become 

M aUil. _ K ( B) no at - - TV l.ni + noe - V l.CP + Uil. Xc 

_ B + ,,2 - nieVd x- J.l.l. V l.Uil., 
C 

o = -KTV l.n, - noe( - V l.CP + Uel. 

(2) 

- n,eVd , (3) 

ani + ( 't"7) ani 0 Ti + noVl.'Uil. Uil.· v 1. no - Vd ay = , 

ane + ( 't"7) + an, Ti + noV 1. ·Uel. U,i' V 1. no Vd ay 
+ nOVlluel1 = 0, 

(4) 

(5) 

(6) 

where Uil.' ni' Uel.' Uell' and n. are perturbed velocities 
and densities of ions and electrons, cp is the perturbed 
electric potential, J.l.l. is the transverse viscosity, 19 and 
I'd and Vii are the electron-ion and ion-ion collision 
frequencies. 

For simplicity, consider solutions of spatial varia-
tion exp (ikxx + ikyy + ikllz) assuming the localiza-
tion condition20 kx » (dno/dx) (l/no). Adding Eqs. 
(2) and (3), forming its cross product with B, and 
then applying the V 1.' operator, we obtain 

ar _ 'V J _ bVii r (7) 
at - eno II II 4 

where r is the vorticity of the fluid along B: r = 
B, (V xUil.)/B, b = t k1r'i, k1 = k; + the 
ion Larmor radius TL = (2KT /M)1/2(1/n,), and 
./11 = -enol/.!I· \Ve have used ni = n, = n, V, J = 0 
from the continuity equations, fJ.1. lnoKTvi./n:. 
:\eglecting boundary effects,2o Eq. (7) states that an 
axial current gradient or equivalently, electron-fluid 
expansion along the field lines, may be destabilizing, 

18 B. Coppi, Phys. Rev. Letters 12, 417 (1964). 
19 1. P. Shkarofsky, 1. B. Bernstein, and B. B. Robinson, 

Phys. Fluids 6,40 (1963). 
20 A quadratic form justifying the localization condition 

and including boundary conditiol,ls can be derived [T. Chu, 
B. Coppi, and H. W. Hendel, Prmceton Plasma PhYSICS Lab-
oratory Report Matt-Q-25 (1968)]. 

while ion-fluid viscosity is stabilizing. Equation (7) 
can be expressed in terms of density wave nand 
potential wave cp. The vorticity can be calculated 
from Eq. (2), r = -bn.(n/no + ecp/KT) , where 
terms whose contributions to Eq. (7) are of the order 
of bVidni are neglected in comparison with those of 
unity. The axial current gradient can be related to 
nand cp through the equation of parallel motion for 
the electrons 

Uell = -(ikIlKT/mevei)(n/no - ecp/KT). (8) 
Substituting into Eq. (7), we obtain 

a (n ecp ) 1 (n ecp ) 1 (n ecp ) 
b at no + KT = fu no - KT - tl. no + KT 

= (1. _ J:)( n + _ 
til tl. no KT til KT' 

(9) 

where l/tll = /m,vei and l/tl. = lb2vii' For 
temporal variation of exp (-iwt), onset of the over-
stable wave (w = Re w + ilm w) thus depends on a 
necessary phase difference between nand cp waves. 
This requirement of phase difference is provided by 
nontrivial values of U,II, Eq. (8). It can be verified 
from Eq. (9) that, for positive growth rate'Y = Imw, 
the density wave n leads the potential wave cp. 

According to Eq. (9), the wave is stabilized at both 
small and large til' For large til' the stability criterion 
is l/tll < l/tl.' and at onset the propagation velocity 
Re w/ky is nearly zero. Invoking the equations of 
motion and the continuity equation of electrons, 
nand cp can be related by 

n (l/t ll) - ikyVd ecp 
no = (l/t ll ) - iw KT' (10) 

which states that for large tn the nand cp waves are 
nearly 900 out of phase at onset; at small til values 
both waves are nearly in phase at onset and hence a 
sufficient condition for stability is readily obtained: 
Re w > kyvd • Substituting Eq. (10) into (9), we obtain 
the local dispersion relation 

- ibw( kyVd + w + ;L) 
= - - w) til tl. 

-- bw+-' til tl. 
For long axial wavelength AI! = 27r/kl!, so 
l/tll « k'JVd, the dispersion relation becomes21 

. ( 2i) (1 1) kyvd + w + btL = fu - tL (kyVd - w), 

(11) 

that 

(12) 

21 This diHpersion relation is the same as that given ill Hef. S. 
Without the terms containing 1/11., we recover the dispersion 
relation which does not include ion-ion collisions [Ref. 4i F. 
F. Chen, J. Nuc!. Energy, Pt. C7, 399 (1965)]. 
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Simple Drift Wave Description

In general the perturbed potential is determined by
Poisson’s equation

π2f524pe~dni2dne!. (9)

In this self-consistent field problem dna

5dna„x,f(x,t)…. For structures that are large compared
to the electron Debye length lDe5(kBTe/4pNe

2)1/2;
however, the fractional charge separation allowed by the
Poisson equation is small. From Eq. (9) the fractional
deviation of electron and ion density is

~dni2dne!

N
5S

2kBTe

4pe
2
N

Dπ2S
ef

kBTe

D

&S
lDe

2

dx
2D S

ef

kBTe

D!1. (10)

Thus the principle of quasineutrality applies. In the
quasineutral regime the plasma potential adjusts its
value to make ni(f)5ne(f) to the first order in
lDe

2 /dx
2. The resulting small fractional charge separa-

tion is computed from Poisson’s equation using the po-
tential rather than vice versa. All the drift-wave dynam-
ics discussed in this review are in the regime of
quasineutrality where r̃Q5Saqaña50 determines the
evolution of the electrostatic potential and the plasma
eigenmodes. Here a is the species index for particles of
charge qa and density na . In terms of the particle cur-
rents ja the quasineutral dynamics is given by Saπ•ja

50. In plasma physics it is conventional to measure tem-
perature in energy units kBTe!Te leaving free the k

symbol for a wave number k associated with the fluctua-
tions. The discussion regarding Fig. 1 applies equally
well to each cell of a wave with dx.p/k . Figure 2 shows
the three-dimensional structure of the drift wave as ob-
served, for example, in either a Q machine or the Co-
lumbia Linear Machine (see Sec. II.B), with the m52
mode dominant. We return to analyze the convection in
Figs. 1 and 2 in Sec. C after discussing the general fea-
tures of the fluctuations.

The condition for the electrons to establish the
Boltzmann distribution in the drift-wave–ion acoustic
wave disturbances follows from the parallel electron
force balance equation. For fluctuations with the parallel
variation k i52p/l i sufficiently strong so that electrons
with thermal velocity ve5(Te /me)1/2 move rapidly along
k i compared with time rate of change of the fields (v

,kive) the dominant terms in the electron fluid force
balance equation

meneS
du

i

e

dt
D 52eneE i2π ipe1

nemej i

e
(11)

are the electric field E i52π if and the isothermal pres-
sure gradient π ipe5Teπ ine . The temperature gradient
is small compared with density gradient due to the fast
electron thermal flow associated with k ive.v . Thus
much of the low-frequency drift-wave dynamics falls in
the regime where the Boltzmann description of the elec-
tron response

dne5NFexpS
ef

Te

D21 G
applies in the form

dne>

Nef

Te

. (12)

Here in the last step it is convenient to adopt an equality
in the sense of defining the linear, adiabatic electron
model. The model requires that ef/Te!1 and k ive

@(n
e

21v2)1/2. For example, both the Hasegawa-Mima
equation and the ideal ion temperature gradient (ITG)
model rely on the adiabatic electron model defined by
Eq. (12). For the simple drift-wave instability, however,
the adiabatic electron response defined by Eq. (12) is
broken by dissipation as we now discuss.

After dropping the electron inertia (me!0) the par-
allel electron force balance becomes

E i1
π ipe

ene

1
b̂•~π•pe!

ene

5hji ,

where pe is the traceless momentum stress tensor that
includes the electron viscosity and h is the electrical
resistivity. Using collisional or neoclassical
transport theory, the nonadiabatic contributions to
Eq. (12) can be computed. For the collisional regime
ne.k ive the electron temperature fluctuations dTe /Te

;(vne /k
i

2ve

2)(dne /ne) and the resistivity contribution
to dne are of the same order, both giving rise to a dne-f

FIG. 1. Drift-wave mechanism showing E3B convection in a
nonuniform, magnetized plasma.

