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General
Welcome to the APPH E6102y class information site.

This is the second  semester of a two-semester sequence in plasma physics. Plasma physics is the study of "luminous matter", matter that has been heated 
sufficiently or prepared specially in order to be ionized. In plasma long-range electromagnetic forces are more important than short  range forces.  Plasma 
dynamics is dominated by "collective" motion of large populations of neighboring particles. Electric and electromagnetic waves propagate at speeds that resonate 
with particles and allow energy and momentum exchange.  Plasma motion and the self-consistent electric and magnetic fields exhibit beautiful nonlinear physics.
Plasma is studied in the laboratory and in space. Most of the visible universe is in the plasma state. Laboratory generated plasma are used to studied the 
fundamental properties of high-temperature matter, and they are employed for many valuable applications like surface processing and lighting. Integrated circuits 
are manufactured using plasma processing, and plasma displays are status symbols of today's world of entertainment. Controlled fusion energy research reflects 
the remarkable success of plasma physics. The controlled release of more than 10 MW of fusion power has occurred within the strong confining fields of 
tokamak devices, and the world is now building the first experimental fusion power source, called ITER.

Topics covered include: Motion of charged particles in space- and time-varying electromagnetic fields. Magnetic coordinates. Equilibrium, stability, and transport 
of torodial plasmas. Ballooning and tearing instabilities. Kinetic theory, including Vlasov equation, Fokker-Planck equation, Landau damping, kinetic transport 
theory.  Drift instabilities. Quasilinear theory. Introduction to drift-kinegtic and gyro-kinetic theory. 

APPH 6102 requires prior experience with plasma physics. The formal prerequisites are APPH E6101 Plasma physics. The goal of this course is to provide a 
working understanding of plasma physics and prepare students for research.

http://sites.apam.columbia.edu/courses/apph6102y/ 
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(No/Optional) Textbook
Textbook There will be no textbook for the course. Instead, we will make frequent use of journal 

publications.

For those who want a well-rounded textbook, I recommend Introduction to Plasma Physics 
(2nd Edition) by Don Gurnett (University of Iowa) and Amitava Bhattacharjee (Princeton 
University). Don Gurnett is a well known space plasma physicists and plasma wave expert. 
Bhattacharjee has worked in many areas of magnetized plasma physics, including magnetic 
fusion, plasma astrophysics, theory, and high-performance computation.

Since Columbia's plasma physics program has a focus on fusion energy, I also recommend 
an inroductory textbook by Garry McCracken and Peter Stott: Fusion: The Energy of the 
Universe. McCracken has made pioneering studies of tokamak plasma confinement. He's an 
expert on plasma wall interactions and worked at Alcator CMOD and JET. Peter Stott is also 
a leading expert on tokamak fusion confinement, having worked at PPPL, JET, and most 
recently working on ITER diagnostic systems.

These books are available as ebooks for Columbia University students: see CLIO.
Occasionally, I will present numerical illustrations of plasma physics using Mathematica. 
Mathematica is available to all students through Columbia University.

Most frequently, I will distribute published journal articles that illustrate the scientific 
progress and discoveries in the field of plasma physics.
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Grading
Grading A student's grade for the course will be based on two take-home exams 

and two research and writing assignments: 

one midterm paper and one final paper 

These papers must follow the style used for publication in Physics of 
Plasmas. You will clearly describe in your own words a plasma physics 
topic or question and then review the topic or present an answer to the 
question.
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Radiation from laser-microplasma-waveguide 
interactions in the ultra-intense regime

by L. Yi, A. Pukhov, and B. Shen
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Learn to search…

Web of science core collection 
Published  [Philadelphia, PA] : Thomson Reuters, [2014-] Online

http://www.columbia.edu/cgi-bin/cul/resolve?clio2054244

Format Online

6

https://clio.columbia.edu/databases/2054244
http://www.columbia.edu/cgi-bin/cul/resolve?clio2054244


