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• Quasilinear plasma wave heating 

• Kinetic Alfvén Wave Heating (Jessica): Electron/Ion Landau Damping 
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276 ACADEMIC WRITING FOR GRADUATE STUDENTS 

A Few Thoughts on Manuscript 
Reviews for a Journal 
You may at some point be asked to review a manuscript that has been sub-
mitted for publication. Journals generally provide you with guidelines for 
evaluating the manuscript. In your first few reviews, you may want to adhere 
to the guidelines, but as you gain more experience, you should also have 
confidence in your ability and develop your own reviewing style. In the 
guidelines of one journal with which John and Chris are very familiar, 
reviewers are asked to consider such things as the level of interest others in 
the field might have, the originality of the manuscript, the author's familiar-
ity with the field, the appropriateness of the methodology and statistical 
analyses, the appropriateness of the conclusions, and writing style. Regard-
less of the quality of the article that you are reviewing, as with all other 
forms of critique, it is important to be fair and to suggest improvements that 
could actually be made. For instance, if a study is a secondary analysis of 
data collected for another purpose, it may not be fair to suggest that the 
authors collect additional data. Your job is not to find as much fault as pos-
sible with a manuscript, but to offer feedback that could either improve a 
manuscript that is potentially publishable or respectfully explains your opin-
ion why it is not. Reviews that are disrespectful can discourage novice schol-
ars and frustrate those who have experience. We suggest that you consider 
yourself as being in the role of a peer advisor engaged in a written dialogue 
with the author, albeit a dialogue that may be one-sided if you do not rec-
ommend the manuscript for publication. If you happen to be on the receiv-
ing end of a manuscript for review, you may want to consult Navigating 
Academia, which is published by the University of Michigan Press (Swales 
and Feak, 2011). 

Unit Seven 
Constructing a 
Research Paper I 

Units Seven and Eight consolidate many of the aspects of academic writing 
that have been stressed in earlier units. However, they also break new ground 
and differ from the previous units in one important way. At this stage, we 
think that you may be carrying out research of some kind. The purpose of 
these units, therefore, is to help prepare you with writing up your own 
research. -·----------------·--TASK ONE 

If you have not done so already, find 5-10 well-written published 
research papers that are typical of papers in your area of study. It 
does not matter whether these are seminal papers or where the 
research was conducted. We simply want you to have a small data 
set (a corpus) that you can analyze to gain some insights into the 
important characteristics of published work in your discipline. ---·-------------------
Before we delve into the writing of research papers (RPs) and work with 

your corpus, we need to narrow our focus here somewhat. This narrowing is 
necessary because we want to draw your atrention to types of journal publi-
cations other than the traditional empirical research paper, not all of which 
we have the space to deal with in this book. 
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Types of Journal Publication 
First, it is important to emphasize that not all research articles are empirical. 
In Astrophysics, for example, experimentation is actually impossible: "One 
cannot experiment on a star or a galaxy in the way in which one can experi-
ment on a chemical compound or a bean plant" (Tarone et al., 1998, 115). 
As a result, astrophysicists tend to publish logical argumentation papers that 
have a general-specific structure (see Unit Two). This form of argument 
moves typically from known principles to observations, and then to equa-
tions designed to account for the observed phenomena. Such papers can be 
common in Theoretical Physics, in Mathematics, in Theoretical Linguistics, 
and in fields that rely on computer modeling (e.g., certain areas of Economics, 
Biostatistics, and Engineering). 

Papers that are more theoretically oriented tend to not follow the standard 
Introduction-Methods-Results-Discussion (IMRD) pattern that is used in 
many research papers. 1 To compensate for the lack of a fixed IMRD struc-
ture, these papers often contain a considerable amount of metadiscourse (Unit 
Four), which "roadmaps" the organization of the paper. Further, because of 
their theoretical nature, the use of first-person pronouns is more widely 
accepted. We will not deal with this type of paper in great detail in these last 
two units; nevertheless, much of what we will discuss still applies. 

Another kind of journal publication that we will only briefly mention 
here is the review article, state-of the-art paper, or meta-analysis.2 Such articles 
are usually written by senior scholars at the invitation of journal editors. The 
aim of these invited papers is often to clarify the state of the art in a particu-
lar field. 

Some review articles, known as systematic reviews, follow a very strict 
method for choosing the research to review in response to a carefully chosen 
research question. Adhering to the same kind of rigor as would be expected 
in any other kind of research is thought to prevent bias that could emerge 
when authors are free to select articles. Moreover, with a transparent 
methodology in place, others should be able to replicate the work and obtain 

1 These four sections of the research paper are capitalized when we are discussing them in 
broad terms or offering details about writing them. 
2 Although the terms review and meta-analysis are often used interchangeably, they differ in 
important ways. \'Vhile a systematic review summarizes literature, a meta-analysis involves 
combining the results of many separate studies and synthesizing conclusions to determine the 
effectiveness of a treatment, procedure, or process. Meta-analyses first require a systematic 
review to be done. However, not all systematic reviews include a meta-analysis. 
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the same results. Systematic reviews, unlike review articles, generally follow 
the IMRD pattern. Increasingly, in many graduate programs, students are 
expected to write systematic reviews. Even if you are not expected to write a 
systematic review, keep in mind that state-of-the art papers, whether system-
atic or not, are invaluable since they provide an in-depth overview of the 
important literature of a field and a snapshot of where the field is at a partic-
ular moment. 

According to Noguchi's (2001) study of 25 review articles published in 
the Proceedings of the National Academy of Sciences, such pieces are likely to 
have a primary focus of one of these four types. 

Focus 
History 
Current work 
Theory/model 

Issue 

TASK TWO 

Aim 
Presenting a historical view of (part of) the field 
Describing the current state of knowledge 
Proposing a theory or model to account for the avail-
able data 
Calling attention to an important issue in the field 

Read a review article of relevance to you. Does it include one of the 
aspects proposed by Noguchi? Or is the approach different? What 
kind of section headings does it have? How long is it? How many 
references does it have? 

There are a few other types of text published in journals. Book reviews 
(addressed in Unit Six) are found in many journals. Another type of journal 
publication consists of comments on or responses to published papers. 
These are not found in all fields but are fairly common in psychology and 
medical journals. Such critiques were also covered, at least in part, in Unit 
Six. Then there are editorials in which an editor or invited author makes a 
case for his or her perspective on an issue, often concluding that a field needs 
to reassess priorities and directions. Finally, we have short communications 
(also called brief reports or technical notes) and standard empirical research 
papers. The main focus of these last two units will be on the latter, but first 
we will briefly examine one type of short communication (SC), especially 
because these, along with book reviews, may be among the first items that 
junior researchers publish. 
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In fact, most SCs published today in the hard sciences, Engineering, and 
Medicine now take the form of short articles. In other words, they follow the 
IMRD format and include an abstract. Indeed, even medical case reports are 
increasingly taking this form because most today include a comprehensive 
literature review. Typically, these mini-articles run three to six printed pages. 
Given their similarity to longer empirical RPs, much of what we have to say 
about IMRD articles in Units Seven and Eight will apply to SCs as well. 
However, there is one type of SC that is rather different; this is illustrated in 

the next section. 

Short Communications (SCs) in Disciplines that 
Report Fieldwork 
This type of research communication is widespread but is mostly found in 
local, regional, or national journals. SCs of this type are part of the writing 
tradition in disciplines that are engaged in field research 3 (e.g., Biology, 
Archaeology, and Geology) and in such areas as Linguistics, Folklore, Local 
History, Architecture, and Ethnomusicology. 