FIG. 2. Three-dimensional configuration of the drift-wave
fields in a cylinder.
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Simple Drift Wave Description: Parallel Dynamics

In general the perturbed potential is determined by
Poisson’s equation

π2f524pe~dni2dne!. (9)

In this self-consistent field problem dna

5dna„x,f(x,t)…. For structures that are large compared
to the electron Debye length lDe5(kBTe/4pNe

2)1/2;
however, the fractional charge separation allowed by the
Poisson equation is small. From Eq. (9) the fractional
deviation of electron and ion density is

~dni2dne!

N
5S

2kBTe

4pe
2
N

Dπ2S
ef

kBTe

D

&S
lDe

2

dx
2D S

ef

kBTe

D!1. (10)

Thus the principle of quasineutrality applies. In the
quasineutral regime the plasma potential adjusts its
value to make ni(f)5ne(f) to the first order in
lDe

2 /dx
2. The resulting small fractional charge separa-

tion is computed from Poisson’s equation using the po-
tential rather than vice versa. All the drift-wave dynam-
ics discussed in this review are in the regime of
quasineutrality where r̃Q5Saqaña50 determines the
evolution of the electrostatic potential and the plasma
eigenmodes. Here a is the species index for particles of
charge qa and density na . In terms of the particle cur-
rents ja the quasineutral dynamics is given by Saπ•ja

50. In plasma physics it is conventional to measure tem-
perature in energy units kBTe!Te leaving free the k

symbol for a wave number k associated with the fluctua-
tions. The discussion regarding Fig. 1 applies equally
well to each cell of a wave with dx.p/k . Figure 2 shows
the three-dimensional structure of the drift wave as ob-
served, for example, in either a Q machine or the Co-
lumbia Linear Machine (see Sec. II.B), with the m52
mode dominant. We return to analyze the convection in
Figs. 1 and 2 in Sec. C after discussing the general fea-
tures of the fluctuations.

The condition for the electrons to establish the
Boltzmann distribution in the drift-wave–ion acoustic
wave disturbances follows from the parallel electron
force balance equation. For fluctuations with the parallel
variation k i52p/l i sufficiently strong so that electrons
with thermal velocity ve5(Te /me)1/2 move rapidly along
k i compared with time rate of change of the fields (v

,kive) the dominant terms in the electron fluid force
balance equation

meneS
du

i

e

dt
D 52eneE i2π ipe1

nemej i

e
(11)

are the electric field E i52π if and the isothermal pres-
sure gradient π ipe5Teπ ine . The temperature gradient
is small compared with density gradient due to the fast
electron thermal flow associated with k ive.v . Thus
much of the low-frequency drift-wave dynamics falls in
the regime where the Boltzmann description of the elec-
tron response

dne5NFexpS
ef

Te

D21 G
applies in the form

dne>

Nef

Te

. (12)

Here in the last step it is convenient to adopt an equality
in the sense of defining the linear, adiabatic electron
model. The model requires that ef/Te!1 and k ive

@(n
e

21v2)1/2. For example, both the Hasegawa-Mima
equation and the ideal ion temperature gradient (ITG)
model rely on the adiabatic electron model defined by
Eq. (12). For the simple drift-wave instability, however,
the adiabatic electron response defined by Eq. (12) is
broken by dissipation as we now discuss.

After dropping the electron inertia (me!0) the par-
allel electron force balance becomes

E i1
π ipe

ene

1
b̂•~π•pe!

ene

5hji ,

where pe is the traceless momentum stress tensor that
includes the electron viscosity and h is the electrical
resistivity. Using collisional or neoclassical
transport theory, the nonadiabatic contributions to
Eq. (12) can be computed. For the collisional regime
ne.k ive the electron temperature fluctuations dTe /Te

;(vne /k
i

2ve

2)(dne /ne) and the resistivity contribution
to dne are of the same order, both giving rise to a dne-f

FIG. 1. Drift-wave mechanism showing E3B convection in a
nonuniform, magnetized plasma.

FIG. 2. Three-dimensional configuration of the drift-wave
fields in a cylinder.
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Rev. Mod. Phys., Vol. 71, No. 3, April 1999

long parallel 

wavelength

7

“Collisionless”

7



Simple Drift Wave Description: Continuity

In general the perturbed potential is determined by
Poisson’s equation

π2f524pe~dni2dne!. (9)

In this self-consistent field problem dna

5dna„x,f(x,t)…. For structures that are large compared
to the electron Debye length lDe5(kBTe/4pNe

2)1/2;
however, the fractional charge separation allowed by the
Poisson equation is small. From Eq. (9) the fractional
deviation of electron and ion density is

~dni2dne!

N
5S

2kBTe

4pe
2
N

Dπ2S
ef

kBTe

D

&S
lDe

2

dx
2D S

ef

kBTe

D!1. (10)

Thus the principle of quasineutrality applies. In the
quasineutral regime the plasma potential adjusts its
value to make ni(f)5ne(f) to the first order in
lDe

2 /dx
2. The resulting small fractional charge separa-

tion is computed from Poisson’s equation using the po-
tential rather than vice versa. All the drift-wave dynam-
ics discussed in this review are in the regime of
quasineutrality where r̃Q5Saqaña50 determines the
evolution of the electrostatic potential and the plasma
eigenmodes. Here a is the species index for particles of
charge qa and density na . In terms of the particle cur-
rents ja the quasineutral dynamics is given by Saπ•ja

50. In plasma physics it is conventional to measure tem-
perature in energy units kBTe!Te leaving free the k

symbol for a wave number k associated with the fluctua-
tions. The discussion regarding Fig. 1 applies equally
well to each cell of a wave with dx.p/k . Figure 2 shows
the three-dimensional structure of the drift wave as ob-
served, for example, in either a Q machine or the Co-
lumbia Linear Machine (see Sec. II.B), with the m52
mode dominant. We return to analyze the convection in
Figs. 1 and 2 in Sec. C after discussing the general fea-
tures of the fluctuations.

The condition for the electrons to establish the
Boltzmann distribution in the drift-wave–ion acoustic
wave disturbances follows from the parallel electron
force balance equation. For fluctuations with the parallel
variation k i52p/l i sufficiently strong so that electrons
with thermal velocity ve5(Te /me)1/2 move rapidly along
k i compared with time rate of change of the fields (v

,kive) the dominant terms in the electron fluid force
balance equation

meneS
du

i

e

dt
D 52eneE i2π ipe1

nemej i

e
(11)

are the electric field E i52π if and the isothermal pres-
sure gradient π ipe5Teπ ine . The temperature gradient
is small compared with density gradient due to the fast
electron thermal flow associated with k ive.v . Thus
much of the low-frequency drift-wave dynamics falls in
the regime where the Boltzmann description of the elec-
tron response

dne5NFexpS
ef

Te

D21 G
applies in the form

dne>

Nef

Te

. (12)

Here in the last step it is convenient to adopt an equality
in the sense of defining the linear, adiabatic electron
model. The model requires that ef/Te!1 and k ive

@(n
e

21v2)1/2. For example, both the Hasegawa-Mima
equation and the ideal ion temperature gradient (ITG)
model rely on the adiabatic electron model defined by
Eq. (12). For the simple drift-wave instability, however,
the adiabatic electron response defined by Eq. (12) is
broken by dissipation as we now discuss.

After dropping the electron inertia (me!0) the par-
allel electron force balance becomes

E i1
π ipe

ene

1
b̂•~π•pe!

ene

5hji ,

where pe is the traceless momentum stress tensor that
includes the electron viscosity and h is the electrical
resistivity. Using collisional or neoclassical
transport theory, the nonadiabatic contributions to
Eq. (12) can be computed. For the collisional regime
ne.k ive the electron temperature fluctuations dTe /Te

;(vne /k
i

2ve

2)(dne /ne) and the resistivity contribution
to dne are of the same order, both giving rise to a dne-f

FIG. 1. Drift-wave mechanism showing E3B convection in a
nonuniform, magnetized plasma.

