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Key Concepts
• Linearized equations of “fluid” motion 

• Plane wave representation (“phasors”)  

• “Cold” plasma without pressure: describes the simplest plasma wave properties 

• “Warm” plasma includes (usually) electron pressure: easiest for ion acoustic waves 

• Electrostatic (longitudinal) and Electromagnetic waves  

• Polarization (and wave energy density) 

• Dispersion relations, ω vs. k, phase-velocity, group-velocity 

• Wave propagation through a plasma as a diagnostic 
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Here, σ (ω) is the frequency dependent conductivity. Taking the curl in the induction
law (6.1), we obtain the wave equation

∇ × (∇ × E) = −∇ × ∂B
∂t

= − ∂

∂t
(∇ × B)

= −µ0ε0
∂2E
∂t2

− µ0
∂j
∂t

. (6.6)

With µ0ε0 = 1/c2, the wave equation for the electric field takes the form

∇ × (∇ × E)+ 1
c2

∂2E
∂t2

= −µ0
∂j
∂t

. (6.7)

6.1.2 Fourier Representation

The wave equation has solutions that are plane monochromatic waves of the form

E = Ê exp[i(k · r − ωt)]
B = B̂ exp[i(k · r − ωt)]
j = ĵ exp[i(k · r − ωt)] . (6.8)

Here, k is the wave vector, which describes the direction of wave propagation. The
magnitude of the wave vector is related to the wavelength by k = 2π/λ. The wave
amplitudes Ê and ĵ are complex quantities, which give us a simple way to include a
phase shift between current density and electric field. Both are functions of frequency
and wavenumber, e.g., Ê = Ê(ω,k). Using this plane wave representation, we can
establish simple substitution rules for the differential operations in the wave equation

∇ × E → ik × Ê , ∇ · E → ik · Ê ,
∂

∂t
E → −iωÊ . (6.9)

In this way Maxwell’s equations (6.1) and (6.2) can be rewritten in terms of a set of
algebraic relations between the complex wave amplitudes

ik × Ê = iωB̂ (6.10)

ik × B̂ = −iωε0µ0Ê+ µ0 ĵ0 . (6.11)

Here, the term exp[i(k · r − ωt)], which describes the phase evolution in space and
time, appears on both sides of the equation and can be dropped.
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Fig. 6.2 a The phase
velocity is the quotient
ω/k = tan(α). The slope of
the tangent to the function
ω(k) is the group velocity,
dω/dk = tan(β). b A
non-dispersive medium has
vgr = vϕ

(b)(a)

group velocity are different in this example. A non-dispersive medium is character-
ized by the equality of phase and group velocity, as shown in Fig. 6.2b. Obviously,
vgr = vϕ can only be achieved by a dispersion relation that is represented by a straight
line through the origin.

In an anisotropic medium, such as a magnetized plasma, the direction of the group
velocity is not necessarily parallel to the phase velocity. There are exotic situations,
e.g., for Whistler waves, where phase velocity and group velocity can become even
perpendicular to each other [103, 104].

6.1.6 Refractive Index

In optics the refractive index of a transparent medium is defined as the ratio of the
speed of light in vacuum to the speed in that medium. This concept can be applied
in a similar manner to electromagnetic waves in a plasma. Hence, we define the
refractive index as

N = kc
ω

. (6.24)

Because of the proportionality of N and k, we can also define a refractive index
vectorN = (c/ω)k. Obviously, this is the complement to the phase velocity because
it points in the direction of wave propagation but has a magnitude ∝ v−1

ϕ . As in
optics, the concept of refractive index is useful for wave refraction, ray tracing, or
interferometry.

6.2 The General Dispersion Relation

In this section, we discuss the wave equation in the Fourier representation. Using the
vector identity k × (k × Ê) = (kk − k2I)Ê, the homogeneous wave equation for the
Fourier amplitudes (6.7) can be transformed into one of the following forms
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determines the propagation speed and polarization of the plasma waves. This model
is developed step by step starting from Maxwell’s equations.

6.1.1 Basic Concepts

Plasma waves are described by the set of Maxwell’s equations

∇ × E = −∂B
∂t

(6.1)

∇ × B = µ0

(
j + ε0

∂E
∂t

)
(6.2)

and a proper equation of motion for the plasma species that establishes the relation
between the alternating electric current j(E)

j = ne(vi − ve) , (6.3)

and the electric field. The simplest case is the description of the plasma particles in
the model of single-particle motion. The velocities ve,i are solutions of Newton’s
equation that is expanded by an additional friction force that is described by a colli-
sion frequency νm for momentum loss,

m (v̇ + νmv) = q(E + v × B) . (6.4)

In warm plasmas, we could include pressure effects by solving the MHD equations
for the variable j. Other effects related to the distribution function of velocities, e.g.,
Landau damping, will be discussed in Chap. 9.

For discussing the propagation properties of the waves, we make the additional
simplifying assumption that, at a chosen angular frequency ω, the relation between
the alternating current j(ω) and the electric field strength at that frequency E(ω) is
linear or can be linearized by suitable approximations

j(ω) = σ (ω) · E(ω) . (6.5)

Here, σ (ω) is the frequency-dependent conductivity. Taking the curl in the induction
law (6.1), we obtain the wave equation

∇ × (∇ × E) = −∇ × ∂B
∂t

= − ∂

∂t
(∇ × B)

= −µ0ε0
∂2E
∂t2 − µ0

∂j
∂t

. (6.6)
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Fig. 5.3 Definitions used to
derive the continuity
equation

N
x xx+ x

I (x+ x)NI (x)N

5.1.3 The Continuity Equation

The balance for the number of particles in a fixed cell of size !V = !x!y!z is
discussed for the one-dimensional flow described by (5.5). The number of particles
inside the interval [x, x+!x] is N = nA!x with A = !y!z. The incident particle
flux is IN = nAux . When this flux is decelerated or accelerated inside the cell by
external forces, the flux on the exit side is larger or smaller.

