Lecture 8: Plasma Physics 1
 APPH E6101x
 Columbia University

Last Lecture (online)

- Moments of the distribution function
- Fluid equations ("two fluid")
- The "closure problem"
- MHD equations ("single fluid")

Outline

- Homework \#4: Modeling Collisions and the Rosenbluth Potentials
- Force balance (equilibrium) in a magnetized plasma
- Z-pinch
- θ-pinch
- Screw-pinch (straight tokamak)
- Grad-Shafranov Equation
- Conservation principles in magnetized plasma ("frozen-in" and conservation of particles/flux tubes)

Modeling Collisions

$$
\frac{\partial f_{s}}{\partial t}+\mathbf{v} \cdot \frac{\partial f_{s}}{\partial \mathbf{r}}+\frac{e_{s}}{m_{s}}(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \cdot \frac{\partial f_{s}}{\partial \mathbf{v}}=C_{s}(f),
$$

- "Weakly ionized plasma" collisions with neutrals
- Fully ionized plasma: Coulomb collisions
"Simple" Fixed- σ Model for Weakly Ionized Plasma

$$
\begin{aligned}
& \iint d^{3} v C_{s}(f)=0 \\
& \left.\iiint d^{3} \cup \bar{v} C_{S}(f)=-\bar{v} N_{d} / \xi_{0 n} \quad\left(1 F<f_{0} \bar{v}\right)=0\right)
\end{aligned}
$$

L cochisionte DRAg
THEN

$$
n \frac{\partial \bar{V}}{\partial t}=-\frac{e}{m} n \bar{E}-\frac{e}{m} m \bar{V} \times \bar{B}-\bar{V} n_{\cdot} / \tau_{\text {con }}
$$

Modeling Collisions in Fully Ionized Plasma

Rutherford scattering cross-section,

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{1}{4}\left(\frac{e_{s} e_{s^{\prime}}}{4 \pi \epsilon_{0} \mu_{s s^{\prime}} u_{s s^{\prime}}^{2}}\right)^{2} \frac{1}{\sin ^{4}(\chi / 2)} \tag{3.70}
\end{equation*}
$$

(Rutherford 1911). It is immediately apparent, from the previous formula, that twoparticle Coulomb collisions are dominated by small-angle (i.e., small χ) scattering events.

Figure 3.1 A two-body Coulomb collision.

Modeling Collisions in Fully Ionized Plasma

CURRENTS DRIVEN BY ELECTRON
 CYCLOTRON WAVES

C.F.F. KARNEY, N.J. FISCH

Plasma Physics Laboratory,
Princeton University,
Princeton, New Jersey,
United States of America

ABSTRACT. Certain aspects of the generation of steady-state currents by electron cyclotron waves are explored. A numerical solution of the Fokker-Planck equation is used to verify the theory of Fisch and Boozer and to extend their results into the non-linear regime. Relativistic effects on the current generated are discussed. Applications to steady-state tokamak reactors are considered.

FIG.5. Steady-state distribution for $\mathrm{D}=0.25, \mathrm{w}_{1}=4$, and $\mathrm{w}_{2}=5$ (cyclotron damping).

Electron-cyclotron heating in a pulsed mirror experiment

M. E. Maue Center and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 5 December 1983; accepted 6 August 1984)
Experimental measurements of electron-cyclotron resonance heating (ECRH) of a highly ionized plasma in mirror geometry is compared to a two-dimensional, time-dependent, Fokker-Planck simulation. Measurements of the absorption strength of the electrons and of the energy confinement of the ions helped to specify the parameters of the code. The electron energy distribution is measured with an end-loss analyzer and a target x -ray detector. These characterize a non-Maxwellian distribution consisting of "passing" ($10 \mathrm{eV}<T_{e, p}<30 \mathrm{eV}$), "warm" (50 $\mathrm{eV}<T_{e, w}<300 \mathrm{eV}$), and "hot" ($1.2 \mathrm{keV}<T_{e, h}<4.0 \mathrm{keV}$) electron populations. The temperature and fractional densities of the warm and hot populations depend on the absorbed power and total density. A similar distribution is calculated with the simulation program that reproduces the end loss and x -ray signals. Both the experimental measurements and the simulation are described.

FIG. 9. An example of the development of the electron velocity distribution during and after ECRH. Shown are four times: (a) at the start of the ECRH, (b) after $5.0 \mu \mathrm{sec}$, (c) at the end of the $15 \mu \mathrm{sec}$ rf pulse, and (d) $5.0 \mu \mathrm{sec}$ after the ECRH was turned off.
https://doi.org/10.1063/1.864605

Modeling Collisions in Fully Ionized Plasma

$$
\begin{array}{r}
C_{s s^{\prime}}=\iiint u_{s s^{\prime}} \frac{d \sigma}{d \Omega}\left(f_{s}^{\prime} f_{s^{\prime}}^{\prime}-f_{s} f_{s^{\prime}}\right) d^{3} \mathbf{v}_{s^{\prime}} d \Omega \\
u_{s s^{\prime}}=\left|\mathbf{v}_{s}-\mathbf{v}_{s^{\prime}}\right|
\end{array}
$$

$$
\begin{array}{cc}
\mathbf{v}_{s}^{\prime}=\mathbf{v}_{s}+\frac{\mu_{s s^{\prime}}}{m_{s}} \mathbf{g}_{s s^{\prime}}, & \mathbf{g}_{s s^{\prime}}=\mathbf{u}_{s s^{\prime}}^{\prime}-\mathbf{u}_{s s^{\prime}} \\
f_{s}\left(\mathbf{v}_{s}^{\prime}\right) \simeq f_{s}\left(\mathbf{v}_{s}\right)+\frac{\mu_{s s^{\prime}}}{m_{s}} \mathbf{g}_{s s^{\prime}} \cdot \frac{\partial f_{s}\left(\mathbf{v}_{s}\right)}{\partial \mathbf{v}_{s}}+\frac{1}{2} \frac{\mu_{s s^{\prime}}^{2}}{m_{s}^{2}} \mathbf{g}_{s s^{\prime}} \mathbf{g}_{s s^{\prime}}: \frac{\partial^{2} f_{s}\left(\mathbf{v}_{s}\right)}{\partial \mathbf{v}_{s} \partial \mathbf{v}_{s}}
\end{array}
$$