FIG. 2. Three-dimensional configuration of the drift-wave
fields in a cylinder.
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Basic “Drift Wave”

In general the perturbed potential is determined by
Poisson’s equation

π2f524pe~dni2dne!. (9)

In this self-consistent field problem dna

5dna„x,f(x,t)…. For structures that are large compared
to the electron Debye length lDe5(kBTe/4pNe

2)1/2;
however, the fractional charge separation allowed by the
Poisson equation is small. From Eq. (9) the fractional
deviation of electron and ion density is

~dni2dne!

N
5S

2kBTe

4pe
2
N

Dπ2S
ef

kBTe

D

&S
lDe

2

dx
2D S

ef

kBTe

D!1. (10)

Thus the principle of quasineutrality applies. In the
quasineutral regime the plasma potential adjusts its
value to make ni(f)5ne(f) to the first order in
lDe

2 /dx
2. The resulting small fractional charge separa-

tion is computed from Poisson’s equation using the po-
tential rather than vice versa. All the drift-wave dynam-
ics discussed in this review are in the regime of
quasineutrality where r̃Q5Saqaña50 determines the
evolution of the electrostatic potential and the plasma
eigenmodes. Here a is the species index for particles of
charge qa and density na . In terms of the particle cur-
rents ja the quasineutral dynamics is given by Saπ•ja

50. In plasma physics it is conventional to measure tem-
perature in energy units kBTe!Te leaving free the k

symbol for a wave number k associated with the fluctua-
tions. The discussion regarding Fig. 1 applies equally
well to each cell of a wave with dx.p/k . Figure 2 shows
the three-dimensional structure of the drift wave as ob-
served, for example, in either a Q machine or the Co-
lumbia Linear Machine (see Sec. II.B), with the m52
mode dominant. We return to analyze the convection in
Figs. 1 and 2 in Sec. C after discussing the general fea-
tures of the fluctuations.

The condition for the electrons to establish the
Boltzmann distribution in the drift-wave–ion acoustic
wave disturbances follows from the parallel electron
force balance equation. For fluctuations with the parallel
variation k i52p/l i sufficiently strong so that electrons
with thermal velocity ve5(Te /me)1/2 move rapidly along
k i compared with time rate of change of the fields (v

,kive) the dominant terms in the electron fluid force
balance equation

meneS
du

i

e

dt
D 52eneE i2π ipe1

nemej i

e
(11)

are the electric field E i52π if and the isothermal pres-
sure gradient π ipe5Teπ ine . The temperature gradient
is small compared with density gradient due to the fast
electron thermal flow associated with k ive.v . Thus
much of the low-frequency drift-wave dynamics falls in
the regime where the Boltzmann description of the elec-
tron response

dne5NFexpS
ef

Te

D21 G
applies in the form

dne>

Nef

Te

. (12)

Here in the last step it is convenient to adopt an equality
in the sense of defining the linear, adiabatic electron
model. The model requires that ef/Te!1 and k ive

@(n
e

21v2)1/2. For example, both the Hasegawa-Mima
equation and the ideal ion temperature gradient (ITG)
model rely on the adiabatic electron model defined by
Eq. (12). For the simple drift-wave instability, however,
the adiabatic electron response defined by Eq. (12) is
broken by dissipation as we now discuss.

After dropping the electron inertia (me!0) the par-
allel electron force balance becomes

E i1
π ipe

ene

1
b̂•~π•pe!

ene

5hji ,

where pe is the traceless momentum stress tensor that
includes the electron viscosity and h is the electrical
resistivity. Using collisional or neoclassical
transport theory, the nonadiabatic contributions to
Eq. (12) can be computed. For the collisional regime
ne.k ive the electron temperature fluctuations dTe /Te

;(vne /k
i

2ve

2)(dne /ne) and the resistivity contribution
to dne are of the same order, both giving rise to a dne-f

FIG. 1. Drift-wave mechanism showing E3B convection in a
nonuniform, magnetized plasma.

FIG. 2. Three-dimensional configuration of the drift-wave
fields in a cylinder.
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Ion Inertial Currents (Acoustic & Polarization Drift)

In general the perturbed potential is determined by
Poisson’s equation

π2f524pe~dni2dne!. (9)

In this self-consistent field problem dna

5dna„x,f(x,t)…. For structures that are large compared
to the electron Debye length lDe5(kBTe/4pNe

2)1/2;
however, the fractional charge separation allowed by the
Poisson equation is small. From Eq. (9) the fractional
deviation of electron and ion density is

~dni2dne!

N
5S

2kBTe

4pe
2
N

Dπ2S
ef

kBTe

D

&S
lDe

2

dx
2D S

ef

kBTe

D!1. (10)

Thus the principle of quasineutrality applies. In the
quasineutral regime the plasma potential adjusts its
value to make ni(f)5ne(f) to the first order in
lDe

2 /dx
2. The resulting small fractional charge separa-

tion is computed from Poisson’s equation using the po-
tential rather than vice versa. All the drift-wave dynam-
ics discussed in this review are in the regime of
quasineutrality where r̃Q5Saqaña50 determines the
evolution of the electrostatic potential and the plasma
eigenmodes. Here a is the species index for particles of
charge qa and density na . In terms of the particle cur-
rents ja the quasineutral dynamics is given by Saπ•ja

50. In plasma physics it is conventional to measure tem-
perature in energy units kBTe!Te leaving free the k

symbol for a wave number k associated with the fluctua-
tions. The discussion regarding Fig. 1 applies equally
well to each cell of a wave with dx.p/k . Figure 2 shows
the three-dimensional structure of the drift wave as ob-
served, for example, in either a Q machine or the Co-
lumbia Linear Machine (see Sec. II.B), with the m52
mode dominant. We return to analyze the convection in
Figs. 1 and 2 in Sec. C after discussing the general fea-
tures of the fluctuations.

The condition for the electrons to establish the
Boltzmann distribution in the drift-wave–ion acoustic
wave disturbances follows from the parallel electron
force balance equation. For fluctuations with the parallel
variation k i52p/l i sufficiently strong so that electrons
with thermal velocity ve5(Te /me)1/2 move rapidly along
k i compared with time rate of change of the fields (v

,kive) the dominant terms in the electron fluid force
balance equation

meneS
du

i

e

dt
D 52eneE i2π ipe1

nemej i

e
(11)

are the electric field E i52π if and the isothermal pres-
sure gradient π ipe5Teπ ine . The temperature gradient
is small compared with density gradient due to the fast
electron thermal flow associated with k ive.v . Thus
much of the low-frequency drift-wave dynamics falls in
the regime where the Boltzmann description of the elec-
tron response

dne5NFexpS
ef

Te

D21 G
applies in the form

dne>

Nef

Te

. (12)

Here in the last step it is convenient to adopt an equality
in the sense of defining the linear, adiabatic electron
model. The model requires that ef/Te!1 and k ive

@(n
e

21v2)1/2. For example, both the Hasegawa-Mima
equation and the ideal ion temperature gradient (ITG)
model rely on the adiabatic electron model defined by
Eq. (12). For the simple drift-wave instability, however,
the adiabatic electron response defined by Eq. (12) is
broken by dissipation as we now discuss.

After dropping the electron inertia (me!0) the par-
allel electron force balance becomes

E i1
π ipe

ene

1
b̂•~π•pe!

ene

5hji ,

where pe is the traceless momentum stress tensor that
includes the electron viscosity and h is the electrical
resistivity. Using collisional or neoclassical
transport theory, the nonadiabatic contributions to
Eq. (12) can be computed. For the collisional regime
ne.k ive the electron temperature fluctuations dTe /Te

;(vne /k
i

2ve

2)(dne /ne) and the resistivity contribution
to dne are of the same order, both giving rise to a dne-f

FIG. 1. Drift-wave mechanism showing E3B convection in a
nonuniform, magnetized plasma.

FIG. 2. Three-dimensional configuration of the drift-wave
fields in a cylinder.
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Ion Inertial Currents (Polarization Drift)

In general the perturbed potential is determined by
Poisson’s equation

π2f524pe~dni2dne!. (9)

In this self-consistent field problem dna

5dna„x,f(x,t)…. For structures that are large compared
to the electron Debye length lDe5(kBTe/4pNe

2)1/2;
however, the fractional charge separation allowed by the
Poisson equation is small. From Eq. (9) the fractional
deviation of electron and ion density is

~dni2dne!

