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Experimental Test of Quasilinear Theory*
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The shape and amplitude of the electron-plasma wave spectrum resulting from a
"gentle bump" on the tail of the electron velocity distribution of a plasma is measured
and found to be in good agreement with quasilinear theory.

Nonlinear theories of unstable plasmas are
usually concerned with two principal problems:
estimating the final wave spectrum and calculat-
ing the effect of the waves on the particles. The
simplest instability that may be followed analy-
tically to its nonlinear limit is a "gentIe bump"
on the tail of the electron velocity distribution.
The amplitude and shape of the spectrum as well
as the change in the velocity distribution may be
cal.culated from quasilinear theory. "

In this Letter we report an experiment designed
to test the validity of this theory by measuring
the electron-plasma wave spectrum resulting
from the injection of an electron beam of suffi-
ciently low density and large velocity spread to
satisfy the assumptions of quasilinear theory.
In prior beam-plasma experiments the initial
velocity spread of the beam electrons was not
sufficient to meet the requirements. ' '

When the beam electrons form a "gentle bump"
on the plasma electron velocity distribution, the
dispersion relation is determined by the plasma

electrons, and the only effect of the beam is to
cause exponential growth of the waves (or plasma
noise) with phase velocities corresponding to
the positive slope of the beam distribution. As
the waves become sufficiently large they cause

' a diffusion of the beam electrons in velocity.
The growth rate of the waves therefore decreases
and eventually goes to zero when the velocity
distribution becomes flattened in the beam region.
Hence, we can calculate the dispersion relation
and initial growth rate from linear theory and
the equilibrium spectrum from the quasilinear
theory.

To determine the dispersion relation, we con-
sider a long cylinder of collisionless plasma in
a strong magnetic field aligned with the axis.
The plasma density is a function of radius only.
In the limit that the phase velocity of the waves
is small compared with the velocity of light, the
electric field may be derived from a scalar po-
tential, and for the radially symmetric modes
the dispersion relation may be found from

d'4(r) 1 d4(r), ~,'(r)

where 4 is the wave potential, k and ~ are the
complex wave number and angular frequency of
the wave, co~'(r) is the radially dependent plasma
frequency, v, the mean thermal velocity of the

plasma electrons, and W is related to the plas-
ma dispersion function' by W(x) =2Z'(-x/W2).
Using the experimentally observed density pro-
file, the numerical solution of Eq. (1) yields the
potential profile 4 (r) and the complex wave num-

ber as a function of frequency in the absence of
the beam.

Vfhen the beam in injected into the plasma, the
real part of the dispersion relation is unchanged
and the growth due to the beam is given by'

nv, ' f, rdr 4'(r)[sf, (v, r)/Bv]„»
v, m, ' f,"rdr 'C( )Xr(r)

where e is the imaginary part of the wave num-

! ber, v, is the group velocity, N(r) the plasma
density, 8'~' the derivative of the real part of
the W function, and f, the beam-velocity distri-
bution function. The growth rate depends on the
ratio of the beam density integrated over its
cross-sectional area to the plasma density in-
tegrated over the plasma cross section. Both
low density and small cross section in the beam
contribute to the required weakness of the insta-
bility.

Drummond' has considered the quasilinear de-
velopment of spatial. ly growing waves in a plas-
ma, column immersed in a strong magnetic field
and finds a local diffusion equation similar to
the one-dimensional case. When the diffusion
equation is integrated over the cross section of
the plasma and combined with the equation for
the rate of change in wave energy, we find the
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power spectrum at saturation to be given by

P(u) = c—,(1- j dU n[gi(v) —g,. (v)j,
E

where P(v) is the power per unit frequency, C is
a constant, v and v~ are the wave frequency and
phase velocity, respectively, v is the electron-
veIocity component parallel to the magnetic field,
and g,. & are the initial and final distribution
functions integrated over the plasma cross sec-
ion and perpendicular velocities xo The inal

distribution is fIat and given by the appropriate
construction on the initial distribution. The total
power in the wave spectrum is equaI to the de-
crease in particle energy flux caused by the ve-
locity diffusion process and is equal to

P= J 'dv rnv'/2[gq(v) —g,. (v)], (4)
Vy

where m is the mass of an electron and the lim-
its of integration are over the flattened region
«r, (v)

These equations are the quasilinear predictions
of the shape and amplitude of the wave spectrum
from a "gentle bump, " and it is these results
that the experiment is designed to check.