A principal function of many of these SCs is to report on a rare or 
unusual phenomenon, whether it is a rare rock formation, dialectal usage, or 
organism of some kind. In effect, SCs are used for reportable discoveries, 
and they have a history that extends back to the original founding of scien-
tific journals in England and France in the seventeenth century. The exam-
ple in Task Three is taken from a small regional journal called Michigan 
Birds and Natural History. This journal is refereed and appears four times a 
year. It contains many SCs. The topic of this SC is a badger, a mid-sized 

nocturnal mammal. 

3 Research based on firsthand observations made outside a controlled experimental setting 

such as a laboratory. 
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TASK THREE 

Read the passage and discuss the questions on pages 282-283 with 
a partner. We have numbered independent clauses as sentences for 
ease of discussion. 

Occurrence of a Badger in 
Pictured Rocks National Lal<eshore, Michigan 

Belant, J. L., Wolford, J. E., and 
Kainulainen, L. G. (2007). 

Michigan Birds and Natural History, / 4(2), 41-44. 

281 

0 North American Badgers (Taxidea taxus) occur throughout the 
western United States and Great Plains of North America, with the 
geographic range extending east to central Ohio (Messick, 1987; 
Whitaker and Hamilton, 1998).@ In Michigan, badgers have been 
verified in all counties, including those in the Upper Peninsula 
(Baker, 1 983). @ However, badger presence had not been confirmed 
in the Pictured Rocks National Lakeshore (PRNL), located in Alger 
County, northcentral Upper Peninsula, Michigan. 

6 On 16 September 2004, a badger was captured adjacent to 
PNRL (lat 46032'N, long 86019'W), incidentally in a cage trap 
(Model 1 08, Tomahawk Live Trap Company, Tomahawk, WI), 
during a study of American Marten. 0 The badger was immobilized 
using an intramuscular injection of Telazol® (Fort Dodge Animal 
Health, Fort Dodge, IA) with basic physiology monitored as 
described by Belant (2004). 0 The badger received a radio trans· 
milter (Advanced Telemetry Systems, Isanti, MN); fb standard body 
metrics were taken. 

@A tooth was not extracted for aging; 0 however, measure-
ments including body length 25 inches (64 cm), total length 30 
inches (76 cm), skull length 4.7 inches (12.0 cm), skull width 3.5 
inches (9.0 cm), and estimated weight 1 3 pounds (6 kg) suggested 
that this individual was probably a yearling (Long, 1973; Baker, 
1983; Messick, 1987). Teeth were not damaged and evidence of 
staining was not observed. tt, Nipple size (2< mm length or width) 
and coloration suggested this badger had not produced young. 
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Longer Research Papers 

When you read an RP, you may think that it is a fairly straightforward 

account of an investigation. Indeed, RPs are often designed to create this 

impression so that authors can appear more convincing to their readers. 

However, we believe that such impressions are largely misleading and may 

lead novice authors to conclude that writing up research should be an 

uncomplicated process for those with some experience. A more accurate pic-

ture is that RP authors typically operate in a highly competitive environment. 

They need to establish that their research questions are sufficiently interesting 

for others to read. They need to demonstrate that they are familiar with the 

relevant literature to demonstrate that the research questions have not 

already been answered. And they need to compete against other RPs for 

acceptance and recognition. AB a result, RP authors are very much con-

cerned with positioning~with showing that their studies are relevant and 

make some new contribution to the field. 

The overall rhetorical shape of a typical RP is shown in Figure 14. The 

arrows indicate that the sections are closely connected. In fact, some journal 

editors have suggested that authors try to create a strong connection benveen 

the Introduction and Discussion. In addition, authors should make sure that 

every method described is related to some results and all results are related to 

a method. 
Some empirical papers will follow a slightly different pattern in which the 

Results and Discussion sections appear in the Same section. This eliminates 

the difficult task of deciding in which section authors should interpret or 

give meaning to their results. In other types of papers, several studies may be 

discussed, which results in some cycling of the Methods-Results-Discussions 

sections. Despite these and other variations, the basic format remains rele-

vant. 
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FIGURE 14. Overall Shape of a Research Paper 

Introduction 0 
+ 

General 

Specific 

Methods D 
t 

Results D 
i 

Discussion 0 Specific 

t 
General 

Figure 14 gives a useful indication of the broad-narrow broad 1 
· fi - or genera -

spec1 c-general movement of the typical RP. As the RP in English has devel-

~ped over the last hundred years or so, the four different sections have 

ecome idennfied with four different purposes. 

Introduction (I) The main p_urpose of the Introduction is to provide the rationale for the 

pape~ mo~mg from a general discussion of the topic to the particular 

_question, iss_ue, or h~pothesis being investigated. A secondary purpose 

is to attract interest m the topic-and hence readers. 

Methods (M) The M_ethods section describes, in various degrees of detail methodolo 

matena Is (or subjects), and procedures. This is the narrowe;t part of th;~P. 

Results (R) In the Results section, the findings are described, accompanied by variable 

amounts of commentary. 

Discussion (D) The Discussion section gives meaning to and interprets the results in a variety 

of ways. Authors make a series of ,, points," at least some of which refer to 

statements made in the Introduction. 

See also Lecture 10





Quasilinear Theory (Heating)

430 Nonlinear Effects

We start the discussion of quasi-linear theory by defining the spatial average of
the time-dependent distribution function fs1(z,υz, t) as

⟨ fs⟩(υz, t) =
1

2L

∫ L

− L
fs(z,υz, t)dz, (11.1.5)

where the spatial integration is carried out over the entire length 2L of a
one-dimensional plasma. We further require that the spatially averaged distribution
function be identical to the zero-order distribution function at t = 0,

⟨ fs⟩(υz, t = 0) = fs0(υz), (11.1.6)

but allow ⟨ fs⟩ to deviate from fs0(υz) for t > 0. The total distribution function is
then written as the sum of the averaged distribution function ⟨ fs⟩ plus a fluctuation,
fs1, i.e.,

fs(z,υz, t) = ⟨ fs⟩(υz, t)+ fs1(z,υz, t). (11.1.7)

Note that at t = 0, Eq. (11.1.7) reduces identically to Eq. (11.1.4). The main
difference between linear theory and quasi-linear theory lies in what one linearizes
about: in linear theory, one linearizes about a time-independent equilibrium
distribution function fs0(υz), whereas in quasi-linear theory one linearizes about a
spatially averaged distribution function ⟨ fs0⟩(υz, t), which is allowed to vary slowly
in time.