N
5S

2kBTe

4pe
2
N

Dπ2S
ef

kBTe

D

&S
lDe

2

dx
2D S

ef

kBTe

D!1. (10)

Thus the principle of quasineutrality applies. In the
quasineutral regime the plasma potential adjusts its
value to make ni(f)5ne(f) to the first order in
lDe

2 /dx
2. The resulting small fractional charge separa-

tion is computed from Poisson’s equation using the po-
tential rather than vice versa. All the drift-wave dynam-
ics discussed in this review are in the regime of
quasineutrality where r̃Q5Saqaña50 determines the
evolution of the electrostatic potential and the plasma
eigenmodes. Here a is the species index for particles of
charge qa and density na . In terms of the particle cur-
rents ja the quasineutral dynamics is given by Saπ•ja

50. In plasma physics it is conventional to measure tem-
perature in energy units kBTe!Te leaving free the k

symbol for a wave number k associated with the fluctua-
tions. The discussion regarding Fig. 1 applies equally
well to each cell of a wave with dx.p/k . Figure 2 shows
the three-dimensional structure of the drift wave as ob-
served, for example, in either a Q machine or the Co-
lumbia Linear Machine (see Sec. II.B), with the m52
mode dominant. We return to analyze the convection in
Figs. 1 and 2 in Sec. C after discussing the general fea-
tures of the fluctuations.

The condition for the electrons to establish the
Boltzmann distribution in the drift-wave–ion acoustic
wave disturbances follows from the parallel electron
force balance equation. For fluctuations with the parallel
variation k i52p/l i sufficiently strong so that electrons
with thermal velocity ve5(Te /me)1/2 move rapidly along
k i compared with time rate of change of the fields (v

,kive) the dominant terms in the electron fluid force
balance equation

meneS
du

i

e

dt
D 52eneE i2π ipe1

nemej i

e
(11)

are the electric field E i52π if and the isothermal pres-
sure gradient π ipe5Teπ ine . The temperature gradient
is small compared with density gradient due to the fast
electron thermal flow associated with k ive.v . Thus
much of the low-frequency drift-wave dynamics falls in
the regime where the Boltzmann description of the elec-
tron response

dne5NFexpS
ef

Te

D21 G
applies in the form

dne>

Nef

Te

. (12)

Here in the last step it is convenient to adopt an equality
in the sense of defining the linear, adiabatic electron
model. The model requires that ef/Te!1 and k ive

@(n
e

21v2)1/2. For example, both the Hasegawa-Mima
equation and the ideal ion temperature gradient (ITG)
model rely on the adiabatic electron model defined by
Eq. (12). For the simple drift-wave instability, however,
the adiabatic electron response defined by Eq. (12) is
broken by dissipation as we now discuss.

After dropping the electron inertia (me!0) the par-
allel electron force balance becomes

E i1
π ipe

ene

1
b̂•~π•pe!

ene

5hji ,

where pe is the traceless momentum stress tensor that
includes the electron viscosity and h is the electrical
resistivity. Using collisional or neoclassical
transport theory, the nonadiabatic contributions to
Eq. (12) can be computed. For the collisional regime
ne.k ive the electron temperature fluctuations dTe /Te

;(vne /k
i

2ve

2)(dne /ne) and the resistivity contribution
to dne are of the same order, both giving rise to a dne-f

FIG. 1. Drift-wave mechanism showing E3B convection in a
nonuniform, magnetized plasma.

FIG. 2. Three-dimensional configuration of the drift-wave
fields in a cylinder.
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Ch. 12: Collisional Processes

12.2 Importance of Small-Angle Collisions 483

which reduces, for bm/b0≫ 1, to

⟨(∆υ⊥)2⟩
∆ℓ

! 8πn0V2b2
0 ln(bm/b0). (12.2.7)

Since the long-range Coulomb force becomes exponentially small for impact
parameters greater than the Debye length, the maximum impact parameter bm

is usually chosen to be the Debye length λD; see Eq. (2.2.8). The parameter b0,
defined by Eq. (12.1.2), can be estimated by replacing µss′V2 by its Maxwellian
average, 3κT ; see Eq. (2.1.4). With these substitutions it is then easy to show that
the logarithmic term in Eq. (12.2.7) simplifies to

ln
bm

b0
= ln

λD

b0

= ln
(
12πϵ0κT

e2 λD

)
= ln(12πND) = lnΛ, (12.2.8)

where the quantity in the parentheses occurs sufficiently often that it is defined to
be a new parameter,

Λ = 12πND, (12.2.9)

called the plasma parameter. For most plasmas, ln Λ ranges from about 10 to 40.
Based on the above analysis, we can now estimate the mean-free path, λm,

required for multiple small-angle collisions to produce a deflection of the order
of 90◦. Multiple small-angle collisions produce a change ⟨(∆υ⊥)2⟩/∆ℓ, given by
Eq. (12.2.7). To produce a deflection of the order of 90◦ in a path length, λm, we
require that

⟨(∆υ⊥)2⟩
∆ℓ

λm = V2, (12.2.10)

which, after substituting Eq. (12.2.7) for ⟨(∆υ⊥)2⟩/∆ℓ, gives

λm =
1

8πn0b2
0 lnΛ

. (12.2.11)

Next, we calculate the mean-free path for a single 90◦ large-angle collision, λS,
which, using Eq. (12.1.6), is given by

λS =
1

n0σS
=

1
n0πb2

0

. (12.2.12)
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480 Collisional Processes

Strongly coupled plasmas occupy the region near and below the line ND = 1 in
Figure 2.5.

Before we develop a theory of collisional processes in a fully ionized plasma,
it is useful to review the kinematics of binary Coulomb collisions which are the
dominant form of collisions in such a plasma.

12.1 Binary Coulomb Collisions

The scattering geometry of a charged particle of type s interacting with a charged
particle of type s′ is shown in Figure 12.1, as viewed from the center-of-mass
frame. The vector V is the relative velocity before the collision, and the vector
V′ is the relative velocity after the collision. Because of conservation of energy,
the relative velocities before and after the collision are equal in magnitude, that
is, |V| = |V′|. In the center-of-mass frame, the scattering angle χ and the impact
parameter b obey the relation

tan
(χ

2

)
=

b0

b
, (12.1.1)

where

b0 =
eses′

4πϵ0µss′V2 (12.1.2)

is the distance of closest approach, V = |v− v′| is the relative velocity of the two
particles at infinity, and

µss′ =
msms′

ms +ms′
(12.1.3)

is the reduced mass. In the case of electrons of mass me scattering off ions of
mass mi, where mi ≫ me, the reduced mass becomes µss′ ! me. The differential
cross section σss′(χ), where χ is the scattering angle in the center-of-mass frame,

V

V'

x

y

z
χ

∆υy

∆υx

φ

Figure 12.1 The coordinate system used to analyze Coulomb Collisions.
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Plasma Resistivity

494 Collisional Processes

From the expression for fe1(υ,θ) we can calculate the linearized current density
along the direction of the electric field:

J = −e
∫ ∞

−∞
fe1υcosθ d3υ

=
e2E

n0ΓeiκTe

∫ 2π

0
dφ

∫ π

0
sinθcos2 θdθ

∫ ∞

0
υ7 fe0 dυ. (12.4.21)

Using Eqs. (12.4.5) and (12.4.16) and carrying out the integrals in the above
equation, we obtain

J =
32π1/2ϵ2

0(2κTe)3/2

m1/2
e e2 lnΛ

E. (12.4.22)

The plasma conductivity, σ, defined by the relation

J = σE, (12.4.23)

is then given, in the Lorentz gas approximation, by the expression

σ =
32π1/2ϵ2

0(2κTe)3/2

m1/2
e e2 lnΛ

. (12.4.24)

It turns out that Eq. (12.4.21), which is derived assuming that electron–electron
collisions are neglected, overestimates the actual plasma conductivity. This occurs
not because electron–electron collisions contribute additively to the effective
number of collisions that electron suffer, but more subtly because electron–electron
collisions change the electron distribution function and hence, the electron–ion
collisional interaction. Note that, except for the weak dependence through ln Λ,
the conductivity depends only on the electron temperature, and is completely
independent of the number density.