Accordingly, the number of particles in the cell is diminished or increased
(Fig. 5.3)

− ∂N
∂t

= IN (x + !x) − IN (x) ≈ ∂ IN
∂x

!x . (5.6)

In the last step, we have Taylor-expanded the particle flux and retained only the
differential change of the flux.Dividing by!V = A!x and taking the limit!V → 0
gives

∂n
∂t

+ ∂(n ux )

∂x
= 0 . (5.7)

This result can easily be generalized to a three-dimensional flow pattern, which
results in the continuity equation

∂n
∂t

+ ∇ · (nu) = 0 . (5.8)

This balance equation describes the conservation of the number of particles in the
flow. When particles are generated or annihilated inside the cell, say by ionization
or recombination, the zero on the right hand side is replaced by a net production rate
S (see Sect. 4.2.3).

The continuity equation can be easily generalized to an equation for the conser-
vation of charge by introducing the charge density ρ = ∑

α nαqα and the current
density j = ∑

α nαqαuα

∂ρ

∂t
+ ∇ · j = 0 . (5.9)
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5.1.4 Momentum Transport

The net force in the balance of the considered cell is a result of the sum of all forces
acting on the particles within the cell plus the export and import of momentum by
particles that leave and enter the cell. The starting point of our calculation is Newton’s
equation for the force acting on a single particle

m
dv
dt

= q(E+ v × B) . (5.10)

Here, d/dt is the derivative calculated at the position of the point-like particle. The
correct momentum balance for a many-particle system can be obtained by multiply-
ing (5.10) with the density n. However, in an inhomogeneous flow, the time derivative
has to be calculated according to the rules of hydrodynamic flow

du
dt

= ∂u
∂t

+ ∂u
∂x

dx
dt

+ ∂u
∂y

dy
dt

+ ∂u
∂z

dz
dt

. (5.11)

The vector (dx/dt, dy/dt, dz/dt) is just the velocity u of the cell. This leads to the
compact notation

du
dt

= ∂u
∂t

+ (u · ∇)u , (5.12)

in which u ·∇ represents the convective derivative, which describes the change of a
quantity originating from the motion of the flow. To gain an insight into this quantity,
consider a man in a boat that is driven by the flow of a river from a narrow region
with rapid flow speed to a wide reach of slow speed. Although the flow pattern is
continuous, and does not change in time, the experience of a subject following the
flow is a change in velocity. Hence, the correct balance of the internal forces for a
fluid element is

nm
[
∂u
∂t

+ (u · ∇)u
]
= nq(E+ u × B) . (5.13)

We now need to sum up the surface forces that arise from particles entering and
leaving the fluid cell. For this purpose we consider the particle exchange through the
cell surface sketched in Fig. 5.4.

Fig. 5.4 Calculation of
pressure forces

X0
x

X + x0

I (x + x)
-
p 0

I ( )
+
p x + x0

I (x )
-
p 0

I ( )
+
p x0
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∂Px
∂t

= −m
∞∑

vx=−∞

([
"n(vx )v2x

]
x0+"x − ["n(vx )v2x ]x0

)
(5.22)

= −m
∂

∂x

(
n〈v2x 〉

)
"x"y"z (5.23)

and n〈v2x 〉 =
∫

f (vx )v2xdvx . The next step is to split the particle velocities into a
mean flow ux and a random thermal motion ṽx

vx = ux + ṽx . (5.24)

Then, we obtain the momentum balance as

∂

∂t
(nmux ) = −m

∂

∂x

[
n

(
〈u2x 〉 + 2ux 〈ṽx 〉 + 〈ṽ2x 〉

) ]
. (5.25)

For a one-dimensional Maxwellian we know that (1/2)m〈ṽ2x 〉 = (1/2) kBT . By
definition, the average of the random motion is 〈ṽx 〉 = 0. Hence, the momentum
balance becomes

∂

∂t
(nmux ) = − ∂

∂x

[
nmu2x + nkBT

]
. (5.26)

This is the correct balance for a fixed volume in space. On the r.h.s. of (5.26) we
find the stagnation pressure nmu2x and the kinetic pressure p = nkBT . Evaluating
the derivatives on both sides and using the continuity equation (5.8) we obtain

nm
(

∂ux

∂t
+ ux

∂ux

∂x

)
= −∂p

∂x
. (5.27)

In this representation, the fluid element is considered to follow the flow, which can
be identified by the convective derivative on the l.h.s. of the equation. Generalizing
this one-dimensional result to three dimensions, and adding the volume forces, the
final result gives the momentum transport equation

nm
(

∂u
∂t

+ (u · ∇)u
)
= nq(E+ u × B) − ∇ p . (5.28)

5.1.5 Shear Flows

In the previous paragraph, we have calculated the momentum exchange between
neighboring cells along the mean flow. This could be summed up into a new net
volume force, the pressure gradient. Now, we focus our attention on the momentum
exchange across theflow (Fig.5.5).Because of their random thermalmotion, particles

Maxwell’s Equations Plasma Fluid Dynamics

“cold”

“warm”

nonlinear (!)