Taking the spatial average of both sides of Eq. (11.1.7) in the manner of
Eq. (11.1.5), it follows that the spatial average of the first-order perturbation of
the velocity distribution function is zero:

⟨ fs1(z,υz, t)⟩ = 0. (11.1.8)

For electrostatic perturbations, we can write the perturbed electric field as

E1(z, t) = − ∂
∂z
Φ1(z, t). (11.1.9)

Taking the spatial average of Eq. (11.1.9) and requiring that Φ1(z, t) decays to zero
at the system boundaries, we can show that the spatial average of the first-order
electric field is also zero:

⟨E1(z, t)⟩ = − 1
2L

∫ L

− L

∂Φ1(z, t)
∂z

dz = 0. (11.1.10)

11.1.1 The Quasi-linear Diffusion Equation

Next, we develop an equation called the quasi-linear diffusion equation, which
describes the time evolution of the average distribution function. This equation is
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The above equation implies that the spectral density E (k, t) obeys the differential
equation

∂E (k, t)
∂t

= 2γ(k, t)E (k, t), (11.1.43)

where the time dependence of γ(k, t) is suppressed in integrating E (k, t), because
γ(k, t) varies much more slowly with time than the fluctuating energy E (k, t). Using
the identity Ê1(−k) = Ê∗1(k) and Eq. (11.1.42), Eq. (11.1.39) can be written in the
form of a diffusion equation,

∂

∂t
⟨ fs⟩(υz, t) =

∂

∂υz

[
Dq(υz, t)

∂

∂υz
⟨ fz⟩(υz, t)

]
, (11.1.44)

which is called the quasi-linear diffusion equation, where

Dq(υz, t) =
2
ϵ0

(
es

ms

)2 ∫ ∞

−∞

iE (k, t)
ω− kυz

dk (11.1.45)

is the diffusion coefficient. Since Eq. (11.1.44) is the time evolution equation for
a real distribution function ⟨ fs⟩(υz, t), the coefficient Dq(υz, t), given by the above
equation, must also be real. This can be seen by writing

iE (k, t)
ω− kυz

=
iE (k, t)

ωr + iγ− kυz
=

iE (k, t)[ωr − kυz − iγ]
(ωr − kυz)2 +γ2 . (11.1.46)

Using the fact that E (k, t) is even in k (i.e., E (k, t) = E (−k, t)) and ωr(k, t) is odd
in k (by identity (11.1.32)), it follows that the imaginary part of the integral in
Eq. (11.1.45) vanishes identically because the integrand is odd in k. We are thus
left with the diffusion coefficient

Dq(υz, t) =
2
ϵ0

(
es

ms

)2 ∫ ∞

−∞

E (k, t)γ(k, t)
[ωr(k, t)− kυz]2 +γ2(k, t)

dk, (11.1.47)

which is manifestly real and positive for growing modes.
Equations (11.1.42) and (11.1.44), with the diffusion coefficient specified by

Eq. (11.1.47), are the basic equations of quasi-linear theory.

11.1.2 Application to the Bump-on-Tail Instability

To illustrate an application of quasi-linear theory, we next discuss the time
evolution of the electron bump-on-tail instability. Such a distribution function was
first discussed in Section 9.5.4, and is shown in Figure 11.1. The phase velocities,
ω/k, of the unstable Langmuir waves that arise from this distribution function lie
in the region where fe0 = ⟨ fe⟩(υz, t = 0) is an increasing function of υz, i.e., where
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in k (by identity (11.1.32)), it follows that the imaginary part of the integral in
Eq. (11.1.45) vanishes identically because the integrand is odd in k. We are thus
left with the diffusion coefficient

Dq(υz, t) =
2
ϵ0

(
es

ms

)2 ∫ ∞

−∞

E (k, t)γ(k, t)
[ωr(k, t)− kυz]2 +γ2(k, t)

dk, (11.1.47)

which is manifestly real and positive for growing modes.
Equations (11.1.42) and (11.1.44), with the diffusion coefficient specified by

Eq. (11.1.47), are the basic equations of quasi-linear theory.

11.1.2 Application to the Bump-on-Tail Instability

To illustrate an application of quasi-linear theory, we next discuss the time
evolution of the electron bump-on-tail instability. Such a distribution function was
first discussed in Section 9.5.4, and is shown in Figure 11.1. The phase velocities,
ω/k, of the unstable Langmuir waves that arise from this distribution function lie
in the region where fe0 = ⟨ fe⟩(υz, t = 0) is an increasing function of υz, i.e., where
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x0

x

Figure 9.10 In the limit ϵ→ 0 the integration contour in the Plemelj relation goes
half-way around the pole at x0.

goes half-way around the pole, as shown in Figure 9.10. After using the Plemelj
relation, Ðr and Ði become

Ðr = 1−
ω2

p

k2 P
∫ ∞

−∞

∂F0/∂υz

υz −ω/k
dυz (9.2.41)

and

Ði = −π
k
|k|
ω2

p

k2

∂F0

∂υz

∣∣∣∣∣∣υz =ω/k
. (9.2.42)

The k/|k| term in Ði takes into account the change in sign that occurs when k > 0
and k < 0. As in the Cauchy distribution, the sign of k determines whether the pole
approaches the real υz axis from above (k > 0) or from below (k < 0), which in
turn determines the ± sign in the Plemelj relation. The real part of Ð is essentially
the same as was obtained from the Fourier analysis approach, except the principal
value integral now provides a mathematical procedure for avoiding the divergence
in the integral at υz = ω/k. Substituting Eq. (9.2.42) into Eq. (9.2.37), we obtain
the following expression for the growth rate:

γ = π
k
|k|

ω2
p

k2∂Ðr/∂ω

∂F0

∂υz

∣∣∣∣∣∣υz =ω/k
. (9.2.43)

This result is called the weak growth rate approximation and is valid whenever
|γ| ≪ |ω|. The weak growth rate approximation shows that the growth rate is
proportional to the slope of the reduced distribution evaluated at the phase velocity
of the wave (see Figure 9.11).

For Langmuir waves, we can carry out an explicit evaluation of the ∂Ðr/∂ω
term in Eq. (9.2.43). From the real part of the dispersion relation, it is easy to
show, using the same procedure as in the Fourier analysis approach, that in the
high phase velocity limit the real part of the dispersion relation is given by

Ðr = 1−
ω2

p

ω2

(
1+ 3

k2

ω2 ⟨υ
2
z ⟩
)
. (9.2.44)
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(“D” is dispersion relation)

(“D” is diffusion coefficient)

~ (e/m)2 τcor |E2|

See also Lectures 5 & 6
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and substituting into Eq. (9.1.7) gives

k2Φ̃ =
e2

ϵ0m
kΦ̃

∫ ∞

−∞

(∂ f0/∂υz)
(kυz −ω)

d3υ. (9.1.9)

Rearranging the terms and factoring out Φ̃ then gives the homogeneous equation
[
1− e2

ϵ0mk2

∫ ∞

−∞

∂ f0/∂υz

(υz −ω/k)
d3υ

]
Φ̃ = 0. (9.1.10)

For the potential Φ̃ to have a non-trivial solution, the term in the brackets must be
zero, which gives the dispersion relation

Ð(k,ω) = 1− e2

ϵ0mk2

∫ ∞

−∞

∂ f0/∂υz

(υz −ω/k)
d3υ = 0. (9.1.11)

At this point, it is useful to define a new normalized one-dimensional distribution
function:

F0(υz) =
1
n0

∫ ∞

−∞
f0(v)dυx dυy. (9.1.12)

The function F0(υz) is sometimes called the reduced distribution function. Note
that by dividing by n0 the reduced distribution function is normalized such that∫

F0(υz)dυz = 1. Recognizing thatω2
p = n0e2/(ϵ0m), the dispersion relation equation

(9.1.11) can be written

Ð(k,ω) = 1−
ω2

p

k2

∫ ∞

−∞

∂F0/∂υz

(υz −ω/k)
dυz = 0. (9.1.13)

In some applications it is useful to put the dispersion relation into a slightly
different form by integrating by parts once, which gives

∫ ∞

−∞

∂F0/∂υz

(υz −ω/k)
dυz =

[
F0

(υz −ω/k)

]∞

−∞
+

∫ ∞

−∞

F0

(υz −ω/k)2 dυz. (9.1.14)

Since F0 goes to zero at υz =±∞, the first term in the integration by parts vanishes,
so the dispersion relation becomes

Ð(k,ω) = 1−
ω2

p

k2

∫ ∞

−∞

F0

(υz −ω/k)2 dυz = 0. (9.1.15)