The plasma resistivity η is the inverse of the conductivity σ. A more detailed
calculation of the resistivity that takes into account the effect of electron–electron
collisions, first carried out by Spitzer and Harm (1953), yields the following
formula for the resistivity:

η≃5.2×10−5 lnΛ
(κTe)3/2 ohm m, (12.4.25)

where κTe is expressed in electron volts. To be precise, the above equation gives the
Spitzer–Harm resistivity parallel to an equilibrium magnetic field. The resistivity
perpendicular to the magnetic field is approximately twice the parallel resistivity.
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12.5 Collision Operator for Maxwellian Distributions of Electrons and Ions 495

Table 12.1 Comparison of the resistivity of various
types of plasmas with some common materials

Material Resistivity, η (ohm m)

Copper 2× 10−8

Stainless steel 7× 10−7

100 eV plasma 5× 10−7

5 keV plasma 1× 10−9

Interstellar gas (1 eV) 5× 10−7

Solar corona (10 eV) 5× 10−5

Earth’s ionosphere (0.1 eV) 2× 10−2

It is interesting to compare the resistivity of fully ionized plasmas at different
temperatures to some common materials. For example, in Table 12.1 we compare
the resistivities of 100 eV and 5 keV plasmas to those of copper and stainless steel.
As one can see, a 100 eV plasma has very low resistivity, comparable to that of
stainless steel, but larger than that of copper. However, a 5 keV plasma, typical of
large laboratory fusion experiments, is an order of magnitude less resistive than
copper.

From Eq. (5.6.8), we can make an estimate of the electron–ion collision
frequency, vei, given by

νei ≃
n0e2

meσ
≃ n0e4 lnΛ

32π1/2ϵ2
0m1/2

e (2κTe)3/2
. (12.4.26)

This equation was previously used in Section 2.5.2.

12.5 Collision Operator for Maxwellian Distributions
of Electrons and Ions

In the previous section, we calculated the Rosenbluth potentials in the Lorentz
gas approximation where the ion distribution function can be approximated by a
Dirac delta function, and ions are assumed to be infinitely massive compared with
electrons (me/mi→ 0). In this approximation, there is no energy transfer to ions.
We now generalize this treatment to a case where the electrons and ions both have
Maxwellian distributions (with different temperatures) and the ions have a large
but finite mass. For both the electrons and ions we assume that the distribution
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NRL Plasma Formulary
https://www.nrl.navy.mil/ppd/content/nrl-plasma-formulary

FUNDAMENTAL PLASMA PARAMETERS

All quantities are in Gaussian cgs units except temperature (T , Te, Ti)
expressed in eV and ion mass (mi) expressed in units of the proton mass,
µ = mi/mp; Z is charge state; k is Boltzmann’s constant; K is wavenumber;
γ is the adiabatic index; ln Λ is the Coulomb logarithm.

Frequencies

electron gyrofrequency fce = ωce/2π = 2.80 × 106B Hz

ωce = eB/mec = 1.76 × 107B rad/sec

ion gyrofrequency fci = ωci/2π = 1.52 × 103Zµ−1B Hz

ωci = ZeB/mic = 9.58 × 103Zµ−1B rad/sec

electron plasma frequency fpe = ωpe/2π = 8.98 × 103ne
1/2 Hz

ωpe = (4πnee2/me)1/2

= 5.64 × 104ne
1/2 rad/sec

ion plasma frequency fpi = ωpi/2π

= 2.10 × 102Zµ−1/2ni
1/2 Hz

ωpi = (4πniZ
2e2/mi)

1/2

= 1.32 × 103Zµ−1/2ni
1/2rad/sec

electron trapping rate νTe = (eKE/me)1/2

= 7.26 × 108K1/2E1/2 sec−1

ion trapping rate νTi = (ZeKE/mi)
1/2

= 1.69 × 107Z1/2K1/2E1/2µ−1/2 sec−1

electron collision rate νe = 2.91 × 10−6ne ln ΛTe
−3/2 sec−1

ion collision rate νi = 4.80 × 10−8Z4µ−1/2ni ln ΛTi
−3/2 sec−1

Lengths

electron deBroglie length λ̄ = h̄/(mekTe)1/2 = 2.76 × 10−8Te
−1/2 cm

classical distance of e2/kT = 1.44 × 10−7T−1 cm
minimum approach

electron gyroradius re = vT e/ωce = 2.38Te
1/2B−1 cm

ion gyroradius ri = vT i/ωci

= 1.02 × 102µ1/2Z−1Ti
1/2B−1 cm

electron inertial length c/ωpe = 5.31 × 105ne
−1/2 cm

ion inertial length c/ωpi = 2.28 × 107Z−1(µ/ni)
1/2 cm

Debye length λD = (kT/4πne2)1/2 = 7.43 × 102T 1/2n−1/2 cm

28

e+ - e- energy exchange:

Thermal Equilibration

If the components of a plasma have different temperatures, but no rela-
tive drift, equilibration is described by

dTα

dt
=

∑

β

ν̄α\β
ϵ (Tβ − Tα),

where

ν̄α\β
ϵ = 1.8 × 10−19 (mαmβ)1/2Zα

2Zβ
2nβλαβ

(mαTβ + mβTα)3/2
sec−1.

For electrons and ions with Te ≈ Ti ≡ T , this implies

ν̄e|i
ϵ /ni = ν̄i|e

ϵ /ne = 3.2 × 10−9Z2λ/µT 3/2cm3 sec−1.

Coulomb Logarithm

For test particles of mass mα and charge eα = Zαe scattering off field
particles of mass mβ and charge eβ = Zβe, the Coulomb logarithm is defined
as λ = ln Λ ≡ ln(rmax/rmin). Here rmin is the larger of eαeβ/mαβ ū2 and
h̄/2mαβū, averaged over both particle velocity distributions, where mαβ =

mαmβ/(mα + mβ) and u = vα −vβ ; rmax = (4π
∑

nγeγ
2/kTγ)−1/2, where

the summation extends over all species γ for which ū2 < vT γ
2 = kTγ/mγ . If

this inequality cannot be satisfied, or if either ūωcα
−1 < rmax or ūωcβ

−1 <
rmax, the theory breaks down. Typically λ ≈ 10–20. Corrections to the trans-
port coefficients are O(λ−1); hence the theory is good only to ∼ 10% and fails
when λ ∼ 1.

The following cases are of particular interest:

(a) Thermal electron–electron collisions

λee = 23.5 − ln(ne
1/2Te

−5/4) − [10−5 + (ln Te − 2)2/16]1/2

(b) Electron–ion collisions

λei = λie = 23 − ln
(
ne

1/2ZT−3/2
e

)
, Time/mi < Te < 10Z2 eV;

= 24 − ln
(
ne

1/2T−1
e

)
, Time/mi < 10Z2 eV < Te

= 30 − ln
(
ni

1/2Ti
−3/2Z2µ−1

)
, Te < TiZme/mi.

(c) Mixed ion–ion collisions

λii′ = λi′i = 23 − ln

[
ZZ′(µ + µ′)

µTi′ + µ′Ti

(
niZ

2

Ti
+

ni′Z
′2

Ti′

)1/2
]

.
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B-G-K Collision Operator

For distribution functions with no large gradients in velocity space, the
Fokker-Planck collision terms can be approximated according to

Dfe

Dt
= νee(Fe − fe) + νei(F̄e − fe);

Dfi

Dt
= νie(F̄i − fi) + νii(Fi − fi).

The respective slowing-down rates να\β
s given in the Relaxation Rate section

above can be used for ναβ, assuming slow ions and fast electrons, with ϵ re-
placed by Tα. (For νee and νii, one can equally well use ν⊥, and the result
is insensitive to whether the slow- or fast-test-particle limit is employed.) The
Maxwellians Fα and F̄α are given by

Fα = nα

(
mα

2πkTα

)3/2

exp

{
−

[
mα(v − vα)2

2kTα

]}
;

F̄α = nα

(
mα

2πkT̄α

)3/2

exp

{
−

[
mα(v − v̄α)2

2kT̄α

]}
,

where nα, vα and Tα are the number density, mean drift velocity, and effective
temperature obtained by taking moments of fα. Some latitude in the definition
of T̄α and v̄α is possible;20 one choice is T̄e = Ti, T̄i = Te, v̄e = vi, v̄i = ve.

Transport Coefficients

Transport equations for a multispecies plasma:

dαnα

dt
+ nα∇ · vα = 0;

mαnα
dαvα

dt
= −∇pα − ∇ · Pα + Zαenα

[
E +

1

c
vα × B

]
+ Rα;

3

2
nα

dαkTα

dt
+ pα∇ · vα = −∇ · qα − Pα : ∇vα + Qα.