Classic “Plasma” Articles
INTERACTION OF SOLITONS IN A COLLISIONLESS PLASMA AND RECURRENCE OF INITIAL STATES 
By: ZABUSKY, NJ; KRUSKAL, MD 
PHYSICAL REVIEW LETTERS   Volume: 15   Issue: 6   Pages: 240-&   Published: 1965 (Times Cited: 1,990) 

RELAXATION OF TOROIDAL PLASMA AND GENERATION OF REVERSE MAGNETIC-FIELDS 
By: TAYLOR, JB 
PHYSICAL REVIEW LETTERS   Volume: 33   Issue: 19   Pages: 1139-1141   Published: 1974 (Times Cited: 1,323) 

ABSORPTION OF ULTRA-INTENSE LASER-PULSES 
By: WILKS, SC; KRUER, WL; TABAK, M; et al. 
PHYSICAL REVIEW LETTERS   Volume: 69   Issue: 9   Pages: 1383-1386   Published: AUG 31 1992 (Times Cited: 1,312) 

PLASMA CRYSTAL - COULOMB CRYSTALLIZATION IN A DUSTY PLASMA 
By: THOMAS, H; MORFILL, GE; DEMMEL, V; et al. 
PHYSICAL REVIEW LETTERS   Volume: 73   Issue: 5   Pages: 652-655   Published: AUG 1 1994 (Times Cited: 1,243 ) 

SPONTANEOUSLY GROWING TRANSVERSE WAVES IN A PLASMA DUE TO AN ANISOTROPIC VELOCITY DISTRIBUTION 
By: WEIBEL, ES 
PHYSICAL REVIEW LETTERS   Volume: 2   Issue: 3   Pages: 83-84   Published: 1959 (Times Cited: 1,123 ) 

DIRECT OBSERVATION OF COULOMB CRYSTALS AND LIQUIDS IN STRONGLY COUPLED RF DUSTY PLASMAS 
By: CHU, JH; I, L 
PHYSICAL REVIEW LETTERS   Volume: 72   Issue: 25   Pages: 4009-4012   Published: JUN 20 1994  (Times Cited: 1,048 ) 

Plasma expansion into a vacuum 
By: Mora, P 
PHYSICAL REVIEW LETTERS   Volume: 90   Issue: 18     Article Number: 185002   Published: MAY 9 2003 (Times Cited: 617) 

TRANSPORT OF DUST PARTICLES IN GLOW-DISCHARGE PLASMAS 
By: BARNES, MS; KELLER, JH; FORSTER, JC; et al. 
PHYSICAL REVIEW LETTERS   Volume: 68   Issue: 3   Pages: 313-316   Published: JAN 20 1992  (Times Cited: 582 ) 
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Classic “Tokamak” Articles
REGIME OF IMPROVED CONFINEMENT AND HIGH-BETA IN NEUTRAL-BEAM-HEATED DIVERTOR DISCHARGES OF THE ASDEX TOKAMAK 
By: WAGNER, F; BECKER, G; BEHRINGER, K; et al. 
PHYSICAL REVIEW LETTERS   Volume: 49   Issue: 19   Pages: 1408-1412   Published: 1982 (Times Cited: 1,504) 

ELECTRON HEAT-TRANSPORT IN A TOKAMAK WITH DESTROYED MAGNETIC SURFACES 
By: RECHESTER, AB; ROSENBLUTH, MN 
PHYSICAL REVIEW LETTERS   Volume: 40   Issue: 1   Pages: 38-41   Published: 1978 (Times Cited: 994) 

ENHANCED CONFINEMENT AND STABILITY IN DIII-D DISCHARGES WITH REVERSED MAGNETIC SHEAR 
By: STRAIT, EJ; LAO, LL; MAUEL, ME; et al. 
PHYSICAL REVIEW LETTERS   Volume: 75   Issue: 24   Pages: 4421-4424   Published: DEC 11 1995 (Times Cited: 514) 

H-MODE BEHAVIOR INDUCED BY CROSS-FIELD CURRENTS IN A TOKAMAK 
By: TAYLOR, RJ; BROWN, ML; FRIED, BD; et al. 
PHYSICAL REVIEW LETTERS   Volume: 63   Issue: 21   Pages: 2365-2368   Published: NOV 20 1989 (Times Cited: 491) 