The plasma is produced by ionization of hydro-
gen gas in a coaxial stub microwave cavity, and
it drifts along magnetic field lines down a 250-
cm aluminum tube 10 cm in diameter. The plas-
ma is terminated by a plate with a &-cm hole
behind which the electron gun is mounted. The
plate is biased to reflect electrons with velocities
less than the slowest of those that come from the
gun. The tube acts as a waveguide beyond cutoff
for electromagnetic propagation at the wave fre-
quencies used, and has four longitudinal slots
equispaced around the circumference along which
antenna probes may be moved. The complete
assembly is contained in a vacuum chamber and
maintained at a pressure of less than 10 ' Torr
by diffusion and Ti sublimation pumps. Axial
magnetic field coils are mounted around the vacu-
um chamber and provide a magnetic field of
about 1 kG. The electron gun is a simple diode
with a large-aperture (2.5-cm diam) plate
mounted inside a soft-iron cylinder. The result
is a beam distribution with a large spread in
parallel energy, which when injected into the
plasma makes a bump on the tail of the parallel
electron-velocity distribution. The energy dis-
tribution of the beam is measured directly using
a large-aperture gridded energy analyzer.

The dispersion curve is determined from mea-

surements of wavelength as a function of the fre-
quency of the plasma wave. The wavelength can
be observed directly by adding a constant-phase
reference signal from the transmitter to the re-
ceived signal. As the receiving probe is moved,
the interference pattern is plotted on an X-Y re-
corder, displaying the wavelength. The temper-
ature and density of the plasma are inferred by
computer using a program that solves Eq. (l) to
obtain the best least-squares fit to the experi-
mental points. The beam may be turned on and
the dispersion data repeated using coherent de-
tection to find the test wave in the noise spec-
trum. The wavelengths may be compared with
those measured without the beam to show that
the beam does not change the dispersion relation.
The results are shown in Fig. 1.

The dispersion curve is the most sensitive in-
dicator of the transition from gentle bump to
two-stream instability. The invariance of the
dispersion curve with the beam establishes em-
pirically that the bump is sufficiently broad.
The transition has also been examined theoreti-
cally by O' Neil and Malmberg. " They obtain a
parameter s depending on the beam and plasma
properties and show that for s &1.64, the disper-
sion curves are bumplike. In this experiment,
s ~ 1.8 for all beams, and their results confirm
that the dispersion curves are definitely quasi-
linear in this case.
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FIG. 1. Dispersion curve. The solid line is calcu-
lated without beam, circles are observations without
beam, squares are observations with a beam current
of 2.6 mA. The electron temperature is'14 eV. The
central electron density is 1.3 x 108 electron/cm3 with
a half-width of approximately 3 cm.
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FIG. 2. (a) Wave growth and saturation versus dis-
tance (b.) Saturation power level versus beam current.

The spatial growth of the noise as a result of
the beam is measured by connecting the receiv-
ing antenna directly to a broad-band amplifier
and a sampling rf voltmeter. The log of the volt-
meter output is plotted on the Y axis and dis-
tance from beam injection point on the X axis of
the recorder'. The results [Fig. 2(a)] have the
qualitative features expected from the theory:
slow exponential growth to reach a quasiequilib-
rium saturation level without overshoot.