Both of the above forms of the dispersion relation suffer from a serious problem.
Because the denominator goes to zero at υz = ω/k, the integrals do not converge
unless F0 and ∂F0/∂υz are zero at υz = ω/k. Physically, the dispersion relation
exists only if there are no particles moving with a velocity equal to the phase
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expansion equation (9.3.15), substituting ζ = x + iy, and expanding in powers of
the small quantity y/x, the dispersion relation becomes

Ð(k, p) = 1− 1
(kλD)2

[
1

2x2 +
3

4x4 − i
(

y
x3 +

k
|k|
√
πx e−x2

)]
= 0. (9.3.17)

Setting the real and imaginary parts of the above equation equal to zero and using
the definitions (Eq. (9.3.7)) for x and y, it can be shown that the frequency and
growth rate are given by

ω2 =ω2
p + 3

(κT
m

)
k2 (9.3.18)

and

γ = −
√
π

8
ωp

|kλD|3
exp

[
− 1

2(kλD)2 −
3
2

]
, (9.3.19)

where, as in Section 9.1.1, the successive approximation method has been used to
solve for ω2. These results are identical to those obtained from the weak growth
rate approximation; see Eq. (9.2.47).

9.4 The Dispersion Relation for a Multi-component Plasma

From inspection of the relevant equations, it is easy to see that the analysis of
electrostatic waves in a hot multi-component plasma proceeds in a manner that
is exactly the same as for a plasma of hot electrons and immobile ions, the only
difference being that the dispersion relation now involves a sum over all species

Ð(k, p) = 1−
∑

s

ω2
ps

k2

∫

C

∂Fs0/∂υz

υz − ip/k
dυz = 0, (9.4.1)

where the integration contour C must pass below the pole at υz = ip/k when k is
positive, and above the pole when k is negative.

To illustrate the effects introduced by ions, it is convenient to limit our initial
discussion to the case of electrons and a single species of positively charged ions.
In this case, the sum in the dispersion can be simplified by taking advantage of the
fact that ne = ni, which allows us to write

∑

s

ω2
psFs0(υz) =ω2

pe

[
Fe0(υz)+

me

mi
Fi0(υz)

]
. (9.4.2)

One can then define an equivalent reduced distribution function:

F0(υz) = Fe0(υz)+
me

mi
Fi0(υz). (9.4.3)
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F0 (υz)

Electrons

Ions
Ci

υz

(Te = Ti) (Te >> Ti)

ω
k

ω
k

Figure 9.17 When Te≫ Ti, the ion acoustic wave is weakly damped because the
phase velocity, ω/k, is much greater than the ion thermal speed, Ci. When Te = Ti,
the damping is very large because ω/k≃Ci.

temperature is increased, the phase velocity increases and the damping decreases,
since the slope of the ion distribution decreases. Except for extremely high phase
velocities (Te≫ Ti), electrons contribute very little to the damping. This is because
the slope of the electron velocity distribution is very small at low velocities. In
Figure 9.17 the ion thermal speed has been greatly exaggerated in relation to the
electron thermal speed. For realistic electron-to-ion mass ratios and temperatures,
the electron thermal speed is usually a factor of fifty to one hundred times larger
than the ion thermal speed.

Maxwellian Electron and Ion Distributions
To gain experience using the plasma dispersion function, it is instructive to repeat
the above analysis using Maxwellian distributions for the electrons and ions. By a
simple extension of Eq. (9.3.14), it is easy to show that the dispersion relation for
a multi-component Maxwellian plasma is given by

Ð(k, p) = 1−
∑

s

1
(kλDs)2

1
2

Z ′(ζs) = 0, (9.4.18)

where Z ′(ζs) is the derivative of the plasma dispersion function, and ζs and λDs are
defined by

ζs =

√
ms

2κTs

(
ip
k

)
and λ2

Ds =
ϵ0κTs

nse2 . (9.4.19)

For a plasma consisting of electrons and one species of positive ion, the dispersion
relation can be rewritten in the following form:

Ð(k, p) = 1− 1
(kλDe)2

1
2

[
Z ′(ζe)+

Te

Ti
Z ′(ζi)

]
= 0, (9.4.20)

where we have made use of the fact that ne = ni and λ2
De = (Te/Ti)λ2

Di.
To obtain a completely general solution, the dispersion relation must be

evaluated numerically. However, an approximate solution can be obtained for the
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ion acoustic mode if one assumes that the phase velocity is large compared to
the ion thermal velocity and small compared to the electron thermal velocity. The
large-argument expansion is then used for the ions

Z ′(ζi) = − i
k
|k|
√
π2ζi e− ζ

2
i +

1
ζ2

i

, (9.4.21)

where we have only included the 1/ζ2
i term, and the small-argument expansion is

used for the electrons

Z ′(ζe) = − i
k
|k|
√
π2ζe e− ζ

2
e − 2, (9.4.22)

where we have only included the second term on the right of Eq. (9.3.16).
Substituting these expansions into the dispersion relation, expanding ζi = xi+ iyi in
powers of yi/xi, and assuming yi≪ xi, the dispersion relation becomes

Ð(k, p) = 1+
1

(kλDe)2

{
1 − 1

2

(
Te

Ti

)
1
x2

i

(
1 − i

2yi

xi

)

+ i
k
|k|
√
πxi

⎡
⎢⎢⎢⎢⎣
√

me

mi

√
Ti

Te
+

(
Te

Ti

)
e− x2

i

⎤
⎥⎥⎥⎥⎦
}
= 0, (9.4.23)

where we have made use of the relation xe = xi
√

me/mi
√

Ti/Te. Separating the
real and imaginary parts, and writing xi and yi in terms of ω and γ then gives the
following equations for the phase velocity and the growth rate:

ω

k
= ±

√
κTe

mi

1
(1+ k2λ2

De)1/2
(9.4.24)

and

γ

ω
= −

√
π

8

⎡
⎢⎢⎢⎢⎢⎣
√

me

mi
+

(
Te

Ti

)3/2

exp
⎛
⎜⎜⎜⎜⎝−

Te

2Ti

1
(1+ k2λ2

De)

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

1
(1+ k2λ2

De)3/2
. (9.4.25)

Note that in the short-wavelength limit, kλDe≫ 1, the frequency has an upper limit
given by the ion plasma frequency, ωpi = (

√
κTe/mi)/λDe, in agreement with the

results obtained in Section 5.5.2 from the moment equations (see Figure 5.6). In the
long-wavelength limit, kλDe≪ 1, the equations for the phase velocity and growth
rate simplify considerably and are given by

ω

k
= ±

√
κTe

mi
(9.4.26)
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ion acoustic mode if one assumes that the phase velocity is large compared to
the ion thermal velocity and small compared to the electron thermal velocity. The
large-argument expansion is then used for the ions

Z ′(ζi) = − i
k
|k|
√
π2ζi e− ζ

2
i +

1
ζ2

i

, (9.4.21)

where we have only included the 1/ζ2
i term, and the small-argument expansion is

used for the electrons

Z ′(ζe) = − i
k
|k|
√
π2ζe e− ζ

2
e − 2, (9.4.22)

where we have only included the second term on the right of Eq. (9.3.16).
Substituting these expansions into the dispersion relation, expanding ζi = xi+ iyi in
powers of yi/xi, and assuming yi≪ xi, the dispersion relation becomes

Ð(k, p) = 1+
1

(kλDe)2

{
1 − 1

2

(
Te

Ti

)
1
x2

i

(
1 − i

2yi

xi

)

