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This Lecture
(Non-Relativistic, Cold-Plasma) Electron-Beam Plasma Instability

Electron Phase Space

» Linearized electron fluid equations 2.0

* Dispersion relation

» Complex eigenfrequencies, wavenumber

* Energetics

"Warm-plasma”
Kinetics
Nonlinear
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Observations of the Beam-Plasma Instability

K. W. GENTLE AND C. W. ROBERSON™
The Unzversity of Texas at Austin, Austin, Texas 78712
(Received 30 June 1971)

The nonlinear limit of the instability driven by a low density cold electron beam in a collisionless plasma

is experimentally found to be determined by the trapping

The apparatus has previously been described,” where
it was used for a similar experiment to test quasiiinear
theory. The apparatus and techniques are also very
similar to those used by Malmberg and Wharton® for
the problem. The present work complements and ex-

tends the results of that paper in the nonlinear regime.
For these experiments, the two-meter column contained
a 3-cm diam plasma with a density near 10° and a tem-
perature of 20 eV. The magnetic field of 1 kG was sui-

of the beam by the most rapidly growing wave.

ficient to render the dynamics one dimensional and the
background pressure of 8X10~® Torr precluded colli-
sional effects. The plasma is quiet, with low-frequency
density fluctuations of only a few percent. The axial
density uniformity is excellent. Although the density
drops approximately 209, over the 40 cm near the gun,
no measurable gradient exists over the remainder of the
column. A gradient of more than a few percent would
be readily detectable. The density gradient near the gun
is not significant. The waves are still far from satura-
tion when they enter the uniform region, and all the
important physics occurs in that region.



Typical results for the development of the instability
are shown in Fig. 1. The wave power is measured with
a loosely coupled, calibrated (—32 dB) coaxial probe
connected to a broad band amplifier and rf voltmeter.
The probe may be moved the length of the machine,
and the figure shows the result for the absolute power
in the waves. The qualitative behavior is precisely that
predicted: linear growth to a peak, followed by slow
oscillation. Although the theory was presented for in-
finite geometry and an initial value problem, the argu-
ment can easily be applied to finite geometry and
growth 1n space. The peak wave power should be

P,=22313Pp (1)
where Py= IV, the input beam power, and

n=fm(r)r dr ([oa ny(r)r dr)“l. (2)
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DISTANCE FROM ENTRANCE

F1c. 1. Total wave power as a function
of distance from the point of injection
of the beam into the plasma column. The
background plasma had a density of
7X 108 and a temperature of 18 eV.

200



tions in the potential well. In space, the oscillations will

3} appear with a wavelength determined by the particle
- oscillation frequency in the well and the propagation
32} velocity, the beam velocity #. If the potential is sinus-
oidal and the particles are trapped near the bottom
30 of the well, the oscillation length is given by
Pw N n=142%.I Aoac= ZW(M/CkE) 112. (3)
Making use of Eq. (1), we note that this implies that
26 -
Nosc < 37113, (4)
24}
Aosc
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Fi16. 2. Total wave power measured at the spatial maximum S0
e:.ls;‘ ittts.funct.ion of beam current. The wave power is in relative
growth 1n space. The peak wave power should be l mA c I ¢

P,=223p13P, (1)

‘6. 3. Oscillati .
where Py=IV,, the input beam power, and FiG. 3. Oscillation wavelength of the wave energy as a function

of beam current.
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VOLUME 19, NUMBER 6 PHYSICAL REVIEW LETTERS 7 AUuGUST 1967

NONLINEAR EVOLUTION OF A TWO-STREAM INSTABILITY*

K. V. RobertsT and H. L. Berk
University of California, San Diego, La Jolla, California

‘(Received 12 June 1967)
Calculations of a two-stream instability have been made by following the motion of the
phase-space boundaries of an incompressible and constant-density phase-space fluid.

Because of the condensation of holes, which to a good approximation act as gravitational
particles, large-scale nonlinear pulses develop.

§I-+v§f—-?-(e E-)L=O.

ot ax 0Ox ov
52
ey SrE ),
dax _ dv GRO, p Yo

dt "’ dt  ax’

The example to be discussed is a two-stream  are v Af/Ax=0.25, wpAL=1/20, and Ax =L /64,

instability, in which the electron plasma is where Ax is the grid used for evaluating Pois-
slightly perturbed at /=0 from an equilibrium son’s equation. The unstable wave numbers
characterized by four straight lines in phase are k =2m /L withn = (1,2), and the linear
space: f=1 for %vo< wl<v, and f=0 elsewhere. growth rates are y/w, =0.30, 0.315.

Periodic boundary conditions are imposed at
x=(0,L) and the parameters of the problem



The most striking feature of the calculation
is the behavior of the f =0 “cavity” which ini-
tially occupies the strip (kl<3v,) between the
two plasma layers. This must preserve con-
stant area as it deforms, and it is seen in Fig.
1 to coalesce into holes of roughly elliptical
shape, so that a large-amplitude electrostat-
ic wave is set up. Superimposed on this wave
are coherent oscillations due to rotation of
the holes in phase space, and also random
fluctuations due to the motion of smaller ele-
ments of the hole “fluid.” The two outer curves
adjust almost adiabatically to the instantane-
ous potential function.

FIG. 1. Evolution in phase space of a two-stream in-
stability from time steps 200 to 600 at intervals of 50
steps. Each step is 1/20 of a plasma period, and the
horizontal and vertical coordinates are x, v, respec-
tively. Periodic boundaries have been imposed and
three identical periods are shown along each row. The
shaded area represents the f=0 region enclosed by the

plasma fluid.
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LInearize Beam-Plasma
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LInear Beam-Plasma Dispersion Relation
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Energetics of Linear Modes
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Energetics of Plasma Wave
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Energetics of “Fast” Beam Mode
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Energetics of “Slow” Beam Mode
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Dispersion Diagram of E-Beam Plasma System
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Dispersion Diagram of E-Beam Plasma System
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8.1.5 Temporal or Spatial Growth
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These waves are convectively unstable: growth as wave propagates at Vo
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summary

E-Beam Plasma is unstable when kVo ~ wy
“Slow” beam mode is a “negative energy” wave
Electric field energy increases as unstable wave grows

Instabilities result from a source of energy and when a wave, or displacement,
releases the source of energy

NEXT LECTURE: ideal “macroinstability”, flute-interchange mode, and kink mode
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ANNALS OF PHYS1eS: 1, 120-140 (1957)
Stability of Plasmas Confined by Magnetic Fields'

M. N. RosexsrLuTH* anp C. L. LONGMIRE

Los Alamos Screntific Laboratory, Untversity of
California, Los Alamos, New Mezico

In this paper, we examine the question of the stability of plasmas confined by
magnetic fields. Whereas previous studies of this problem have started from
the magnetohydrodynamic equations, we pay closer attention to the motions of
individual particles. Our results are similar to, but more general than, those

which follow from the magnetohydrodynamic equations.

that the Internal energy of the plasma per unit mass i1s

E, = - p—v (22)
Y |

where p is the pressure and » the specific volume. In any adiabatic motion,
pr~uv’ (23)
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Laboratory Magnetospheres: Designed for Maximum
Flux Tube Expansion

Levitated Dipole Experiment (LDX) Ring Trap 1 (RT-1)

Flux Tube Expansion: Flux Tube Expansion:
&V (out)/dV(in) = 100 &V (out)/dV(in) = 40
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