“magnetized” or “unmagnetized”

(plus “collisions”…)
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the electrons will oscillate about their mean position while the much heavier ions
will be immobile. Hence, we are allowed to consider the plasma as a set of dipoles
formed by pairs consisting of an electron oscillating about a corresponding ion at
rest. Such a medium is characterized by the dielectric displacement

D̂(ω) = ε0ε(ω)Ê(ω) . (6.12)

Noting that for a given frequency ω, the displacement current can be considered as
the sum of the vacuum displacement current plus the conduction current,

∂D
∂t

= ε0
∂E
∂t

+ j = ε0ε(ω)
∂E
∂t

. (6.13)

This gives us a relation between the dielectric function ε(ω) and the electric con-
ductivity σ (ω)

ε(ω) = 1 + i
ωε0

σ (ω) . (6.14)

In the following, we will call ε(ω) the dielectric function when the frequency depen-
dence is considered. For a specific value of ω, we will name ε(ω) the dielectric
constant for that frequency.

In an unmagnetized plasma, σ (ω) and ε(ω) are simple scalar functions of the
wave frequency ω. A magnetized plasma, however, is anisotropic because of the
different motion along and across the magnetic field. Therefore, dielectric function
and conductivity then become tensors, see Sect. 3.2 of Appendix.

εω = I + i
ωε0

σω . (6.15)

Here, I is the unit tensor. This means that the electric field vector E and the electric
current vector j may be no longer parallel to each other. Moreover, collisions of the
plasma particles make the plasma a lossy dielectric medium and ε(ω) is in general
a complex function.

In conclusion, there are two different views of the plasma medium. For weak
losses, the plasma behaves mostly as a dielectric and is described by a dielectric
function (or tensor) ε(ω), in which the real part is dominant over the imaginary part.
When the collisions are frequent, the plasma behaves mainly as a conductor and is
described by a complex conductivity σ (ω), in which the imaginary part represents
phase shifts resulting from inertial effects. In the following, we will be mostly inter-
ested in cases, where the plasma waves are weakly damped. Then, the dielectric
tensor elements are mostly real quantities. Therefore, we will prefer the dielectric
description of a plasma.

−
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All of the plasma 
physics here
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In an anisotropic medium, such as a magnetized plasma, the direction of the
group velocity is not necessarily parallel to the phase velocity. There are exotic
situations, e.g., for Whistler waves, where phase velocity and group velocity can
become even perpendicular to each other [99, 100].

6.1.6 Refractive Index

In optics the refractive index of a transparent medium is defined as the ratio of the
speed of light in vacuum to the speed in that medium. This concept can be applied
in a similar manner to electromagnetic waves in a plasma. Hence, we define the
refractive index as

N = kc
ω

. (6.24)

Because of the proportionality of N and k, we can also define a refractive index
vector N = (c/ω)k. Obviously, this is the complement to the phase velocity because
it points in the direction of wave propagation but has a magnitude ∝ v−1

ϕ . As in
optics, the concept of refractive index is useful for wave refraction, ray tracing, or
interferometry.

6.2 The General Dispersion Relation

In this Section, we discuss the wave equation in Fourier representation. Using the
vector identity k × (k × Ê) = (kk − k2I)Ê, the homogeneous wave equation for the
Fourier amplitudes (6.7) can be transformed into one of the following forms

{
kk − k2 I + ω2

c2 I + iωµ0σ (ω)

}
· Ê = 0 (6.25)

{
kk − k2 I + ω2

c2 ε(ω)

}
· Ê = 0 . (6.26)

Here, the dyadic product kk of the wave vectors is defined as the tensor

kk =





kx kx kx ky kx kz

kykx kyky kykz

kzkx kzky kzkz



 . (6.27)

4
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dence is considered. For a specific value of ω, we will name ε(ω) the dielectric
constant for that frequency.

In an unmagnetized plasma, σ (ω) and ε(ω) are simple scalar functions of the
wave frequency ω. A magnetized plasma, however, is anisotropic because of the
different motion along and across the magnetic field. Therefore, dielectric function
and conductivity then become tensors, see Sect. 3.2 of Appendix.

εω = I + i
ωε0

σω . (6.15)

Here, I is the unit tensor. This means that the electric field vector E and the electric
current vector j may be no longer parallel to each other. Moreover, collisions of the
plasma particles make the plasma a lossy dielectric medium and ε(ω) is in general
a complex function.

In conclusion, there are two different views of the plasma medium. For weak
losses, the plasma behaves mostly as a dielectric and is described by a dielectric
function (or tensor) ε(ω), in which the real part is dominant over the imaginary part.
When the collisions are frequent, the plasma behaves mainly as a conductor and is
described by a complex conductivity σ (ω), in which the imaginary part represents
phase shifts resulting from inertial effects. In the following, we will be mostly inter-
ested in cases, where the plasma waves are weakly damped. Then, the dielectric
tensor elements are mostly real quantities. Therefore, we will prefer the dielectric
description of a plasma.
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6.6 Waves in Magnetized Plasmas

In this Section, we will discuss the influence of a magnetic field on the propagation
of plasma waves. To avoid the entanglement of magnetic field effects and pressure
effects, we restrict the discussion to cold plasmas. This allows us to use the single
particle model. The starting point is again Newton’s equation of motion

∂v(α)

∂t
= qα

mα

(
E1 + v(α) × B0

)
α = e, i . (6.80)

Here, v(α) represents the velocity of particle oscillations, E1 the wave electric field
and B0 = (0, 0, B0) a static magnetic field. The oscillation velocity and the electric
field are considered as small quantities, so we will retain only linear terms contain-
ing these quantities. For the same reason we have neglected the wave magnetic field
B1 because it would form a second-order term v(α) × B1 in the Lorentz force.