+ i
k
|k|
√
πxi

⎡
⎢⎢⎢⎢⎣
√

me

mi

√
Ti

Te
+

(
Te

Ti

)
e− x2

i

⎤
⎥⎥⎥⎥⎦
}
= 0, (9.4.23)

where we have made use of the relation xe = xi
√

me/mi
√

Ti/Te. Separating the
real and imaginary parts, and writing xi and yi in terms of ω and γ then gives the
following equations for the phase velocity and the growth rate:

ω

k
= ±

√
κTe

mi

1
(1+ k2λ2

De)1/2
(9.4.24)

and

γ

ω
= −

√
π

8

⎡
⎢⎢⎢⎢⎢⎣
√

me

mi
+

(
Te

Ti

)3/2

exp
⎛
⎜⎜⎜⎜⎝−

Te

2Ti

1
(1+ k2λ2

De)

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

1
(1+ k2λ2

De)3/2
. (9.4.25)

Note that in the short-wavelength limit, kλDe≫ 1, the frequency has an upper limit
given by the ion plasma frequency, ωpi = (

√
κTe/mi)/λDe, in agreement with the

results obtained in Section 5.5.2 from the moment equations (see Figure 5.6). In the
long-wavelength limit, kλDe≪ 1, the equations for the phase velocity and growth
rate simplify considerably and are given by

ω

k
= ±

√
κTe

mi
(9.4.26)
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The Current-Driven Ion Acoustic Instability
When a current is present in a plasma, the electrons have a net drift relative to the
ions. If the relative drift between the electrons and the ions is sufficiently large, a
double hump occurs in the equivalent reduced distribution function, as shown in
Figure 9.31. The ion acoustic mode can then be driven unstable. This instability is
called the current-driven ion acoustic instability.

To provide a quantitative evaluation of the threshold current required to drive
the ion acoustic instability, we first consider Cauchy distributions for the electrons
and ions. To produce a current, the drift velocity of the electrons is assumed to
be Ue, and the drift velocity of the ions is assumed to be zero. The appropriate
distribution functions are then given by

Fe0 (υz) =
Ce

π

1
C2

e + (υz −Ue)2
(9.5.22)

and

Fi0 (υz) =
Ci

π

1
C2

i +υ
2
z
. (9.5.23)

Following the same procedure as described in Section 9.2.3, it can be shown that
the dispersion relation is given by

Ð(k, p) = 1+
ω2

pe

(p+ ikUe +Ce|k|)2 +
ω2

pi

(p+Ci|k|)2 = 0 , (9.5.24)

where the second term is due to the drifting electron distribution and the third term
is due to the ion distribution. The kUe term in the denominator of the electron term
arises when the residue is evaluated at υz = Ue − iCe, and is simply the Doppler
shift produced by the electron drift. As before, for kλDe≫ 1, the ion acoustic root
is obtained by assuming that the electron and ion terms are much larger than one,

Electrons

Ions

Ue υz

F0 (υz)

Figure 9.31 When a current is present, a double hump is produced in the
equivalent reduced velocity distribution function. This double hump can lead to
the growth of ion acoustic waves.
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The Current-Driven Ion Acoustic Instability
When a current is present in a plasma, the electrons have a net drift relative to the
ions. If the relative drift between the electrons and the ions is sufficiently large, a
double hump occurs in the equivalent reduced distribution function, as shown in
Figure 9.31. The ion acoustic mode can then be driven unstable. This instability is
called the current-driven ion acoustic instability.

To provide a quantitative evaluation of the threshold current required to drive
the ion acoustic instability, we first consider Cauchy distributions for the electrons
and ions. To produce a current, the drift velocity of the electrons is assumed to
be Ue, and the drift velocity of the ions is assumed to be zero. The appropriate
distribution functions are then given by

Fe0 (υz) =
Ce

π

1
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e + (υz −Ue)2
(9.5.22)

and
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z
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Following the same procedure as described in Section 9.2.3, it can be shown that
the dispersion relation is given by

Ð(k, p) = 1+
ω2

pe

(p+ ikUe +Ce|k|)2 +
ω2

pi

(p+Ci|k|)2 = 0 , (9.5.24)

where the second term is due to the drifting electron distribution and the third term
is due to the ion distribution. The kUe term in the denominator of the electron term
arises when the residue is evaluated at υz = Ue − iCe, and is simply the Doppler
shift produced by the electron drift. As before, for kλDe≫ 1, the ion acoustic root
is obtained by assuming that the electron and ion terms are much larger than one,
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Figure 9.31 When a current is present, a double hump is produced in the
equivalent reduced velocity distribution function. This double hump can lead to
the growth of ion acoustic waves.
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so that

ω2
pe

(p+ ikUe +Ce|k|)2 =
−ω2

pi

(p+Ci|k|)2 . (9.5.25)

Solving the above equation for pthen gives

p+Ci|k| = ±i
(
me

mi

)1/2

(p+ ikUe +Ce|k|), (9.5.26)

which can be rewritten in the form

p

⎛
⎜⎜⎜⎜⎜⎝1∓ i

(
me

mi

)1/2⎞⎟⎟⎟⎟⎟⎠ = −
⎛
⎜⎜⎜⎜⎜⎝Ci ±

(
me

mi

)1/2

Ue
k
|k|

⎞
⎟⎟⎟⎟⎟⎠ |k| ± i

(
me

mi

)1/2

Ce|k|. (9.5.27)

Using the minus sign, which ensures that the phase velocity is in the proper
direction, and neglecting the i

√
me/mi term on the left, which is small, it is easy to

show that the phase velocity is given by

ω

k
= ±

√
κTe

mi
, (9.5.28)

where we used C 2
e = κTe/me and inserted ± for k/|k|. The corresponding growth

rate is given by

γ = −
⎛
⎜⎜⎜⎜⎜⎝Ci −Ue

k
|k|

(
me

mi

)1/2⎞⎟⎟⎟⎟⎟⎠ |k|. (9.5.29)

As can be seen, if the electron drift velocity, Ue, is sufficiently large, the growth
rate can become positive, indicating instability. Note that the unstable waves occur
for k in the same direction as the electron drift (k and Ue must have the same sign).
The threshold drift velocity at which the instability starts is given by

|U∗e | =
√

mi

me
Ci =

(
Ti

Te

)1/2

Ce. (9.5.30)

This equation shows that if the electron and ion temperatures are the same
(Te = Ti), the threshold drift velocity is the electron thermal speed, which is
usually very large. Therefore, a very large current is required to drive the ion
acoustic mode unstable. The instability threshold can be reduced considerably if
the electron temperature is increased relative to the ion temperature, i.e., Te≫ Ti.
This reduction is caused by the decreased ion Landau damping that occurs when
Te≫ Ti (see Section 9.4.1).