CONFINING A TOKAMAK PLASMA WITH RF-DRIVEN CURRENTS 
By: FISCH, NJ 
PHYSICAL REVIEW LETTERS   Volume: 41   Issue: 13   Pages: 873-876   Published: 1978 (Times Cited: 461 ) 

Electron temperature gradient turbulence 
By: Dorland, W; Jenko, F; Kotschenreuther, M; et al. 
PHYSICAL REVIEW LETTERS   Volume: 85   Issue: 26   Pages: 5579-5582   Part: 1   Published: DEC 25 2000 (Times Cited: 391 ) 

STUDIES OF INTERNAL DISRUPTIONS AND M = 1 OSCILLATIONS IN TOKAMAK DISCHARGES WITH SOFT-X-RAY TECHNIQUES 
By: VONGOELER, S; STODIEK, W; SAUTHOFF, N 
PHYSICAL REVIEW LETTERS   Volume: 33   Issue: 20   Pages: 1201-1203   Published: 1974 (Times Cited: 462 ) 
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Recent “Hot” Articles
“Hot” articles rank within the top 1% of all articles published in physics.

Active control of type-I edge-localized modes with n=1 perturbation fields in the JET tokamak 
By: Liang, Y.; Koslowski, H. R.; Thomas, P. R.; et al. 
PHYSICAL REVIEW LETTERS   Volume: 98   Issue: 26     (Times Cited: 301)   Published: JUN 29 2007 

First Observation of Edge Localized Modes Mitigation with Resonant and Nonresonant Magnetic Perturbations in ASDEX Upgrade 
By: Suttrop, W.; Eich, T.; Fuchs, J. C.; et al. 
Group Author(s): ASDEX Upgrade Team 
PHYSICAL REVIEW LETTERS   Volume: 106   Issue: 22     (Times Cited: 218)   Published: JUN 2 2011 

Observations of plasmons in warm dense matter 
By: Glenzer, S. H.; Landen, O. L.; Neumayer, P.; et al. 
PHYSICAL REVIEW LETTERS   Volume: 98   Issue: 6     (Times Cited: 301)   Published: FEB 9 2007 

Radiation-Pressure Acceleration of Ion Beams Driven by Circularly Polarized Laser Pulses 
By: Henig, A.; Steinke, S.; Schnuerer, M.; et al. 
PHYSICAL REVIEW LETTERS   Volume: 103   Issue: 24     (Times Cited: 291)   Published: DEC 11 2009 

Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime 
By: Yan, X. Q.; Lin, C.; Sheng, Z. M.; et al. 
PHYSICAL REVIEW LETTERS   Volume: 100   Issue: 13     (Times Cited: 274)    Published: APR 4 2008 

Dynamics of spin-1/2quantum plasmas 
By: Marklund, Mattias; Brodin, Gert 
PHYSICAL REVIEW LETTERS   Volume: 98   Issue: 2     (Times Cited: 268)   Published: JAN 12 2007 9
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Most Cited from Nuclear Fusion
RECONSTRUCTION OF CURRENT PROFILE PARAMETERS AND PLASMA SHAPES IN TOKAMAKS
By: LAO, LL; STJOHN, H; STAMBAUGH, RD; et al.
NUCLEAR FUSION Volume: 25 Issue: 11 Pages: 1611-1622 Published: 1985 (Times Cited: 951)

NEOCLASSICAL TRANSPORT OF IMPURITIES IN TOKAMAK PLASMAS
By: HIRSHMAN, SP; SIGMAR, DJ
NUCLEAR FUSION Volume: 21 Issue: 9 Pages: 1079-1201 Published: 1981 (Times Cited: 900)

Plasma-material interactions in current tokamaks and their implications for next step fusion reactors
By: Federici, G; Skinner, CH; Brooks, JN; et al.
NUCLEAR FUSION Volume: 41 Issue: 12R Special Issue: SI Pages: 1967-2137 Published: DEC 2001 (Times Cited: 804)