6.6.1 The Dielectric Tensor

To reduce the cluttering with subscripts and superscripts, we drop the symbol α for
the particle species in the following and distinguish the particles by their q and m
values. The interesting new effects in the dielectric tensor arise from the particle
motion across the magnetic field

v̂x = i
q
ωm

(Êx + v̂y B0) , v̂y = i
q
ωm

(Êy − v̂x B0) . (6.81)

The ideal way to describe the gyromotion of the particles is using rotating vectors
for the velocities and the electric field

v̂± = v̂x ± iv̂y , Ê± = Êx ± iÊy . (6.82)

In this way we can decouple the particle motion in (6.81)

v̂± = i
q
ωm

(Ê± ∓ iv̂± B0) . (6.83)

The cyclotron frequencies for electrons and ions are defined as

ωce = eB0

me
ωci = |q|B0

mi
, (6.84)

which results in

v̂± = i
q
m

Ê± 1
ω ∓ sωc

. (6.85)
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Here, s = q/|q| is the sign of the particle charge. Transforming back to Cartesian
coordinates

v̂x = 1
2
(v̂+ + v̂−) , v̂y = 1

2i
(v̂+ − v̂−) , (6.86)

we obtain the matrix relation




v̂x
v̂y
v̂z



 = i
q
ωm





ω2

ω2 − ω2
c

i
sωωc

ω2 − ω2
c

0

−i
sωωc

ω2 − ω2
c

ω2

ω2 − ω2
c

0

0 0 1




·




Êx

Êy

Êz



 . (6.87)

In the last line of this matrix equation we have used the result from the unmagnetized
plasma. Using the definition of the particle oscillating current ĵ = ∑

α
nαqα v̂(α) we

obtain the conductivity tensor as

σ (ω) = iωε0





∑
α

ω2
pα

ω2 − ω2
cα

i
∑
α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω
0

−i
∑
α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω

∑

α

ω2
pα

ω2 − ω2
cα

0

0 0
∑

α

ω2
pα

ω2





(6.88)

and with the aid of (6.14) the dielectric tensor

ε(ω) =




S −iD 0

iD S 0
0 0 P



 , (6.89)

in which we have used the parameters S, P , and D introduced by Thomas H. Stix
[100, 112]

S = 1 −
∑

α

ω2
pα

ω2 − ω2
cα

D =
∑

α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω

P = 1 −
∑

α

ω2
pα

ω2 . (6.90)
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the electrons will oscillate about their mean position while the much heavier ions
will be immobile. Hence, we are allowed to consider the plasma as a set of dipoles
formed by pairs consisting of an electron oscillating about a corresponding ion at
rest. Such a medium is characterized by the dielectric displacement

D̂(ω) = ε0ε(ω)Ê(ω) . (6.12)

Noting that for a given frequency ω, the displacement current can be considered as
the sum of the vacuum displacement current plus the conduction current,

∂D
∂t

= ε0
∂E
∂t

+ j = ε0ε(ω)
∂E
∂t

. (6.13)

This gives us a relation between the dielectric function ε(ω) and the electric con-
ductivity σ (ω)

ε(ω) = 1 + i
ωε0

σ (ω) . (6.14)

In the following, we will call ε(ω) the dielectric function when the frequency depen-
dence is considered. For a specific value of ω, we will name ε(ω) the dielectric
constant for that frequency.

In an unmagnetized plasma, σ (ω) and ε(ω) are simple scalar functions of the
wave frequency ω. A magnetized plasma, however, is anisotropic because of the
different motion along and across the magnetic field. Therefore, dielectric function
and conductivity then become tensors, see Sect. 3.2 of Appendix.

εω = I + i
ωε0

σω . (6.15)

Here, I is the unit tensor. This means that the electric field vector E and the electric
current vector j may be no longer parallel to each other. Moreover, collisions of the
plasma particles make the plasma a lossy dielectric medium and ε(ω) is in general
a complex function.

In conclusion, there are two different views of the plasma medium. For weak
losses, the plasma behaves mostly as a dielectric and is described by a dielectric
function (or tensor) ε(ω), in which the real part is dominant over the imaginary part.
When the collisions are frequent, the plasma behaves mainly as a conductor and is
described by a complex conductivity σ (ω), in which the imaginary part represents
phase shifts resulting from inertial effects. In the following, we will be mostly inter-
ested in cases, where the plasma waves are weakly damped. Then, the dielectric
tensor elements are mostly real quantities. Therefore, we will prefer the dielectric
description of a plasma.

9
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Êz



 . (6.87)

In the last line of this matrix equation we have used the result from the unmagnetized
plasma. Using the definition of the particle oscillating current ĵ = ∑

α
nαqα v̂(α) we

obtain the conductivity tensor as

σ (ω) = iωε0





∑
α

ω2
pα

ω2 − ω2
cα

i
∑
α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω
0

−i
∑
α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω

∑

α

ω2
pα

ω2 − ω2
cα

0

0 0
∑

α

ω2
pα

ω2





(6.88)

and with the aid of (6.14) the dielectric tensor

ε(ω) =




S −iD 0

iD S 0
0 0 P



 , (6.89)

in which we have used the parameters S, P , and D introduced by Thomas H. Stix
[100, 112]

S = 1 −
∑

α

ω2
pα

ω2 − ω2
cα

D =
∑

α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω

P = 1 −
∑

α

ω2
pα

ω2 . (6.90)

http://www.nytimes.com/2001/04/18/nyregion/thomas-h-stix-plasma-physicist-dies-at-76.html

Working both in the laboratory and with theoretical calculations, he found many ways to 
put waves to work in fusion research in succeeding decades, and his 1962 book, ''The 
Theory of Plasma Waves,'' codified the subject in mathematical form for the first time.
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s

ω2
ps

ω2
(

ω

ω ± Ωs
)

L ≡ 1 −
∑

s

ω2
ps

ω2
(

ω

ω ∓ Ωs
)

S ≡
1

2
(R + L) D ≡

1

2
(R − L)
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∑

s

ω2
ps

ω2
.