To determine the wave power in the spectrum
we must know the absolute coupling constant of
the probes. No precise way of obtaining this is
available, but the total coupling through the plas-
ma for a paix of probes can easily be measured.
For three probes, three transmitter-receiver
pairs are possible. This gives three equations
for the three unknown single-probe coupling
coefficients. A calibrated receiver is positioned
200 cm from the beam injection point and the
wave power is measux ed as a function of beam
current. The wave power is linearly proportion-
al to the beam current [Fig. 2(b)] as predicl:ed
by Eq. (4). For our beam distribution, we cal-
culate that 14% of the beam power should be con-
verted to wave power. We obsex've approximate-
ly 10% conversion, which is excellent agreement
for R measurement of absolute power level. "

The shape of the equilibrium spectrum is mea-
sured using an adjustable narrow-band (3%) filter
in the receiving line. The powex and coupling
constant are measured at a series of fixed fre-
quencies. The amplitude of the spectrum as cal-
culated from Eq. (3) is normalized to the mea-
sured value at one point and the comparison of
theory and experiment is shown in Fig. 3(a).
The ShRpe Rnd width of the spectrUIQ Rle found

to be in excellent agreement with theory.
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FIG. 3. (a) Shape of wave spectrum. Solid line is
theory, circles are experimental values. Beam cur-
rent is 2 mA. (b) Inferred beam-velocity distribution
versus energy analyzer distribution. The solid curve
is obtained from an electronically differentiated output
of the analyzer.

We have also measured the growth rates of the
spectral components by using the adjustable fil-
ter and plotting the log of the receiver power
versus distance for a number of frequencies.
These growth rates were used in Eq. (2) to find
the avexaged beam-velocity distribution function
assuming that the wave potential is constant
over the beam diameter; the beam is sufficiently
small to justify this easily. This inferred beam
distribution is compared with the direct measure-
ment using an energy analyzer. The results are
shown in Fig. 3(b), where the width of the shaded
region is an indication of the estimated error in
determining the inferred distribution. No "nox'-

DlRllzRtlon plocedure 18 used 1n this conlpari-
son.

In summary, we find that the quasilinear theory
correctly predicts the manner in which the elec-
tron-plasma wave spectrum from a "gentle bump"
grows and saturates. The theory gives the pro-
per dependence of saturation level as a function
of beam current, the shape of the spectrum,
and the magnitude of the equilibrium power level.
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New theoretical results are presented for the probability of exciting surface oscilla-
tions {optical phonons or plasmons) by fast electrons reflected from the surface of a
thin crystal film. Both specular and Bragg reflections are considered and the effect of
the finite slab thickness is included. The theory explains successfully the energy-loss
spectra measured by Powell on metallic surfaces and recent measurements by Ibach on
ZnO surfaces.

Recently the authors have proposed a new semiclassical theory of the characteristic energy-loss
spectra of fast electrons in solids. In this approach, the electron is treated as a classical particle on
the well-defined trajectory r(t) and acts as a time-dependent perturbation, linearly coupled to the quan-
tized field of elementary excitations (e.g. , optical phonons or plasmons). The response of the system
can be calculated exactly to give the field excitation probability and hence the energy-loss spectrum.
The trajectory could be chosen arbitrarily so that one could consider reflection cases (both specular
and Bragg reflections) as well as the transmission case treated in the dielectric theory" of energy-
loss spectra.

In this Letter we present general formulas for the loss probability function appropriate to the specu-
larly or Bragg reflected electron at the surface of a slab of arbitrary thickness. Application of the
theory to the inelastic scattering by surface optical phonons in ZnO and surface plasmons in metals
leads to scattering probabilities in excellent agreement with recent experimental data obtained by
Ibach4 and Powell. '

Let ~,(k) be the frequencies of the odd (even) modes of long-wavelength surface excitations (either
phonons or plasmons) in a, slab of thickness 2a. The dispersion relation for these modes can be im-
plicitly written as'

sinh2ka = +2e((u)/[e'(&v)-1]

[which is equivalent to the relation (3.23a) of Ref.6], where k is a two-dimensional wave vector paral-
lel to the surface and e(w) is the frequency-dependent dielectric function of the material. The proba-
bility that the electron loses an energy @~ is found to be'

+oo

P(&u) =~ dte' 'exp[fd'k(Q, . 'e~+'+Q e ' ')],
277

(2)
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