MEASUREMENTS OF MICROTURBULENCE IN TOKAMAKS AND COMPARISONS WITH THEORIES OF TURBULENCE AND ANOMALOUS TRANSPORT
By: LIEWER, PC
NUCLEAR FUSION Volume: 25 Issue: 5 Pages: 543-621 Published: 1985 (Times Cited: 670)

FAST-WAVE HEATING OF A 2-COMPONENT PLASMA
By: STIX, TH
NUCLEAR FUSION Volume: 15 Issue: 5 Pages: 737-754 Published: 1975 (Times Cited: 582)

A NEW LOOK AT DENSITY LIMITS IN TOKAMAKS
By: GREENWALD, M; TERRY, JL; WOLFE, SM; et al.
NUCLEAR FUSION Volume: 28 Issue: 12 Pages: 2199-2207 Published: DEC 1988 (Times Cited: 530)

PLASMA BOUNDARY PHENOMENA IN TOKAMAKS
By: STANGEBY, PC; MCCRACKEN, GM
NUCLEAR FUSION Volume: 30 Issue: 7 Pages: 1225-1379 Published: JUL 1990 (Times Cited: 512)
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Some “Most Cited” from Physics of Plasmas

IGNITION AND HIGH-GAIN WITH ULTRA-POWERFUL LASERS
By: TABAK, M; HAMMER, J; GLINSKY, ME; et al.
PHYSICS OF PLASMAS Volume: 1 Issue: 5 Pages: 1626-1634 Part: 2 Published: MAY 1994 (Times Cited: 2,360)

INFLUENCE OF SHEARED POLOIDAL ROTATION ON EDGE TURBULENCE
By: BIGLARI, H; DIAMOND, PH; TERRY, PW
PHYSICS OF FLUIDS B-PLASMA PHYSICS Volume: 2 Issue: 1 Pages: 1-4 Published: JAN 1990 (Times Cited: 1,096)

LABORATORY OBSERVATION OF THE DUST-ACOUSTIC WAVE MODE
By: BARKAN, A; MERLINO, RL; DANGELO, N
PHYSICS OF PLASMAS Volume: 2 Issue: 10 Pages: 3563-3565 Published: OCT 1995 (Times Cited: 981)

Effects of ExB velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices
By: Burrell, KH
PHYSICS OF PLASMAS Volume: 4 Issue: 5 Pages: 1499-1518 Part: 2 Published: MAY 1997 (Times Cited: 975)

VELOCITY SPACE DIFFUSION FROM WEAK PLASMA TURBULENCE IN A MAGNETIC FIELD
By: KENNEL, CF; ENGELMANN, F
PHYSICS OF FLUIDS Volume: 9 Issue: 12 Pages: 2377-+ Published: 1966 (Times Cited: 719)

PSEUDO-3-DIMENSIONAL TURBULENCE IN MAGNETIZED NONUNIFORM PLASMA
By: HASEGAWA, A; MIMA, K
PHYSICS OF FLUIDS Volume: 21 Issue: 1 Pages: 87-92 Published: 1978  (Times Cited: 694)

COLLISIONLESS DAMPING OF NONLINEAR PLASMA OSCILLATIONS
By: ONEIL, T
PHYSICS OF FLUIDS Volume: 8 Issue: 12 Pages: 2255-& Published: 1965 (Times Cited: 681) 

A PERTURBATION THEORY FOR STRONG PLASMA TURBULENCE
By: DUPREE, TH
PHYSICS OF FLUIDS Volume: 9 Issue: 9 Pages: 1773-& Published: 1966 (Times Cited: 611)

}
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(d) Show that the instability condition for the current-driven ion acoustic
mode is

|Ue| >
√
κTe

mi

⎡
⎢⎢⎢⎢⎢⎣1+

√
mi

me

(
Te

Ti

)3/2

exp
(
− Te

2Ti

)⎤⎥⎥⎥⎥⎥⎦ .