Or,
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∑
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ω2 − Ω2
s

D =
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ps

ω

±Ωs

ω2 − Ω2
s
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∑

s

ω2
ps

ω2
.

From "D =
↔
ε · "E,

↔
ε = ε0





S −iD 0
iD S 0
0 0 P



 ≡ ε0
↔
K

The wave equation by taking the curl of the equation

∇× "E = − "̇B and substituting ∇× "B = µ0
↔
ε · "̇E:

∇×∇× "E = −µ0ε0(
↔
K · "̈E) = −

1

c2

↔
K · "̈E

Assuming an exp(i"k ·"r) spatial dependence of "E and defining a vector index
of refraction

"N =
c

ω
"k,

the wave equation becomes

"N × ( "N × "E)+
↔
K · "E = 0

The uniform plasma is isotropic in the x-y plane (i.e. ky = 0).

If θ is the angle between "k and "B0 we then have

Nx = n sin θ Nz = n cos θ Ny = 0

Using the elements of
↔
K,

↔
M · "E ≡





S − N2 cos2 θ −iD N2 sin θ cos θ
iD S − N2 0

N2 sin θ cos θ 0 P − N2 sin2 θ









Ex

Ey

Ez



 = 0

From this it is clear that the Ex, Ey components are coupled to Ez only if
one deviates from the principal angles θ = 0, 90◦.
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Figure 1: CMA diagram for a two-component plasma. The ion-to-electron
mass ratio is chosen to be 2.5. Bounding surfaces appear as lines in this
two-dimensional parameter space. Cross sections of wave-normal surfaces
are sketched and labeled for each region. For these sketches the direction of
the magnetic field is vertical. The small mass ratio can be misleading here:
the L = 0 line intersects P = 0 at Ωi/ω = 1 − (Zme/mi). From T. Stix’s
book (AIP, 1992).
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Clemmow-Mullaly-Allis

Lecture 12:

CMA Diagram

u ≡ ωk/k2c
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Recent milestones from the APEX Collaboration, on 
the path toward confined e+e- pair plasmas
Eve V Stenson (Max Planck Institute for Plasma Physics)
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Introducing further the refractive index N = kc/ω and the angle ψ between wave
vector and magnetic field direction, the wave (6.35) takes the form




S − N 2 cos2 ψ −iD N 2 cosψ sinψ

iD S − N 2 0
N 2 cosψ sinψ 0 P − N 2 sin2 ψ



 ·




Êx

Êy

Êz



 = 0 . (6.91)

Because of the rotational symmetry of the problem about the direction of the
magnetic field, we could arbitrarily choose the wave vector in the x-z plane,
k = (k sinψ, 0, k cosψ). Equation (6.91) is now defining the refractive index
N (ω, k,ψ), which we will start discussing for the principal directions ψ = 0
and ψ = π/2.

6.6.2 Circularly Polarized Modes and the Faraday Effect

We begin with studying the wave propagation along the magnetic field (ψ = 0).
Then the wave equation has the particular form




S − N 2 −iD 0

iD S − N 2 0
0 0 P



 ·




Êx

Êy

Êz



 = 0 . (6.92)

Here, we have to distinguish two cases:

1. Êx = Êy = 0 und Êz "= 0. This is a longitudinal wave that is described by
the dispersion relation P = 1 − (ω2

pe + ω2
pi)/ω

2 = 0. In fact, we find the
plasma oscillations again, which appeared in the unmagnetized case. Obviously,
the magnetic field has no effect on the wave because the oscillations are aligned
with the magnetic field and the Lorentz force vanishes.

2. Êx "= 0 "= Êy und Êz = 0. In this case we have transverse electromagnetic
waves that are described by a 2 × 2 system of equations

(
S − N 2 −iD

−iD S − N 2

)
·
(

Êx

Êy

)
= 0 . (6.93)

Introducing again the rotating electric field Ê± with (6.82)—this corresponds to a
circular polarization of the wave—the two equations are decoupled:

(S − D − N 2)Ê+ + (S + D − N 2)Ê− = 0 . (6.94)

When Ê+ "= 0 und Ê− = 0, we have a left-handed circularly polarized wave
(L-wave) with a refractive index NL = √

S − D. In the other case, Ê+ = 0 und
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Good places to start:
Propagation along B (ψ = 0)
Propagation ⊥ to B (ψ = π/2)
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Fig. 6.2 a The phase
velocity is the quotient
ω/k = tan(α). The slope of
the tangent to the function
ω(k) is the group velocity,
dω/dk = tan(β). b A
non-dispersive medium has
vgr = vϕ

(b)(a)

group velocity are different in this example. A non-dispersive medium is character-
ized by the equality of phase and group velocity, as shown in Fig. 6.2b. Obviously,
vgr = vϕ can only be achieved by a dispersion relation that is represented by a straight
line through the origin.

In an anisotropic medium, such as a magnetized plasma, the direction of the group
velocity is not necessarily parallel to the phase velocity. There are exotic situations,
e.g., for Whistler waves, where phase velocity and group velocity can become even
perpendicular to each other [103, 104].

6.1.6 Refractive Index

In optics the refractive index of a transparent medium is defined as the ratio of the
speed of light in vacuum to the speed in that medium. This concept can be applied
in a similar manner to electromagnetic waves in a plasma. Hence, we define the
refractive index as

N = kc
ω

. (6.24)

Because of the proportionality of N and k, we can also define a refractive index
vectorN = (c/ω)k. Obviously, this is the complement to the phase velocity because
it points in the direction of wave propagation but has a magnitude ∝ v−1

ϕ . As in
optics, the concept of refractive index is useful for wave refraction, ray tracing, or
interferometry.