The ion acoustic instability can also be analyzed for a Maxwellian distribution of
electron and ion velocities. Using a procedure similar to that used in Section 9.4.1,
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it is straightforward, but somewhat tedious, to show that the growth rate in the
long-wavelength limit (kλDe≪ 1) is given by

γ

ω
=−

√
π

8

⎡
⎢⎢⎢⎢⎢⎣
√

me

mi

(
1− k
|k|

Ue

CA

)
+

(
Te

Ti

)3/2

exp
(
−Te

2Ti

)⎤⎥⎥⎥⎥⎥⎦ , (9.5.31)

where CA =
√
κTe/mi is the ion acoustic speed (see Problem 9.19). In the derivation

of this equation, the plasma dispersion function for the ion term has been expanded
to order 1/ζ2

i , as in Eq. (9.4.21). The threshold electron drift velocity, U∗e , at which
the instability starts, is obtained by setting the term in the large brackets to zero
and solving for Ue, which gives

|U∗e | =
√
κTe

me

⎡
⎢⎢⎢⎢⎢⎣
√

me

mi
+

(
Te

Ti

)3/2

exp
(
−Te

2Ti

)⎤⎥⎥⎥⎥⎥⎦ . (9.5.32)

If Te = Ti, the threshold is again very large, on the order of the electron thermal
speed, but decreases rapidly as Te/Ti increases. A comparison of the threshold drift
velocity given by Eq. (9.5.32) with the results from a full numerical solution is
shown as a function of Te/Ti in Figure 9.32. As can be seen, Eq. (9.5.32) provides
a good approximation for large Te/Ti, but greatly over-estimates the threshold at
low Te/Ti values. The discrepancy between the analytic and numerical results at
low Te/Ti values can be reduced considerably by keeping terms to order 1/ζ4

i in
the expansion for the ion plasma dispersion function, similar to the derivation of
Eqs. (9.4.28) and (9.4.29). This exercise is left to the reader.
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Figure 9.32 A comparison of the approximate analytical solution for the
threshold electron drift velocity required to produce unstable ion acoustic waves
with the results of an exact numerical calculation.
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and

γ =
−Ði

∂Ðr/∂ω
= π

k∥/|k∥|
∂Ðr/∂ω

∑

s

ω2
ps

ω2 Gs0(υ∥)

∣∣∣∣∣∣υ∥ = υ∥Res

, (10.3.39)

where Gs0(υ∥) is given by Eq. (10.3.34), and υ∥Res = (ω ± ωcs)/k∥ is the cyclotron
resonance velocity. The term k∥/|k∥| takes care of the usual sign change that occurs
in the residue as k∥ changes sign.

Equation (10.3.39) shows that the growth or damping of the wave is determined
by the sign of

∑
sω

2
psGs0(υ∥Res). For the purpose of evaluating Gs0(υ∥Res), it is

convenient to separate this function into two integrals as follows:

Gs0(υ∥) =
ω

k∥

∫ ∞

0

∂Fs0

∂υ⊥
πυ2
⊥dυ⊥ −

∫ ∞

0

(
υ∥
∂Fs0

∂υ⊥
−υ⊥

∂Fs0

∂υ∥

)
πυ2
⊥dυ⊥. (10.3.40)

The first integral in the above equation can be integrated by parts once to give

Gs0(υ∥) = −
ω

k∥

∫ ∞

0
Fs02πυ⊥dυ⊥ −

∫ ∞

0

(
υ∥
∂Fs0

∂υ⊥
−υ⊥

∂Fs0

∂υ∥

)
πυ2
⊥dυ⊥, (10.3.41)

which, when substituted into Eq. (10.3.39), gives the following equation for the
growth rate:

γ = π
1

∂Ðr/∂ω

∑

s

ω2
ps

ω2

[
− ω

|k∥|

∫ ∞

0
Fs02πυ⊥dυ⊥

− k∥
|k∥|

∫ ∞

0

(
υ∥
∂Fs0

∂υ⊥
−υ⊥

∂Fs0

∂υ∥

)
πυ2
⊥dυ⊥

] ∣∣∣∣∣∣υ∥ = υ∥Res

. (10.3.42)

To help understand the various terms in the above equation, we next consider
the special case of an isotropic velocity distribution function. For an isotropic
distribution, the distribution function is a function only of the magnitude of the
velocity, Fs0 = Fs0(υ), where υ = (υ2

∥ +υ
2
⊥)1/2. For such a distribution function it is

easy to show that

∂Fs0

∂υ⊥
=
∂υ

∂υ⊥

∂Fs0

∂υ
=
υ⊥
υ

∂Fs0

∂υ
and

∂Fs0

∂υ∥
=
∂υ

∂υ∥

∂Fs0

∂υ
=
υ∥
υ

∂Fs0

∂υ
. (10.3.43)

After substituting these expressions into Eq. (10.3.42), it is evident that the two
terms in the second integral cancel. The growth rate is then given by

γ = −π ω/|k∥|
∂Ðr/∂ω

∑

s

ω2
ps

ω2

∫ ∞

0
Fs02πυ⊥dυ⊥

∣∣∣∣∣∣υ∥ = υ∥Res

, (10.3.44)

(8C"D�$9�)D8��4*4�!45!8�4(��((%D-��+++�64"5C�7:8�$C:�6$C8�(8C"D���((%D-��7$��$C:��������,���	,�����,����
/$+#!$4787�9C$"��((%D-��+++�64"5C�7:8�$C:�6$C8��2846�8CD�.$!!8:8�1�5C4C,� �.$!)"5�4�3#�*8CD�(,��$#����04#������4(��-
	-
���D)5 86(�($�(�8�.4"5C�7:8�.$C8



Quasilinear diffusion coefficients in a finite Larmor radius expansion for ion
cyclotron heated plasmas

Jungpyo Lee,1 John Wright,1 Nicola Bertelli,2 Erwin F. Jaeger,3 Ernest Valeo,2

Robert Harvey,4 and Paul Bonoli1
1Massachusetts Institute of Technology, Plasma Science and Fusion Center, Cambridge, Massachusetts 02139,
USA
2Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
3XCEL Engineering, Oak Ridge, Tennessee 37830, USA
4CompX, Del Mar, California 92014, USA

(Received 1 March 2017; accepted 24 March 2017; published online 24 April 2017)

In this paper, a reduced model of quasilinear velocity diffusion by a small Larmor radius
approximation is derived to couple the Maxwell’s equations and the Fokker Planck equation self-
consistently for the ion cyclotron range of frequency waves in a tokamak. The reduced model
ensures the important properties of the full model by Kennel-Engelmann diffusion, such as diffu-
sion directions, wave polarizations, and H-theorem. The kinetic energy change ( _W) is used to
derive the reduced model diffusion coefficients for the fundamental damping (n¼ 1) and the second
harmonic damping (n¼ 2) to the lowest order of the finite Larmor radius expansion. The quasilin-
ear diffusion coefficients are implemented in a coupled code (TORIC-CQL3D) with the equivalent
reduced model of the dielectric tensor. We also present the simulations of the ITER minority heat-
ing scenario, in which the reduced model is verified within the allowable errors from the full model
results. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4982060]

I. INTRODUCTION

The ion cyclotron range of frequency (ICRF) waves
have been used in a tokamak as a main heating tool1 or a
control tool of MHD phenomena2 (e.g., sawtooth) and turbu-
lent transport.3,4 In many experiments, the waves are injected
to transfer their energy and momentum to plasmas by the
fundamental cyclotron resonance with a small population ion
species (minority) or by the second harmonic resonance with
a major ion species.1 To estimate the propagation and damp-
ing of the waves theoretically, it is necessary to model ion
gyro-motion accurately. A reduced model to capture the
effect of gyro-motion in the wave-plasma interactions has
been developed by assuming a small Larmor radius com-
pared to the wave perpendicular wavelength, which is typi-
cally valid in many scenarios of the tokamak.5,6 The reduced
model is used in many numerical codes such as CYRANO,7

EVE,8 PSTELION,9 and TORIC,10 and it can reduce the
computation cost and numerical complexity compared to a
full model without the small Larmor radius assumption (e.g.,
AORSA11,12), while including the sufficiently accurate gyro-
motion model. In this assumption, the dielectric tensor of
plasmas is expanded by a small parameter k?qi. Here, k? is
the perpendicular wavevector and qi is the ion Larmor
radius. The finite Larmor radius (FLR) expansion up to the
second order Oððk?qiÞ