(e) Plot |Ue| as a function of Te/Ti. Where does the approximation fail?
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later. The equations that must be solved then consist of Vlasov’s equation (with
q = −e,E = −∇Φ, and B = 0)

∂ f
∂t
+v ·∇ f +

e
m
∇Φ ·∇v f = 0 (9.1.1)

and Poisson’s equation

∇2Φ = −ρq

ϵ0
= − e

ϵ0

[
n0 −

∫ ∞

−∞
f d3υ

]
. (9.1.2)

Following the usual linearization procedure, we assume that the electron velocity
distribution function, f (v), consists of a constant uniform zero-order distribution,
f0(v), plus a small first-order perturbation, f1(v):

f (v) = f0(v)+ f1(v). (9.1.3)

Similarly, we write Φ = Φ1. Linearizing Eqs. (9.1.1) and (9.1.2) and noting that∫
f0d3υ = n0, we obtain for the first-order equations

∂ f1
∂t
+v ·∇ f1 +

e
m
∇Φ1 ·∇v f0 = 0 (9.1.4)

and

∇2Φ1 =
e
ϵ0

∫ ∞

−∞
f1(v) d3υ. (9.1.5)

Next, we attempt to solve these equations using the usual Fourier transform
approach. Since no preferred direction exists, the z axis can be aligned parallel
to k. After dropping the subscript 1 on the first-order terms and making the
usual operator substitutions (∂/∂t → −iω and ∇ → ik), it is easy to see that the
Fourier-transformed equations are

−iω f̃ + ikυz f̃ + i
e
m

kΦ̃
∂ f0
∂υz
= 0 (9.1.6)

and

k2Φ̃ = − e
ϵ0

∫ ∞

−∞
f̃ (v) d3υ. (9.1.7)

Solving for f̃ from Eq. (9.1.6),

f̃ =
−1

(kυz −ω)
e
m

kΦ̃
∂ f0
∂υz
, (9.1.8)
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Following the usual linearization procedure, we assume that the electron velocity
distribution function, f (v), consists of a constant uniform zero-order distribution,
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and substituting into Eq. (9.1.7) gives

k2Φ̃ =
e2

ϵ0m
kΦ̃

∫ ∞

−∞

(∂ f0/∂υz)
(kυz −ω)

d3υ. (9.1.9)

Rearranging the terms and factoring out Φ̃ then gives the homogeneous equation
[
1− e2

ϵ0mk2

∫ ∞

−∞

∂ f0/∂υz

(υz −ω/k)
d3υ

]
Φ̃ = 0. (9.1.10)

For the potential Φ̃ to have a non-trivial solution, the term in the brackets must be
zero, which gives the dispersion relation

Ð(k,ω) = 1− e2

ϵ0mk2

∫ ∞

−∞

∂ f0/∂υz

(υz −ω/k)
d3υ = 0. (9.1.11)

At this point, it is useful to define a new normalized one-dimensional distribution
function:

F0(υz) =
1
n0

∫ ∞

−∞
f0(v)dυx dυy. (9.1.12)

The function F0(υz) is sometimes called the reduced distribution function. Note
that by dividing by n0 the reduced distribution function is normalized such that∫

F0(υz)dυz = 1. Recognizing thatω2
p = n0e2/(ϵ0m), the dispersion relation equation

(9.1.11) can be written

Ð(k,ω) = 1−
ω2

p

k2

∫ ∞

−∞

∂F0/∂υz

(υz −ω/k)
dυz = 0. (9.1.13)

In some applications it is useful to put the dispersion relation into a slightly
different form by integrating by parts once, which gives

∫ ∞

−∞

∂F0/∂υz

(υz −ω/k)
dυz =

[
F0

(υz −ω/k)

]∞

−∞
+

∫ ∞

−∞

F0

(υz −ω/k)2 dυz. (9.1.14)

Since F0 goes to zero at υz =±∞, the first term in the integration by parts vanishes,
so the dispersion relation becomes

Ð(k,ω) = 1−
ω2

p

k2

∫ ∞

−∞

F0

(υz −ω/k)2 dυz = 0. (9.1.15)