6.2 The General Dispersion Relation

In this section, we discuss the wave equation in the Fourier representation. Using the
vector identity k × (k × Ê) = (kk − k2I)Ê, the homogeneous wave equation for the
Fourier amplitudes (6.7) can be transformed into one of the following forms
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Êx

Êy
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Êx

Êy
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Ê− "= 0, the wave is a right-handed circularly polarized (R-mode), and the refrac-
tive index is NR = √

S + D.
Using the definitions of the parameters S and D we obtain

NR =
(

1 −
ω2

pe

ω(ω − ωce)
−

ω2
pi

ω(ω + ωci)

)1/2

(6.95)

NL =
(

1 −
ω2

pe

ω(ω + ωce)
−

ω2
pi

ω(ω − ωci)

)1/2

. (6.96)

For ω = ωce the refractive index of the R-mode approaches NR → ∞. The R-
mode is said to have a resonance at the electron cyclotron frequency. This resonance
becomes immediately evident when we see that the sense of rotation of the wave
vector and the electron are the same (Fig. 6.11). In the rotating frame of reference the
electron experiences a DC electric field and can gain energy indefinitely. The same
consideration applies to the L-mode, which has a resonance at the ion cyclotron
frequency.

Fig. 6.11 The sense of
rotation for the R-mode and
L-mode compared to the
gyromotion of electrons and
positive ions

E–= ER E+= EL

B

Fig. 6.12 The square of the refractive index for wave propagation along the magnetic field as a
function of frequency. For clarity, an artificial mass ratio me/mi = 0.4 was chosen. The R-mode
has a resonance, N 2 → ∞, at the electron cyclotron frequency whereas the L-wave shows a
resonance at (the lower) ion cyclotron frequency. In the high density limit ω2

pe & ω2
ce considered

here, only the R-wave is propagating between ion and electron cyclotron frequency while the L-
wave is in the cut-off, N 2 < 0
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Advances in the Study of Collisionless Plasma Turbulence in the Era of 
NASA's Magnetospheric Multiscale Mission
Julia Stawarz (Northumbria University)
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The extraordinary mode or X-mode has E ⊥ B0 and is described by the 2 × 2
system of equations

(
S −iD

iD (S − N 2)

)
·
(

Êx

Êy

)
= 0 . (6.101)

Again, non-vanishing solutions for E are found when the determinant of the matrix
becomes zero, yielding a refractive index given by

NX =
(

S2 − D2

S

)1/2

. (6.102)

Resonances appear when the Stix parameter S vanishes (S = 0). In the case of very
high frequencies, we can neglect the ion contributions in S, and find the so-called
upper-hybrid resonance frequency

ωuh = (ω2
ce + ω2

pe)
1/2 . (6.103)

For intermediate frequencies, there is a second zero of S, which defines the lower
hybrid resonance frequency

ωlh =
(

ω2
ci +

ω2
piω

2
ce

ω2
pe + ω2

ce

)1/2

. (6.104)

In the limit of high electron density,ω2
pe $ ω2

ce, the lower hybrid frequency becomes
ωlh ≈ (ωciωce)

1/2 The behavior of the refractive index for the X-mode and O-mode
as a function of wave frequency is shown in Fig. 6.15.

Fig. 6.15 The square of the
refractive index for wave
propagation perpendicular to
the magnetic field as a
function of frequency. An
artificial mass ratio
me/mi = 0.4 is chosen. The
X-mode has resonances at the
lower hybrid frequency ωlh
and the upper hybrid
frequency ωuh
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142 6 Plasma Waves

The transverse waves are twofold degenerate corresponding to the two possible
directions of polarization in y or z-direction. The case of longitudinal waves will
be postponed to Sect. 6.5.1. Here, we will focus on the transverse waves. For this
purpose we set Êx = 0 and retain only the middle line in the set of (6.35),

(

−k2 +
ω2 − ω2

pe

c2

)

Êy = 0 . (6.36)

Since Êy "= 0 we conclude that the factor in parantheses must vanish, yielding

ω2 = ω2
pe + k2c2 . (6.37)

The same result is obtained from the last line of (6.35) because of the degeneracy.
The explicit form of the dispersion relation for the transverse wave becomes

ω =
(
ω2

pe + k2c2
)1/2

. (6.38)

Since we have k in x-direction and Ê in y-direction the vector product k × Ê
is nonzero and the induction law (6.10) gives an associated wave magnetic field.
Therefore, the transverse wave is an electromagnetic mode. When we consider the
limit of vanishing electron density, the electron plasma frequency goes to zero and
the wave dispersion takes the limiting form ω = kc, which is the light wave in
vacuum. The transverse mode in an unmagnetized plasma is therefore the light wave
modified by the presence of the plasma as a dielectric medium.

The wave dispersion of the electromagnetic wave is shown in Fig. 6.3. The
transverse wave is only propagating for ω > ωpe. Therefore, we call the electron
plasma frequency the cut-off frequency for the electromagnetic mode. In the limit
of very high frequencies the dispersion approaches the light wave in vacuum. This
case is different from the limit of vanishing plasma density because, with increasing

Fig. 6.3 Dispersion relation
for electromagnetic waves in
an unmagnetized plasma.
Wave propagation is only
possible for frequencies
larger than the plasma
frequency. For ω $ ωpe the
wave dispersion approaches
the light wave in vacuum
ω = kc
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limit of vanishing electron density, the electron plasma frequency goes to zero and
the wave dispersion takes the limiting form ω = kc, which is the light wave in
vacuum. The transverse mode in an unmagnetized plasma is therefore the light wave
modified by the presence of the plasma as a dielectric medium.