Here dα/dt ≡ ∂/∂t + vα · ∇; pα = nαkTα, where k is Boltzmann’s constant;

Rα =
∑

β
Rαβ and Qα =

∑
β

Qαβ , where Rαβ and Qαβ are respectively

the momentum and energy gained by the αth species through collisions with
the βth;Pα is the stress tensor; and qα is the heat flow.

36

stress tensor (either Pxx= −
η0

2
(Wxx + Wyy) −

η1

2
(Wxx − Wyy) − η3Wxy;

species)

Pyy= −
η0

2
(Wxx + Wyy) +

η1

2
(Wxx − Wyy) + η3Wxy;

Pxy= Pyx = −η1Wxy +
η3

2
(Wxx − Wyy);

Pxz= Pzx = −η2Wxz − η4Wyz;

Pyz = Pzy = −η2Wyz + η4Wxz;

Pzz = −η0Wzz

(here the z axis is defined parallel to B);

ion viscosity ηi
0 = 0.96nkTiτi; ηi

1 =
3nkTi

10ω 2
ci τi

; ηi
2 =

6nkTi

5ω 2
ci τi

;

ηi
3 =

nkTi

2ωci
; ηi

4 =
nkTi

ωci
;

electron viscosity ηe
0 = 0.73nkTeτe; ηe

1 = 0.51
nkTe

ω 2
ceτe

; ηe
2 = 2.0

nkTe

ω 2
ceτe

;

ηe
3 = −

nkTe

2ωce
; ηe

4 = −
nkTe

ωce
.

For both species the rate-of-strain tensor is defined as

Wjk =
∂vj

∂xk
+
∂vk

∂xj
−

2

3
δjk∇ · v.

When B = 0 the following simplifications occur:

Ru = nej/σ∥; RT = −0.71n∇(kTe); qi = −κi
∥∇(kTi);

qe
u

= 0.71nkTeu; qe
T = −κe

∥∇(kTe); Pjk = −η0Wjk.

For ωceτe ≫ 1 ≫ ωciτi, the electrons obey the high-field expressions and the
ions obey the zero-field expressions.

Collisional transport theory is applicable when (1) macroscopic time rates
of change satisfy d/dt ≪ 1/τ , where τ is the longest collisional time scale, and
(in the absence of a magnetic field) (2) macroscopic length scales L satisfy L ≫
l, where l = v̄τ is the mean free path. In a strong field, ωceτ ≫ 1, condition
(2) is replaced by L∥ ≫ l and L⊥ ≫

√
lre (L⊥ ≫ re in a uniform field),

where L∥ is a macroscopic scale parallel to the field B and L⊥ is the smaller
of B/|∇⊥B| and the transverse plasma dimension. In addition, the standard
transport coefficients are valid only when (3) the Coulomb logarithm satisfies
λ ≫ 1; (4) the electron gyroradius satisfies re ≫ λD , or 8πnemec2 ≫ B2; (5)
relative drifts u = vα − vβ between two species are small compared with the
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Ion Collisional (⊥) Dynamics
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Ion Collisional Dynamics (w Viscous Damping)
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Ion Continuity
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Drift Wave Dynamics (Adiabatic Electrons)
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Electron (||) Dynamics w Collisions
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Electron (||) Dynamics w Collisions
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Strong Collisions (yields unstable drift wave)
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How Much Transport from Drift Waves?

In general the perturbed potential is determined by
Poisson’s equation

π2f524pe~dni2dne!. (9)

In this self-consistent field problem dna

5dna„x,f(x,t)…. For structures that are large compared
to the electron Debye length lDe5(kBTe/4pNe

2)1/2;
however, the fractional charge separation allowed by the
Poisson equation is small. From Eq. (9) the fractional
deviation of electron and ion density is

~dni2dne!

N
5S

2kBTe

4pe
2
N

Dπ2S
ef

kBTe

D

&S
lDe

2

dx
2D S

ef

kBTe

D!1. (10)

Thus the principle of quasineutrality applies. In the
quasineutral regime the plasma potential adjusts its
value to make ni(f)5ne(f) to the first order in
lDe

2 /dx
2. The resulting small fractional charge separa-

tion is computed from Poisson’s equation using the po-
tential rather than vice versa. All the drift-wave dynam-
ics discussed in this review are in the regime of
quasineutrality where r̃Q5Saqaña50 determines the
evolution of the electrostatic potential and the plasma
eigenmodes. Here a is the species index for particles of
charge qa and density na . In terms of the particle cur-
rents ja the quasineutral dynamics is given by Saπ•ja

50. In plasma physics it is conventional to measure tem-
perature in energy units kBTe!Te leaving free the k

symbol for a wave number k associated with the fluctua-
tions. The discussion regarding Fig. 1 applies equally
well to each cell of a wave with dx.p/k . Figure 2 shows
the three-dimensional structure of the drift wave as ob-
served, for example, in either a Q machine or the Co-
lumbia Linear Machine (see Sec. II.B), with the m52
mode dominant. We return to analyze the convection in
Figs. 1 and 2 in Sec. C after discussing the general fea-
tures of the fluctuations.

The condition for the electrons to establish the
Boltzmann distribution in the drift-wave–ion acoustic
wave disturbances follows from the parallel electron
force balance equation. For fluctuations with the parallel
variation k i52p/l i sufficiently strong so that electrons
with thermal velocity ve5(Te /me)1/2 move rapidly along
k i compared with time rate of change of the fields (v

,kive) the dominant terms in the electron fluid force
balance equation

meneS
du

i

e

dt
D 52eneE i2π ipe1

nemej i

e
(11)

are the electric field E i52π if and the isothermal pres-
sure gradient π ipe5Teπ ine . The temperature gradient
is small compared with density gradient due to the fast
electron thermal flow associated with k ive.v . Thus
much of the low-frequency drift-wave dynamics falls in
the regime where the Boltzmann description of the elec-
tron response

dne5NFexpS
ef

Te

D21 G
applies in the form

dne>

Nef

Te

. (12)

Here in the last step it is convenient to adopt an equality
in the sense of defining the linear, adiabatic electron
model. The model requires that ef/Te!1 and k ive

@(n
e

21v2)1/2. For example, both the Hasegawa-Mima
equation and the ideal ion temperature gradient (ITG)
model rely on the adiabatic electron model defined by
Eq. (12). For the simple drift-wave instability, however,
the adiabatic electron response defined by Eq. (12) is
broken by dissipation as we now discuss.

After dropping the electron inertia (me!0) the par-
allel electron force balance becomes

E i1
π ipe

ene

1
b̂•~π•pe!

ene

5hji ,

where pe is the traceless momentum stress tensor that
includes the electron viscosity and h is the electrical
resistivity. Using collisional or neoclassical
transport theory, the nonadiabatic contributions to
Eq. (12) can be computed. For the collisional regime
ne.k ive the electron temperature fluctuations dTe /Te

;(vne /k
i

2ve

2)(dne /ne) and the resistivity contribution
to dne are of the same order, both giving rise to a dne-f

FIG. 1. Drift-wave mechanism showing E3B convection in a
nonuniform, magnetized plasma.

FIG. 2. Three-dimensional configuration of the drift-wave
fields in a cylinder.
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does not allow us to distinguish between an MI/2 

(Larmor radius effect), MI/
3 (resistivity effect only), 

and M3/8 (resistivity and viscosity effects) depend-
ence. 

VI. MEASUREMENTS OF ENHANCED PLASMA 
TRANSPORT CAUSED BY COLLISIONAL 

DRIFT WAVES 

Drift (universal) instabilities are potentially peril-
ous to plasma confinement as they may cause 
enhanced loss in such plasmas. However, the mech-
anism responsible for enhanced plasma transport due 
to a finite-amplitude instability cannot, in general, 
be deduced from linearized calculations, and a rig-
orous nonlinear theory of collisional drift-wave 
induced plasma losses, predicting experimental 
amplitudes and phase difference, has not been re-
ported.32 Experimentally, the relation of enhanced 
plasma loss to specific instabilities is difficult to 
establish due to problems in the identification of 
instabilities and to the simultaneous presence in 
many plasma devices of different unstable modes. 
Furthermore, direct measurements of classical and 
enhanced radial fluxes are complicated because of 
the small velocities involved and because of changes 
in local plasma density and its gradient in the pres-
ence of probes. Indirect measurements of wave-
induced enhanced fluxes are complicated by problems 
in the separation of these fluxes from other losses 
such as charge exchange, dc drifts, and volume or 
end-plate recombination; and in the measurement of 
local wave parameters from which enhanced plasma 
transport is determined. In addition, for a conclusive 
measurement it must be shown that the presence of 
the instability does not cause changes in the bound-
ary conditions and concomitant losses. 