2Þ is sufficient to model the fundamen-
tal damping and the second harmonic damping of the fast
wave branch.5,6

A kinetic description of the ICRF wave propagation and
damping is important because there is a significant portion of
the wave energy deposited on fast ions. For the kinetic
description, the Maxwell’s equations are solved for the elec-
tric and magnetic fields of the waves and the Fokker-Planck

equation is solved for the balance between Coulomb colli-
sions and the particle acceleration due to the wave fields.
These two equations should be solved self-consistently, and
it is typically obtained by iterating two non-linearly coupled
codes. In this iteration process, the quasilinear velocity diffu-
sion coefficients are used to define the acceleration term of
the Fokker-Planck equation. The electric and magnetic fields
result in velocity space diffusion that can be described by
quasilinear theory when the perturbation by the wave is suffi-
ciently small.13 The quasilinear description that represents
the average of two linearly perturbed quantities is known to
be valid within some acceptable deviation,14,15 and the coef-
ficients are proportional to the square of the wave field inten-
sity (or the wave power equivalently). The quasilinear
diffusion coefficients were derived in the wavevector k spec-
trum space by Kennel and Engelmann (K-E),16 as summa-
rized in Appendix. It assumes that the particle trajectory is
not perturbed by the wave fields and the magnetic field along
the trajectory is homogeneous. As a result, the coefficients
do not consider the finite orbit width of particles, which may
be important in the low aspect ratio of toroidal geometry.17

In this paper, for simplicity, we also persist the assumptions
of K-E coefficients that are acceptably valid when the inho-
mogeneity of the magnetic field and the wave power density
are not significantly larger.14,15

The quasilinear diffusion coefficients are evaluated dif-
ferently in the numerical codes according to their assump-
tions and formulations. Some advanced model for
quasilinear diffusion has been developed by analytically con-
sidering the particle trajectory18 and the decorrelation
between resonances19 in the toroidal geometry and numeri-
cally evaluating those effects.20,21 The numerical diffusion
coefficients are obtained by measuring the diffusion of test
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The difference between the green curve and the red
curve in TORIC-CQL3D of Figure 4(a) indicates some prob-
lems in the iteration convergence. The high power density
(>5MW=m3) at the core results in the high energetic tail up
to 4 MeV in Figure 5, in which the FLR approximation may
not be acceptable. For the high energetic ions with k?qi ! 2,
their quasilinear diffusion coefficients in the reduced model
of Eq. (34) may be inaccurate compared to the full model of
Eq. (6) due to two reasons. One reason is the missing Bessel
function factor J2

0ðk?qi ! 2Þ < 0:2 in the term of Eþ , and
the other reason is the missing higher order term of
J2ðk?qiÞE% . The former likely causes the overestimation of
the diffusion, while the latter causes the underestimation
when J2 is not negligible for the high k?qi. Figures 6(a) and
6(b) show such differences, in which the diffusion of the
reduced model increases in v? while the diffusion of the full
model is small up to the particle energy 2 MeV but it is large
beyond the energy.

For the high energetic particles (>2MeV), the distribu-
tion function of the full model in Figures 5(b) and 5(d) is
much larger than that of the reduced model in Figures 5(a)
and 5(c) because of the strong diffusion. Nevertheless, for
the most population particles below 2 MeV the distribution

functions in Figure 5 are very similar between two models
because the diffusions are comparable according to Figures
6(c) and 6(d). Thus, even for the simulation of the high wave
power density which results in the problematic FLR approxi-
mation, the reduced model can be useful to estimate the sub-
MeV distribution functions and the wave power absorption.

VI. DISCUSSION

In this paper, we derived and evaluated the quasilinear
diffusion coefficients for the reduced model based on the
small Larmor radius approximation. Although we present
rigorous derivation and proof for the coefficients, the result
can be summarized by the two simple statements: (1) use the
approximation of Bessel function to the lowest order in k?qi

for the coefficient B of Eq. (6) in the full model and (2) use
the relations in Eqs. (9)–(11) for other coefficients C;E, and
F. In other words, it is sufficient for the coefficient B in the
reduced model to use J0 ¼ 1 and J1 ¼ J2 ¼ 0 for n ¼ 1
damping and J1 ¼ k?qi=2 and J2 ¼ J3 ¼ 0 for n ¼ 2 damp-
ing. These quasilinear diffusion coefficients guarantee the
equivalence with the dielectric tensor in the reduced model
of Section IV B and the necessary properties of theoretical

FIG. 2. Example 1: (a) and (b) are the 2-D contour plots of the distribution function in ðuk0;u?0Þ. (c) and (d) are the 1-D distribution functions in terms of ufor
several pitch-angles # at r=a ¼ 0:44. (a) and (c) are simulated by TORIC-CQL3D and (b) and (d) are simulated by AORSA-CQL3D, where unorm is the
momentum corresponding to the energy of He3 1 MeV. The dashed lines in the contour plots are the trapped-passing boundaries, and the unit of the distribution
function is cm% 3.
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Energetic Particle Orbits

cases but, like most taxonomy, these details are primarily of
interest to the specialist. The basic phenomenon is generic.

III. ENERGETIC PARTICLE DRIVE

Alfvén waves are driven unstable by the free energy in
the EP distribution function. The basic mechanism of desta-
bilization applies to both fast ions and electrons and is appli-
cable to any magnetic configuration. However, in this sec-
tion, for the sake of clarity, the energetic particles are
assumed to be ions in a tokamak. In most cases, generaliza-
tion to other species and configurations is obvious.

In addition to time t, it takes six coordinates to describe
an arbitrary distribution function: three velocity coordinates
and three spatial coordinates. On the time scale of the orbital
motion, three quantities are conserved, so only 6−3=3 vari-
ables are needed to specify a tokamak orbit. Orbits in hot
fusion plasmas are completed in a time that is much shorter
than characteristic collision times, so one conserved quantity
is the energy W. The rapid gyromotion and the relatively
weak variation of B on the length scale of the gyroradius
insure conservation of the magnetic moment !. Finally, in an
axisymmetric torus, the canonical toroidal angular momen-
tum P" is conserved. The distribution function f is conve-
niently described in terms of these three constants of the
motion, f!W ,! , P" ; t".

Figure 9 shows a typical EP orbit. The perpendicular
velocity causes rapid gyromotion in a plane perpendicular to
the field. When the parallel velocity is projected into the
poloidal plane, it causes the drift motion to follow flux sur-
faces. On the other hand, the !B, curvature, and E# B drifts
are perpendicular to the field and tend to drive ions away
from a confining magnetic surface. In a confinement device,
the rotational transform insures that drifts away from the
surface are compensated by drifts toward the surface as an
ion moves along the magnetic field. Nevertheless, because
the !B and curvature drifts are proportional to the square of

the ion velocity, while the parallel motion is linearly propor-
tional to the velocity, the drift orbits of energetic ions often
deviate dramatically from flux surfaces. In some cases, the
deviations may be so large that the fast ion strikes the wall;
this is termed a loss orbit. Additionally, for low energy par-
ticles there are just two types of orbits !trapped and passing"
but, for high energy particles, several other types of orbits
exist with names such as “potato.”14 The complicated orbit
phenomenology is most easily described by a diagram in
constants-of-motion space that marks topological boundaries
between different types of orbits !Fig. 10". The boundaries
are important because a wave that moves an ion across a
topological boundary causes large radial transport. Energetic
ion loss boundaries in tokamaks are well verified
experimentally.8,48

Power transfer between an ion and a wave requires a
nonzero value of v·E. !v is the velocity vector and E is the
electric field of the wave." For transverse electromagnetic
waves like shear Alfvén waves in a uniform field, a particle
that travels along the field at the phase velocity “sees” a
static magnetic perturbation and no electric field !due to rela-
tivistic transformation of the electric field", so the power
transfer is zero. In curved fields, power transfer can occur but
only the drift velocity vd ultimately contributes. Since the
gyromotion is very rapid compared to the mode frequency
!$i% &", the energy transfer associated with the gyromotion
#v! ·E phase averages to zero. A general expression for the
power transfer between a particle and the fields of a long-
wavelength, low-frequency wave is

dW

dt
= eZvd · E! + eZv$E$ + !