The wave dispersion of the electromagnetic wave is shown in Fig. 6.3. The
transverse wave is only propagating for ω > ωpe. Therefore, we call the electron
plasma frequency the cut-off frequency for the electromagnetic mode. In the limit
of very high frequencies the dispersion approaches the light wave in vacuum. This
case is different from the limit of vanishing plasma density because, with increasing
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Example Problems and Discussion
• Plasma waves with electron flow 

• Finding simple limits to plasma wave dispersion 

• Plasma wave damping due to collisions (ω = ωr + i ωi or k = kr + i ki) 

• Whistler waves 

• Interferometry and Faraday Rotation
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Question 3

For a plasma without flow, prove that the condition for magnetohydrodynamic (MHD)
equilibrium, J ⇥ B = rp, requires the sum of the plasma and magnetic pressure to be
balanced by a magnetic curvature term

r
 

p+
B2

2µ0

!

=
1

µ0
(B ·r)B .

[Hint: You may use the vector identities attached to this exam.]

Question 4

Describe the magnetohydrodynamic equilibrium of an infinite cylindrically-symmetric
plasma with constant pressure within r < a, no pressure outside a, and with the magnetic
field directed only along the axis, B = ẑB(r).

At what pressure will the magnetic field within the plasma vanish?

Question 5

Neglecting plasma resistivity, Ohm’s Law is E+V⇥B = 0, where V is the plasma mass
flow velocity.

Using Maxwell’s equations, derive the dispersion relation for a shear Alfvén wave,
propagating along an otherwise unperturbed, straight magnetic field, B0. Consider only
perturbations such that the perturbed plasma motion, V1, and the perturbed magnetic
field, B1, both perpendicular to B0.

Describe the polarization of the Alfvén wave by relating the perturbed electric field
and plasma velocity to the perturbed magnetic field. Are these perturbations oscillating
in-phase, out-of-phase, or with a phase-shift?

2
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134 ⌅ Plasma Physics: An Introduction (2nd Edition)

4. Derive the dispersion relation (5.44)–(5.47) from Equation (5.42).

5. Show that the square of F, defined in Equation (5.48), can be written in the
positive definite form

F2 = (R L � P S )2 sin4 ✓ + 4 P2 D2 cos2 ✓.

6. Derive the alternative dispersion relation (5.50) from (5.44).

7. Show that in the limit !! 0,

R = L = S = 1 +
⇧2

i

⌦2
i
+
⇧2

e

⌦2
e
,

D = 0,

P = �
⇧2

i

!2 �
⇧2

e

!2 .

8. Show that
i Vx i

Vy i
=

(i Ex/Ey) � (⌦i/!)
1 � (⌦i/!) (i Ex/Ey)

,

i Vx e

Vy e
=

(i Ex/Ey) � (⌦e/!)
1 � (⌦e/!) (i Ex/Ey)

.

Hence, deduce that for a right-hand/left-hand circularly polarized wave the
ions and electrons execute circular orbits in the x-y plane in the electron/ion
cyclotron direction.

9. The e↵ect of collisions can be included in the dispersion relation for waves in
cold magnetized plasmas by adding a drag force ⌫s ms Vs to the equation of
motion of species s. Here, ⌫s is the e↵ective collision frequency for species s,
where s stands for either i or e. Thus, the species s equation of motion becomes

ms
dVs

dt
+ ⌫s ms Vs = es (E + Vs ⇥ B).

(a) Show that the e↵ect of collisions is equivalent to the substitution

ms ! ms

 
1 +

i ⌫s

!

!
.

(b) For high frequency transverse waves, for which ⌫s ⌧ !, and ⇧e, |⌦e| ⌧

!, show that the real and imaginary parts of the wavenumber are

kr '
!

c

 
1 �
⇧2

e

2!2

!
,

ki '
1

2 c

X

s

⌫s ⇧2
s

!2 ,

respectively.
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Question 3

Consider the e↵ect of electron collisions on plasma waves in a uniform cold plasma. The

equation for electron motion is

me

dve

dt
= �eE� eve ⇥B�me⌫ve

where E and B are the electric and magnetic field of the electromagnetic wave. (There is

no equilibrium magnetic field in this problem.)

Part A

Show that the e↵ect of collisions can be represented by the substitution

me ! me

✓
1 +

i⌫

!

◆

where ! is the wave frequency.

Part B

Find the linear dispersion relation for longitudinal electron plasma oscillations including

the e↵ects of collisions. Briefly discuss the dissipation of these oscillations when ⌫ ⌧ !pe.

Part C

For electromagnetic waves in a cold plasma, find approximate expressions for the real and

imaginary parts of the wave number (k = kr + iki) when ⌫ ⌧ ! and !pe ⌧ !.

4
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Question 3

The whistler wave propagates along the magnetic field with a frequency range, !ci ⌧ ! <
!ce. An approximate dispersion relation for the whistler wave is

k2c2

!2
=

!2
pe

!(!ce � !)

where the sign of all frequencies are positive in the expression above.

Consider the propagation of whistler’s in the magnetospheres of planets caused by

atmospheric lightning. At the moment of the lightning strike, a broad band of electro-

magnetic frequencies are excited in a single pulse. Some of this wave energy couples

to whistler waves that propagate from one pole to the other. Because the waves have

di↵erent group velocities, waves at di↵erent frequencies arrive at di↵erent times.