The present measurements of wave-induced radial 
plasma transport are based on the detailed indentifi-
cation of the pertinent instability, and benefit from 
the fact that one azimuthal mode of the drift wave 
is dominant and can be stabilized abruptly. The 
principal experimental result is the observation of an 
abrupt density reduction inside, and an increase 
outside the plasma column coinciding with the simul-
taneous destabilization of the drift wave to large 
amplitude, together with a phase difference between 
density and potential oscillations. By varying any of 
the critical parameters in the stability criterion, the 
self-sustained m = 1 mode, Fig. 5(a), which is less 
localized in comparison with the higher modes con-

32 Some results of nonlinear theories of collisional drift 
waves have been given recently: T. H. Dupree, Bull. Am. 
Phys. Soc. 13, 263 (1968); T. H. Stix, Phys. Rev. Letters 20, 
1422 (1968). 
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FIG. 6. Ratio of magnetic field to perpendicular wavenumber 
versus average ion mass for a varying mixture of potassium 
and cesium ions. Theory gives B /kJ.. = 1.0 X 102 (M3/s> G-cm 
for AU = 2L, T = 2800 oK, no 1011 cm-3• Experimental points 
are averages for m = 2 to 6. 

sidered in the theory but which does behave similarly 
to the higher modes, can be "turned on and off" 
abruptly. Plasma loss rates can be determined and 
compared for stable and wave states under otherwise 
identical conditions, thus obviating some of the 
difficulties in the measurement of plasma losses 
noted above. 

A. Enhanced Plasma Loss vs Magnetic Field and 
Ion Mass 

In Fig. 7, plasma density is shown as a function of 
the magnetic field for different radial locations, with 
constant ion and electron influx from the end plates. 
Starting with low magnetic field, the plasma confine-
ment increases with B. When B. is reached, the wave 
destabilizes to large amplitude and the plasma den-
sity in the central part of the plasma column de-
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FIG. 7. Plasma density at different radial positions in relation 
to drift-wave onset. Cesium, T = 2800 oK. 
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ous to plasma confinement as they may cause 
enhanced loss in such plasmas. However, the mech-
anism responsible for enhanced plasma transport due 
to a finite-amplitude instability cannot, in general, 
be deduced from linearized calculations, and a rig-
orous nonlinear theory of collisional drift-wave 
induced plasma losses, predicting experimental 
amplitudes and phase difference, has not been re-
ported.32 Experimentally, the relation of enhanced 
plasma loss to specific instabilities is difficult to 
establish due to problems in the identification of 
instabilities and to the simultaneous presence in 
many plasma devices of different unstable modes. 
Furthermore, direct measurements of classical and 
enhanced radial fluxes are complicated because of 
the small velocities involved and because of changes 
in local plasma density and its gradient in the pres-
ence of probes. Indirect measurements of wave-
induced enhanced fluxes are complicated by problems 
in the separation of these fluxes from other losses 
such as charge exchange, dc drifts, and volume or 
end-plate recombination; and in the measurement of 
local wave parameters from which enhanced plasma 
transport is determined. In addition, for a conclusive 
measurement it must be shown that the presence of 
the instability does not cause changes in the bound-
ary conditions and concomitant losses. 

The present measurements of wave-induced radial 
plasma transport are based on the detailed indentifi-
cation of the pertinent instability, and benefit from 
the fact that one azimuthal mode of the drift wave 
is dominant and can be stabilized abruptly. The 
principal experimental result is the observation of an 
abrupt density reduction inside, and an increase 
outside the plasma column coinciding with the simul-
taneous destabilization of the drift wave to large 
amplitude, together with a phase difference between 
density and potential oscillations. By varying any of 
the critical parameters in the stability criterion, the 
self-sustained m = 1 mode, Fig. 5(a), which is less 
localized in comparison with the higher modes con-
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sidered in the theory but which does behave similarly 
to the higher modes, can be "turned on and off" 
abruptly. Plasma loss rates can be determined and 
compared for stable and wave states under otherwise 
identical conditions, thus obviating some of the 
difficulties in the measurement of plasma losses 
noted above. 

A. Enhanced Plasma Loss vs Magnetic Field and 
Ion Mass 

In Fig. 7, plasma density is shown as a function of 
the magnetic field for different radial locations, with 
constant ion and electron influx from the end plates. 
Starting with low magnetic field, the plasma confine-
ment increases with B. When B. is reached, the wave 
destabilizes to large amplitude and the plasma den-
sity in the central part of the plasma column de-
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FIG. 8. Plasma density in relation to drift-wave onset for a 
varying mixture of potassium and cesium ions. no 1011 em-a, 
T = 2800°K. 

creases abruptly. In the outer part and at positions 
outside the plasma column, the density increases at 
onset, signifying radial transport associated with the 
wave. The dependence of this density reduction on 
onset, for varying average ion mass, is given in 
Fig. 8. 
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FIG. 9. Measured density profiles and wave parameters 
versus radius for a potassium plasma at T = 2760°K. 
Density profiles in the stable (no" B = 1964 G) .and 
wave regimes (now, m =1, B = 2050 G). (b) Relative ampli-
tude of density (n/no) and (e<f>/kT) oscillations. (c) 
Phase angle", by which the density wave leads the potential 
wave. 
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FIG. 10. Computed wave-enhanced plasma transport quan-
tities versus radius for conditions of Fig. 9. (a) Radial particle 
flux due to wave (F wave) and electron-ion collisions (F ._; .• , 
F _-•. w). (b) Comparison of diffusion coefficients. (c) Compari-
son of change in divergence of radial flux, dF. with the 
density change, dn,. 

B. Determination of Enhanced Radial Plasma 
Transport from Wave Parameters 

The local wave-enhanced plasma flux, F wave, in the 
radial direction due to a drift wave of azimuthal 
mode number m, can be calculated from the ampli-
tudes of density and potential waves and their phase 
difference 

F waveCr) 
(22) 

= me fi(r)4>(r) sin 2ts ' 
where r is the radial position. Measurements of 
radial distribution of wave amplitudes and phase-
angle difference 1/1 are given in Fig. 9, together with 
measured plasma density profiles in the stable 
(B = 1964 G) and wave CB = 2050 G) regimes. The 
classical-diffusion flux due to electron-ion collisions 
can be calculated for comparison 

(23) 

where 7J is the perpendicular resistivity. Results of 
the flux calculations are given in Fig. 10(a). Classical 
diffusion due to ion-ion collisions is of the same order 
as that due to electron-ion collisions, but is not 
included in Fig. lO(a) due to the difficulty in evaluat-
ing it from measured density profiles. 

Based on the local density gradient scale length, a 
"diffusion coefficient" Dwave for the flux associated 24
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Conclusions
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plasma 10ss35 in the stable regime cannot be ac-
counted for by classical diffusion, charge exchange, 
and volume or end-plate recombination. Theoreti-
cally, radial and longitudinal distributions of wave 
amplitudes require solution of a complicated bound-
ary-value problem. Experimentally, the edge oscilla-
tion, which has not been considered in the loss 
measurements, has maximum amplitude at the edge 
of the plasma column, Fig. 2. This unidentified 
oscillation, found to affect the density in the central 
part of the plasma column only negligibly, shows a 
phase difference between its density and potential 
oscillations and is expected to cause additional 
plasma transport in the edge region. Other losses, 
such as dc convective flow of plasma due to the 
temperature gradientl5

•
29 of the end plates, may also 

be present near the plasma edge. Complete identifi-
cation of these losses, although of interest to the 
study of plasma confinement in Q devices, is difficult 
and has not been reported. In the present case it is 
not necessary to account for these losses in detail to 
demonstrate drift wave enhanced plasma transport 
since the measurement is based on a comparison of 
stable and wave states, utilizing the experimental 
evidence that other losses are approximately pro-
portional to density. 