Both of the above forms of the dispersion relation suffer from a serious problem.
Because the denominator goes to zero at υz = ω/k, the integrals do not converge
unless F0 and ∂F0/∂υz are zero at υz = ω/k. Physically, the dispersion relation
exists only if there are no particles moving with a velocity equal to the phase
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and substituting into Eq. (9.1.7) gives
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ϵ0m
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−∞

(∂ f0/∂υz)
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d3υ. (9.1.9)
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[
1− e2

ϵ0mk2

∫ ∞

−∞

∂ f0/∂υz

(υz −ω/k)
d3υ

]
Φ̃ = 0. (9.1.10)
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Ð(k,ω) = 1− e2

ϵ0mk2
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−∞
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d3υ = 0. (9.1.11)
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∫ ∞

−∞
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Ð(k,ω) = 1−
ω2

p

k2

∫ ∞
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In some applications it is useful to put the dispersion relation into a slightly
different form by integrating by parts once, which gives
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Since F0 goes to zero at υz =±∞, the first term in the integration by parts vanishes,
so the dispersion relation becomes

Ð(k,ω) = 1−
ω2

p

k2

∫ ∞
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−∞
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d3υ. (9.1.9)

Rearranging the terms and factoring out Φ̃ then gives the homogeneous equation
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d3υ

]
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∫ ∞

−∞
f0(v)dυx dυy. (9.1.12)
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F0(υz)dυz = 1. Recognizing thatω2
p = n0e2/(ϵ0m), the dispersion relation equation
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In some applications it is useful to put the dispersion relation into a slightly
different form by integrating by parts once, which gives
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∫ ∞
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∫ ∞
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Both of the above forms of the dispersion relation suffer from a serious problem.
Because the denominator goes to zero at υz = ω/k, the integrals do not converge
unless F0 and ∂F0/∂υz are zero at υz = ω/k. Physically, the dispersion relation
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and substituting into Eq. (9.1.7) gives
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kΦ̃
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−∞

(∂ f0/∂υz)
(kυz −ω)

d3υ. (9.1.9)

Rearranging the terms and factoring out Φ̃ then gives the homogeneous equation
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ϵ0mk2
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For the potential Φ̃ to have a non-trivial solution, the term in the brackets must be
zero, which gives the dispersion relation
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ϵ0mk2
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∫ ∞
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In some applications it is useful to put the dispersion relation into a slightly
different form by integrating by parts once, which gives
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∫ ∞
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Electrostatic Waves in a Hot
Unmagnetized Plasma

In this chapter we investigate the propagation of small-amplitude waves in a hot
unmagnetized plasma. Because of the shortcomings of the moment equations,
the approach used is to solve the Vlasov equation directly using a linearization
procedure similar to that used in the analysis of waves in cold plasmas and MHD.
Although both electromagnetic and electrostatic solutions exist, the discussion in
this chapter is limited to solutions that are purely electrostatic, i.e., the electric field
is derivable from the gradient of a potential, E = −∇Φ. Electromagnetic solutions
are discussed in the next chapter.

From Faraday’s law it is easily verified that electrostatic waves have no magnetic
component. This greatly simplifies the Vlasov equation by eliminating the v ×B
force. For electrostatic waves, it is usually easier to solve for the potential rather
than for the electric field. Therefore, in the following analysis, the electric field
is replaced by E = −∇Φ and the potential is calculated from Poisson’s equation,
∇2Φ = −ρq/ϵ0.

9.1 The Vlasov Approach

In an initial attempt to analyze the problem, we assume that normal modes of the
form exp(−iωt) exist and represent them by using Fourier transforms, following
the same basic procedure used in Chapter 4. This is the approach used by Vlasov
(1945), who first considered this problem. As we will see, the Vlasov approach
encounters a mathematical difficulty that can only be resolved by reformulating
the linearized problem not as a normal mode problem using Fourier transform, but
as an initial value problem using the technique of Laplace transforms.

As we have done before, we start by only considering the motion of the
electrons. The ions are considered to be immobile, with the same zero-order
number density, n0, as the electrons. The effects of ion motions will be considered
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