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Instabilities
• “Micro-instabilities” 

• Velocity-space 

• Drift wave instabilities  

• … 

• “Macro-instabilities”  

• Gravitational 

• Kink, Sausage, etc 

• Ballooing 

• Resistive, tearing modes 

• …
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Fig. 8.2 (a) Electron velocity distribution f (v) for the beam-plasma system. (b) Analogy to pop-
ulation inversion in an atomic laser system. The solid line gives the thermal population according
to a Boltzmann factor. The dashed box indicates the overpopulation of level c w.r.t. the thermal
population in level b

Consider the production rate of photons, which is given by the (negative) rate at
which the upper laser niveau c is net depopulated by the competition of stimulated
emission Bbcnphnc and absorption Bcbnphnb,

dnph

dt
= −dnc

dt
= Bbcnphnc − Bcbnphnb . (8.1)

Spontaneous emission processes between levels c and b can be neglected at high
photon density. For non-degenerate levels, the Einstein coefficients are identical,
Bcb = Bbc. The number of photons grows exponentially in time when nc > nb.
The associated exponential growth in the photon density is the laser process. This
analogy shows that instability in terms of exponentially growing waves is a conse-
quence of the strong deviation from thermal equilibrium.

For the beam-plasma situation, let us denote the total electron density by ne0 with
a correponding electron plasma frequency ωpe. The beam population represents a
fraction nb = αbne0 of the total electron population, and we will assume αb ≪ 1.
The beam velocity is v0. The problem is considered as one-dimensional with the
beam propagating in x-direction.

8.1.2 Dispersion of the Beam-Plasma Modes

In Sect. 6.4 we had used first-order perturbation theory to derive the dielectric func-
tion of a cold plasma as

ε(ω) = 1 −
ω2

pe

ω2 = 1 + χp . (8.2)

The dielectric function is the sum of the permittivity of the vacuum (“1”) and the
susceptibility χp(ω) of the plasma electrons. χp can also be interpreted as the ratio
of the electron conduction current to the vacuum displacement current, at a given
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8.4.2 Pinch Instabilities

The pinch effect was already introduced in Sect. 5.3.4. The pinch effect is not nec-
essarily a homogeneous mechanism. When we assume that the plasma cross section
is reduced at some point, the magnetic pressure at the plasma surface will increase,
because Bϕ = µ0 I (2πa)−1, as shown in Fig. 8.13a. This increased magnetic pres-
sure further reduces the plasma radius at this point, and the plasma column develops
a sausage instability.

The magnetic pressure can also deviate from its equilibrium value, when the
plasma column is curved, see Fig. 8.13b. Because the magnetic field lines are per-
pendicular to the local current direction, the field line density, and the associated
magnetic pressure, is higher on the inner side and lower on the outer side of the
curved plasma column. Hence, the imbalance of magnetic pressure will further dis-
place the column forming a kink.

The sausage and the kink instability can be stabilized by a superimposed longi-
tudinal magnetic field, which is frozen in the plasma. The magnetic field lines have
a tension T = B2/µ0 that tends to straighten the field lines, see Sect. 5.2.2. This
gives a net restoring force that counteracts the instablity from the magnetic pressure
imbalance of the azimuthal magnetic field component, as shown in Fig. 8.13c.
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Fig. 8.13 (a) Sausage instability, (b) kink instability of a pinch plasma. The magnetic pressure
increases when the cross-section shrinks or becomes asymmetric when the plasma column is
curved. (c) The magnetic tension of a superimposed longitudinal magnetic field counteracts the
instability

8.4.3 Rayleigh–Taylor Instability

A cartoon of the Rayleigh-Taylor instability for the equatorial ionosphere is shown
in Fig. 8.14. The unpurturbed plasma boundary is shown by the horizontal dashed
line. The plasma fills the upper halfspace. The magnetic field is perpendicular to
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This Lecture 
(Non-Relativistic, Cold-Plasma) Electron-Beam Plasma Instability

• Linearized electron fluid equations 

• Dispersion relation  

• Complex eigenfrequencies, wavenumber 

• Energetics

“Warm-plasma”
Kinetics
Nonlinear
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e-beam power

A. Lvovskiy et al 2020 Nucl. Fusion 60 056008
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Linearize Beam-Plasma
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Linear Beam-Plasma Dispersion Relation
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Energetics of Linear Modes 
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Energetics of Plasma Wave

***
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Energetics of “Fast” Beam Mode

***
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Energetics of “Slow” Beam Mode

***
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Dispersion Diagram of E-Beam Plasma System

***
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Dispersion Diagram of E-Beam Plasma System

***
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Fig. 8.4 The dispersion
relation for the beam-plasma
modes at αb = 0.01. The
dotted lines mark the
asymptotes ω = ωpe and
ω = kv0. The plasma mode
develops into the fast
space-charge wave which
then approaches the fast
beam mode. For
kv0/ωpe < 1.3 the beam
mode is a complex conjugate
slow space-charge wave. At
the triple point it splits into
stable modes, a slow beam
mode and a plasma mode.
The second plasma mode
with negative ω remains
unaffected by the beam

higher values of αb, the dielectric function stays negative in the entire interval
0 < ω < kv0. However, if ω is taken as a complex quantity, there will be a pair
of conjugate complex roots with the real part of ω lying in this interval.