C. Enhanced Loss as Function of Density 

In Fig. 11 the measured wave amplitude and the 
plasma density-decrease with onset of the m = 1 
mode are shown as a function of plasma density. 
Values of amplitude and plasma density for the 
unstable case are obtained adjacent to onset when 
maximum saturation amplitude is reached. Also 
shown is the calculated growth rate from linear 
theory, for measured values of temperature, density, 
magnetic field, and density gradient scale length. 
The wave amplitude dependence on density is found 
to be comparable to that of the linear growth rate. 
The density decrease as function of no, which can 
be viewed roughly as a measure of plasma loss, also 
bears similarity to the growth rate as a function of no. 
These observations are consistent with those of the 
mode amplitude dependence on magnetic field, Fig. 4 
and strongly suggest that the nonlinear mechanism 
responsible for the results observed at the large 
saturation amplitude is such as to preserve the 
characteristics of the unstable perturbation predicted 
by linear theory. 

35 S. von Goeler and R. W. Motley, in Proceedings of Con-
ference on Physics of Quiescent Plasmas (Laboratori. Gas 
Ionizzati, Frascati, Italy, 1967), Pt. 1, p. 243; and private 
communication with F. F. Chen and G. Grieger. 

VII. DISCUSSION AND CONCLUSION 

The present experiment is conducted in a region of 
the plasma where the free-energy reservoirs available 
for self-sustained instabilities are limited; i.e., the 
plasma is close to thermal equilibrium, no current is 
applied, and regions dominated by density and tem-
perature gradients36 are separated. In this plasma 
region, where the only known excitation mechanism 
for instability is the density gradient, we observe a 
self-sustained, coherent oscillation whose behavior 
agrees with results from the linear theory of density-
gradient-driven collisional drift waves. 

The identification of this wave is based on its 
measured dependence of frequency and wavenumber 
on all experimentally accessible parameters. The 
wave is observed to show abrupt stabilization of 
azimuthal modes occurring when the stabilizing ion 
diffusion over the transverse wavelength due to the 
combined effects of ion-ion collisions and finite ion 
Larmor radius (viscosity) balances the destabilizing 
effect of electron motion over the parallel wavelength 
due to, but also limited by, resistivity. 

The interpretation of the present finite-amplitude 
experimental results is based on linear theory. Linear 
theory, however, only considers disturbances of 
infinitesimal amplitude. If the perturbation is found 
to be unstable, i.e., growing without limit, linear 
theory is expected to be valid only during a limited 
initial time interval in which the amplitude of the 
growing wave is small. The agreement between the 
present finite-amplitude results and the predictions 
of linear theory must, therefore, be considered signi-
ficant in its implications. 

Nonlinear interactions, as in the cases of strong 
mode-mode coupling or of turbulence, may distort 
an incipient instability so that the final saturation-
stage behavior bears no resemblance to the charac-
teristics of the initial perturbation predicted by 
linear theory.37 However, other nonlinear mecha-
nisms may limit the amplitude so that the mode 
phenomena observed at the finite-amplitude satura-
tion stage are closely related to the unstable pertur-
bation predicted by linear theory for the initial 

36 It has been suggested that the equilibrium radial electric 
field may play a role in onset of low-fre9.uency-
oscillations [L. Enriques, A. M. Levme, and G. B. 
Plasma Phys. 10, 641 (1968)]. In the present experiment, 
however, the effect of the radial electric field E or, other than 
Doppler shift of the observed to be neg-
ligible. When plate temperature IS mcreased, Eor mcreases as 
Ta, a ?: 2. As the plate teml?erature. is varied, we observe 
drift-wave mode changes conSIstent With Eq. (17), m ex Tl. 
We do not observe m ex IjTa, as expected if a cEor X BjB' 
mechanism would playa role, as suggested in the above refer-
ence. 

37 N. A. Krall, Phys. Rev. 158, 138 (1967). 
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37 N. A. Krall, Phys. Rev. 158, 138 (1967). 
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growth interva1.32 In this connection, a theory38 
including higher-order terms shows that close to 
onset the amplitude A is proportional to a power of 
the linear growth rate, A 2 ex: 'Y. For drift waves, it 
has been conjectured that nonlinear interaction 
limits the wave growth when the perturbed azi-
muthal density gradient becomes comparable to the 
zeroth-order radial density gradient; i.e., amplitude 
saturation may be expected to occur when the per-
turbed Ewave xcB/B2 drift velocity becomes com-
parable to the diamagnetic velocity. 39 Indeed, these 
velocities are found to be roughly comparable in the 
experiment (,....,2 X 103 cm/sec), at the saturation 
stage. In addition, we note the existence of other 
fluid-dynamics experiments whose large-amplitude 
results are in agreement with the growth charac-
teristics of the unstable perturbation predicted by 
the respective linear theories: the instability occur-
ring between two rotating coaxial cylinders/o ,41 the 
convective instability of a horizontal fluid layer 
heated from below,42,43 and the instability in 
flames.44 In these experiments, the perturbed motion 
is characterized as a coherent oscillation, similar to 
the one discussed here. 

The present experimental results show that the 
observed pattern of mode amplitudes is similar to 
that of the calculated linear growth rate, and that 
the observed frequencies are those predicted for 
highest linear growth rates. If we take these results 
as an indication that at the saturation stage the 
amplitude is proportional to a power of the linear 
growth rate, in agreement with the theory consider-
ing higher-order terms discussed above, we can 
associate the observed finite-amplitude modes with 
those of highest growth rate predicted from linear 
theory. 

The crucial plasma-confinement experiment is the 
measurement of anomalous losses, i.e., losses above 
classical diffusion. Drift waves are of particular 
interest since the only required sustaining mechanism 
is a generally present density (or temperature) gra-
dient. The growth rates predicted by linear theory for 
collisional drift waves are large, 2'Y ,...., Re w ,...., kyVd/2, 
as is the transverse wavelength, Ai »TL, making the 

38 L. D. Landau and E. M. Lifshitz, Fluid Mechanics 
(Pergamon Press, Ltd., London, 1959), p. 104; Ref. 3, p. 46 . 
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national Centre for Theoretical Physics, Trieste, Report 
IC/66/24, 1966. 

40 G. I. T!1ylor, Phil. Trans. Roy. Soc. A223, 289 (1923). 
41 C. C. Lm, The Theory of Hydrodynamic Stability (Cam-

bridge University Press, Cambridge, England, 1955), p. 15. 
42 M. Bernard, Ann. Chim. Phys. 23, 62 (1901). 
43 Lord Rayleigh, Sci. Papers 6, 432 (1916). 
44 G. H. Markstein, J. Aeron. Sci. 18, 199 (1951). 

collisional drift wave suitable to cause enhanced 
plasma transport. Such causal relation between colli-
sional drift waves and enhanced plasma transport is 
observed in the present experiment. The plasma 
transport induced by the wave electric field is larger 
than that due to classical binary-collision diffusion by 
one order of magnitude for a 10% relative wave 
amplitude. This transport is a direct consequence of 
the phase difference between the coherent density 
and potential waves, which is predicted for a growing 
wave by linear theory. The coherent wave, which has 
no spatial- or temporal-average velocity, induces 
radially outward transport because of the ii-<l> 
phase difference; the outward oscillatory motion 
involves denser plasma than the inward motion. This 
phenomenon is analogous to heat convection in a 
horizontal layer of fluid heated from below, where 
periodic fluid cells are formed. Although there is no 
average velocity, there is an average convective 
transport of heae2 ,43; the outward motion in-
volves hotter fluid than the inward motion. 

To conclude, the present results on the parametric 
dependence of frequency wand wavenumber k cons-
titute a comprehensive identification of the density-
gradient-driven collisional drift wave at the oscilla-
tory finite-amplitude saturation stage, based on, and 
in agreement with, results from linear theory. The 
coherent wave, involving the entire plasma body, is 
shown to produce enhanced plasma transport. This 
finding of plasma transport induced by the single-
mode coherent drift wave represents a departure 
from the prevalent concept of plasma loss from 
magnetic confinement, which associates plasma loss 
with plasma turbulence. Furthermore, this work 
indicates the presence of an extensive regime of 
coherent oscillations beyond wave onset (B » Be); 
although azimuthal modes have been observed up 
to m = 7, turbulence, potentially important and 
desirable for further study, has yet to be encountered. 
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