"B$

"t
. !5"

Here, E! is the transverse electric field and E$ and B$ are the
parallel electric and magnetic fields. Theoretically, the first
term is normally considered dominant for shear Alfvén
waves. The second term is small for &'$i as long as mode
conversion to waves with a large electrostatic component
does not occur. The third term is small because the waves are
nearly transverse in a low ( tokamak, so both B$ and & are
small. Experimentally, the relative importance of these terms
awaits confirmation.

TABLE I. Nomenclature of shear Alfvén eigenmodes, listed in ascending
!approximately" order of frequency. For coupling-type eigenmodes, the
coupled poloidal or toroidal harmonics are given; for extremum-type eigen-
modes, the source of the extremum is underlined. The citations are to the
original theoretical and experimental papers.

Acronym Name Cause Theory Obs.

RSAEa Reversed-shear qmin %29& %115&
BAE Beta Compressibility %36& %40&
GAEb Global Generic term %41, 116& %117&
TAE Toroidal m and m+1 %30, 31& %52, 53&
KTAEc Kinetic Electron dynamicsc %66& %45&
EAE Ellipticity m and m+2 %22& %37&
NAE Noncircularity m and m+3 !or higher" %22& %38&
MAE Mirror n and n+1 %24& ¯
HAE Helicity n and m combinations %23& %39&
aUsually in TAE gap but also found in higher-order gaps.
bUsually refers to an eigenmode below a minimum in the Alfvén continuum;
observed at both low %117& and high %42& frequency.
cElectron dynamics discretize the continuum into “kinetic Alfvén waves”
!KAW" %118&; these couple to form KTAE. Similarly, KEAE and KHAE
exist theoretically.

FIG. 9. !Color online" Projection of the orbit of an 80-keV deuterium beam
ion in the DIII-D tokamak. !a" Elevation. The dashed lines represent the
magnetic flux surfaces. The particle orbits poloidally with a frequency &).
!b" Detail of the beginning of the orbit. The rapid gyromotion, parallel drift
along the flux surface, and vertical drift velocity are indicated. !c" Plan view
of the orbit. The particle precesses toroidally with a frequency &".
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Focusing on the power transfer between the drift motion
and the transverse electric field, because the growth rate is
generally small compared to the wave frequency !!" #", it
is convenient to consider the energy transfer after averaging
over dozens of orbital cycles. To avoid phase averaging to
zero, a harmonic of the drift-orbit frequency must match the
wave frequency. All types of orbits are characterized by two
frequencies, the frequency of toroidal motion #$ and the fre-
quency of poloidal motion #% !Fig. 9". For the orbit and
wave phases to match after many cycles, the following con-
dition must be satisfied:

# + p#% − n#$ # 0, !6"

where pis an integer. Though necessary, this condition alone
does not guarantee net energy transfer. The relevant quantity
is $vd·E! over many complete orbital cycles. To evaluate
this term, it is convenient to express vd and E! in terms of
poloidal angle. The drift velocity is written as a Fourier se-
ries in % harmonics,

vd= %
l=& 1,& 2,. . .

Ale
il%, !7"

where the Al are Fourier coefficients. For low energy par-
ticles in a circular cross-section tokamak, only the l= & 1

terms are appreciable; however, in strongly shaped plasmas
and for large drift-orbit displacements, higher order harmon-
ics are also important. The resonance condition for nonzero
$vd·E! is

# + !m + l"#% − n#$ # 0. !8"

Resonant energy transfer can take place with all of the po-
loidal harmonics that comprise the gap mode.

As a simple example, consider TAE resonance with
passing fast ions that circulate in the direction of the field
line. The toroidal circulation frequency is #$=v&/R and the
poloidal circulation frequency is #%=v&/qR. Using the facts
that #=vA /2qR 'Eq. !4"(and that the mode is centered at the
frequency crossing at q= !m+1 /2" /n, Eq. !8" implies that
)l)=1 resonance occurs when v&=vA and v&=vA /3. For co-
going particles, one resonance is with the m harmonic and
another is with the m+1 harmonic that interfere construc-
tively to form the TAE. Equation !8" implies and computer
simulations49 verify that both co- and counter-circulating
particles can resonate with the mode. !The assertion that
counter-circulating ions do not interact with a mode that ro-
tates in the ion-diamagnetic direction in Refs. 3 and 50 is
incorrect."

For other gap modes, the fundamental )l)=1 resonances
are different. For example, for the EAE with #=vA /qR, the
m and m+2 modes couple at the q= !m+1" /n surface, so
circulating particles with v&=vA /2 resonate with the mode.38

In practice, higher l harmonics often are important too.
Figure 11 shows the many resonances between a high-energy
ion-cyclotron accelerated fast ion population and the ob-
served TAEs in a JET tokamak plasma. Experimentally, an
enormous number of different EP populations have driven
unstable Alfvén gap modes through a wide variety of differ-
ent resonances. Neutral beams,52,53 ion-cyclotron accelerated
fast ions,54 alpha particles produced in deuterium-tritium
!D-T" fusion reactions,44 and an electron tail population pro-
duced by electron cyclotron heating55 have all driven Alfvén
eigenmodes unstable. Instability is observed in essentially
all toroidal confinement configurations: tokamaks,52,53

FIG. 10. !Color online" Classification of different orbit types for beam ions
in the DIII-D tokamak vs magnetic moment ' and canonical angular mo-
mentum P$. The poloidal flux at the wall is ( w, the particle energy is W, and
the magnetic field at the magnetic axis is B0. Particles that move outward
from the magnetic axis move leftward on the P$ axis. Four types of EP
transport are illustrated. !Red rectangle" The wave can perturb the equilib-
rium !(̃ ", causing particles near a loss boundary to collide with the wall.
!Green triangle" Particles that stay in phase with a mode throughout the
plasma can convectively escape via the Ẽ) B drift. !Blue diamond" Particles
can diffuse as they receive velocity kicks associated with the many wave-
particle resonances in the plasma. !Purple circles" If the EPs move outward,
they can locally alter the EP gradient and destabilize a new wave that trans-
ports them further, where a new wave is destabilized, etc.

FIG. 11. !Color online" Calculated resonances for rf-accelerated tail ions in
the JET tokamak in the energy/toroidal-angular-momentum plane. The tor-
oidal !n" and poloidal !p" values of the resonances are labeled. The ampli-
tude scale takes into account the probability of detection by a gamma-ray
diagnostic. Adapted from Ref. 51.
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Next Class

• March 7: More discussions re your “wave-particle” midterm papers 

• March 12-16: Spring recess  

• Monday, March 19: Midterm papers due 

• Monday, March 19: Introduction to low-frequency drift-waves