The dispersion relation for the beam-plasma modes consists of different branches
ω(k), see Fig. 8.4. According to our wave perturbation ∝ exp[i(kx − ωt)] and
allowing for a complex ω = ωr + iωi , there will be growing waves ∝ exp[i(kx −
ωr t)] exp[ωi t], when ωi > 0. In the limit αb ≪ 1, the plasma modes at ω =
±ωpe and the (degenerate) beam mode ω = kv0 are uncoupled (see dotted lines
in Fig. 8.4). For non-vanishing αb, the positive plasma mode connects to the
beam mode and becomes the fast space-charge wave, which has ω/k > v0. For
kv0/ωpe < 1.3 the beam modes form a conjugate pair. These waves are propagating
more slowly than the beam and are called slow space-charge waves. The one with
ωI > 0 is exponentially growing in time. The growth rate takes a maximum value
near the intersection ωpe = kv0. At the triple point, the slow space-charge waves
become real and form the slow beam mode and the plasma mode. The second plasma
mode with negative ω remains unaffected by the beam.

8.1.3 Growth Rate for a Weak Beam

For small values of αb, the slow space-charge wave that has the maximum growth
rate γ = ωI, is found close to kv0/ωpe = 1. This means that the phase velocity of the
wave is nearly resonant with the electron beam, vϕ ≈ v0. Therefore, it is reasonable
to seek an approximate solution for ε(ω, k) = 0 in the vicinity of the resonance
point ωpe = kv0. Introducing ω = ωpe +&ω, we can rewrite the dielectric function
in this regime as

+

+ +
-

Unstable Beam-
Plasma Mode

Stable Beam-
Plasma Mode

ω = k V0

ω = ωp
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The coupling of this negative energy wave with the plasma fluctuations (which rep-
resent a positive energy wave) is the reason for wave growth. The loss in kinetic
energy appears as gain for the wave potential energy. In this way, the wave potential
grows in time at the expense of the beam velocity. In Sect. 9.4 we will trace this
evolution into the non-linear regime by means of computer simulations.

Returning to the concept of “negative mass”, for the slow wave, the density
clumps are growing by decelerating the original beam whereas, for the fast wave,
the clumps are filled up by accelerating slower electrons. In the first case, energy is
transfered from the beam to the wave, and the wave grows, in the second case. the
wave accelerates electrons, thereby losing energy.

8.1.5 Temporal or Spatial Growth

In the last paragraph it was assumed that the wave is characterized by an imaginary
part ωi of the wave frequency. This means that everywhere the wave amplitude
grows at the same rate. In the beam-plasma system, one can also imagine an unmod-
ulated beam that enters a finite plasma. While the beam propagates through the
plasma, any small wave-like perturbation will grow in space. For this case, we have
to solve the dispersion relation ε(ω, k) = 0 with the dielectric function from (8.3)
for real frequency ω and complex wavenumber k. Simple algebraic manipulation
gives

kv0 = ω + i

(
αbω

2
peω

2

ω2
pe − ω2

)1/2

, (8.19)

Fig. 8.6 The spatial growth
rate in the beam-plasma
system for αb = 0.1 as a
function of the real wave
frequency ω. Note that the
growth rate even becomes
infinite at ω = ωpe
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which yields the imaginary part of the wavenumber (as shown in Fig. 8.6)

kI = ωpe

v0

α
1/2
b ω

(ω2
pe − ω2)1/2 . (8.20)

The subtle differences between spatial and temporal growth are discussed in [162].

8.2 Buneman Instability

A second, related example for the instability of counter-streaming charged particles
is found in a current carrying plasma, in which a dc electric field leads to a flow of
all plasma electrons relative to the ions. This instability was first discussed by Oscar
Buneman (1913–1993) [163]. Again we neglect collisions and assume that the drift
velocity of the plasma ions is much smaller than the electron beam velocity. There-
fore, we describe the instability in the rest frame of the ions. Further, we assume that
the electron beam velocity v0 is much higher than the thermal spread of the electron
distribution (cold beam approximation).

8.2.1 Dielectric Function

The dielectric function for this system contains the susceptibilities of stationary ions
and beam electrons

ε(ω, k) = 1 + χi + χe = 1 −
ω2

pi

ω2 −
ω2

pe

(ω − kv0)2 . (8.21)

Here, the ion contribution is determined by the ion plasma frequency ωpi, which
accounts for the higher ion mass. Obviously, the mathematical structure of the prob-
lem is similar to the beam-plasma instability in (8.3) when we recognize that, for
equal electron and ion density, ω2

pi/ω
2
pe = me/mi is a small quantity. Different from

the beam-plasma system, it is now the ion term that represents a small perturbation
of the streaming electrons. Therefore, we can expect that the unstable waves have
frequencies that are small compared to the electron plasma frequency. These low-
frequency ion fluctuations couple with the Doppler-shifted electron plasma oscilla-
tions in the beam.

The dispersion branches for the Buneman instability are shown in Fig. 8.7. The
instability is generated by the coupling of the slow beam mode ω4, which is a neg-
ative energy wave, to the ion plasma fluctuations near ωpi, resulting in the unstable
branch ω1,2.
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These waves are convectively unstable: growth as wave propagates at V0
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Summary
• E-Beam Plasma is unstable when kV0 ~ ωp 

• “Slow” beam mode is a “negative energy” wave 

• Electric field energy increases as unstable wave grows 

• Instabilities result from a source of energy and when a wave, or displacement, 
releases the source of energy 

• NEXT LECTURE: ideal “macroinstability”, flute-interchange mode, and kink mode
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Levitated Dipole Experiment (LDX)

Laboratory Magnetospheres: Designed for Maximum 
Flux Tube Expansion

1.8 m
2 m

3.6 m

Ring Trap 1 (RT-1)

Flux Tube Expansion:
δV(out)/δV(in) = 100

Flux Tube Expansion:
δV(out)/δV(in) = 40

V =

Z
dl

B
/ L

4

V =

Z
dl

B
/ L

4

V ⇠ L
4

results in hni ⇠
1

L4
, hT i ⇠

1

L8/3
, P ⇠

1

L20/3
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