Part A

Describe the steps needed to derive the whistler wave dispersion relation in a cold mag-

netized plasma.

Part B

Since the group velocity is vg = @!/@k, given an expression for the time of arrival of

whistler pulse as a function of the wave frequency.

Part C

At a “cut-o↵” frequency, the wavelength becomes very long. At a “resonance”, the

wavelength tends toward zero. Is there a “cut-o↵” or “resonance” for whistler waves?

If so, what happens at this “cut-o↵” or “resonance”?

2
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146 6 Plasma Waves
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Fig. 6.5 (a) Laser interferometer in Mach-Zehnder arrangement, (b) microwave interferometer.
The optical arrangement uses partially-reflecting and fully-reflecting mirrors. The analog to a par-
tially reflecting mirror is the directional coupler for microwaves

Table 6.1 Cut-off densities for microwave and laser interferometers

Wavelength Frequency Cut-off-density
Source λ f nco(m−3)

Microwave 3 cm 10 GHz 1.2 × 1018

8 mm 37 GHz 1.7 × 1019

4 mm 75 GHz 7.0 × 1019

HCN-laser 337 µm 890 GHz 9.8 × 1021

CO2 laser 10.6 µm 28 THz 9.9 × 1024

He-Ne laser 3.39 µm 88 THz 9.7 × 1025

0.633 µm 474 THz 2.8 × 1027

index N . At a wavelength λ the difference between the optical path in the plasma
and the same path in vacuum is

∆ϕ = 2π
(N − 1)L

λ
< 0 , (6.47)

where we have assumed that the plasma has a homogeneous density and a corre-
sponding constant refractive index. In an inhomogeneous plasma, the phase differ-
ence is

%ϕ = 2π
λ

∫
[N (x) − 1] dx . (6.48)

This means that interferometry can only determine the path-averaged refractive
index ¯N = (1/L)

∫
N (x)dx . The reduction to index profiles requires additional

Figure 1: A schematic of an optical interferometer used to measure a plasma with cylin-

drical cross-section.

Question 2

The figure above shows an optical inferometer. A beam of light passes through the plasma,

and the phase of the light beam through the plasma is measured relative to the phase of

a light beam that does not pass through the plasma. This relative phase shift is labeled

as ��.

Part 1

What is the relationship between the measured relative phase shift, ��, and various char-

acteristic properties of the plasma? When the optical beam has a frequency much greater

than the maximum plasma frequency, what is the quantitative relationship between ��
and the plasma?

Part 2

The interferometer only works provided the plasma density is not too high. Describe the

plasma condition that prevents operation of the interferometer.

Part 3

If a magnetic field is applied perpendicular to the path of the optical beam while keeping

all other average plasma parameters constant, uncer what conditions will �� remain

constant? Under what conditions will �� change?

2
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Question 7

In this problem, you are to derive expressions for the phase shift of the laser passing
through the plasma as described in Question 6.

For typical magnetized laboratory plasmas, the laser frequency is much greater than
the electron plasma and cyclotron frequencies. With the z-axis aligned with the magnetic
field, the plasma dielectric tensor is

✏ =

0

B@
S �iD 0
iD S 0
0 0 P

1

CA

where

S = 1�
!2
pe

!2 � !2
ce

; D = �
✓
!ce

!

◆ !2
pe

!2 � !2
ce

; and P = 1�
!2
pe

!2
.

Maxwell’s equations describe the electromagnetic wave of the laser with the three
equations h

nn� n2I + ✏
i
· E = 0 ,

where n = kc/! is the vector index of refraction.

• For the first case, the laser beam propagates across the plasma cylinder and per-

pendicular to the magnetic field. For this case, the total change in the phase-shift
of the laser beam integrated across the plasma is

�� =
Z
dx (n� 1)(!/c) .

Find the correct expression for the phase shift when ! � !pe.

• For the second case, the laser beam propagates along the plasma cylinder and parallel

to the magnetic field. For this case, an initially linearly polarized laser beam must be
decomposed into the two propagating electromagnetic waves that propagate along
B. These waves are called the “right-hand circularly polarized” and “right-hand
circularly polarized” waves.

Find expressions for the polarizations of the right-hand and left-hand waves and
show that the indices of refraction for these waves are (right-hand) n2 = S +D =
1� !2

pe/!(! � !ce) ⇡ 1� (!2
pe/!

2)(1 + !ce/! + . . .) and (left-hand) n2 = S �D =
1� !2

pe/!(! + !ce) ⇡ 1� (!2
pe/!

2)(1� !ce/! � . . .).

What is the relative di↵erence per unit distance of propagation between the phase
shifts of the right and left-handed waves?

How quickly does the polarization of the laser beam change per unit distance of
propagation when ! � !pe and ! � !ce.
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Interferometry

Faraday Rotation
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Question 6

Consider a magnetized plasma cylinder of radius a. You are to measure the line-density
of the plasma by measuring the phase change of a polarized laser beam passing through
the plasma.

• If the plasma is confined by an axial plasma current so that the magnetic field is
entirely azimuthal (i.e. B = ✓̂B✓, of the so-called z-pinch), how must the laser be
polarized so that the interferometer’s phase-shift is proportional to the integral of
the density along the laser’s path?

• If the plasma is confined by a magnetic field that is directed along the ẑ-direction (i.e.
the so-called ✓-pinch), how must the laser be polarized so that the interferometer’s
phase-shift is proportional to the integral of the density along the laser’s path?

• For the ✓-pinch (with the magnetic field directed along the ẑ-direction), what hap-
pens to the polarization of a laser beam, which is linearly polarized and propagating
along the axial magnetic field in the ẑ-direction?

3

28



29