Modeling Collisions in Fully Ionized Plasma

$$
C_{s s^{\prime}}=\iiint u_{s s^{\prime}} \frac{d \sigma}{d \Omega}\left(f_{s}^{\prime} f_{s^{\prime}}^{\prime}-f_{s} f_{s^{\prime}}\right) d^{3} \mathbf{v}_{s^{\prime}} d \Omega
$$

$$
\begin{array}{rlr}
f_{s}^{\prime} f_{s^{\prime}}^{\prime}-f_{s} f_{s^{\prime}} & \simeq \mu_{s s^{\prime}} \mathbf{g}_{s s^{\prime}} \cdot\left(\frac{\partial f_{s}}{\partial \mathbf{v}_{s}} \frac{f_{s^{\prime}}}{m_{s}}-\frac{f_{s}}{m_{s^{\prime}}} \frac{\partial f_{s^{\prime}}}{\partial \mathbf{v}_{s^{\prime}}}\right) \quad \mathbf{g}_{s s^{\prime}}=\mathbf{u}_{s s^{\prime}}^{\prime}-\mathbf{u}_{s s^{\prime}} \\
& +\frac{1}{2} \mu_{s s^{\prime}}^{2} \mathbf{g}_{s s^{\prime}} \mathbf{g}_{s s^{\prime}}:\left(\frac{\partial^{2} f_{s}}{\partial \mathbf{v}_{s} \partial \mathbf{v}_{s}} \frac{f_{s^{\prime}}}{m_{s}^{2}}+\frac{f_{s}}{m_{s^{\prime}}^{2}} \frac{\partial^{2} f_{s^{\prime}}}{\partial \mathbf{v}_{s^{\prime}} \partial \mathbf{v}_{s^{\prime}}}-\frac{2}{m_{s} m_{s^{\prime}}} \frac{\partial f_{s}}{\partial \mathbf{v}_{s}} \frac{\partial f_{s^{\prime}}}{\partial \mathbf{v}_{s^{\prime}}}\right)
\end{array}
$$

Modeling Collisions in Fully Ionized Plasma

$$
\begin{align*}
C_{s s^{\prime}} & \simeq \frac{1}{4}\left(\frac{e_{s} e_{s^{\prime}}}{4 \pi \epsilon_{0} \mu_{s s^{\prime}}}\right)^{2} \\
& \times \iint\left[\mu_{s s^{\prime}} \mathbf{g}_{s s^{\prime}} \cdot \mathbf{J}_{s s^{\prime}}+\frac{1}{2} \mu_{s s^{\prime}}^{2} \mathbf{g}_{s s^{\prime}} \mathbf{g}_{s s^{\prime}}:\left(\frac{1}{m_{s}} \frac{\partial}{\partial \mathbf{v}_{s}}-\frac{1}{m_{s^{\prime}}} \frac{\partial}{\partial \mathbf{v}_{s^{\prime}}}\right) \mathbf{J}_{s s^{\prime}}\right] \frac{d^{3} \mathbf{v}_{s^{\prime}} d \Omega}{u_{s s^{\prime}}^{3} \sin ^{4}(\chi / 2)} \tag{3.78}
\end{align*}
$$

where

$$
\begin{equation*}
\mathbf{J}_{s s^{\prime}}=\frac{\partial f_{s}}{\partial \mathbf{v}_{s}} \frac{f_{s^{\prime}}}{m_{s}}-\frac{f_{s}}{m_{s^{\prime}}} \frac{\partial f_{s^{\prime}}}{\partial \mathbf{v}_{s^{\prime}}} . \tag{3.79}
\end{equation*}
$$

$$
\mathbf{g}_{s s^{\prime}}=\mathbf{u}_{s s^{\prime}}^{\prime}-\mathbf{u}_{s s^{\prime}}
$$

Modeling Collisions in Fully Ionized Plasma

Landau Collision Operator

Collisions create a "flux" in

> velocity-space
> $C_{s s^{\prime}}=-\frac{1}{m_{s}} \frac{\partial}{\partial \mathbf{v}_{s}} \cdot \mathbf{A}_{s s^{\prime}}$,
$\mathbf{A}_{s s^{\prime}}=\mathbf{B}_{s s^{\prime}} f_{s}-\mathbf{D}_{s s^{\prime}} \cdot \frac{\partial f_{s}}{\partial \mathbf{v}_{s}}$,

$$
\begin{aligned}
& \mathbf{B}_{s s^{\prime}}=\frac{\gamma_{s s^{\prime}}}{m_{s^{\prime}}} \int \mathbf{w}_{s s^{\prime}} \cdot \frac{\partial f_{s^{\prime}}}{\partial \mathbf{v}_{s^{\prime}}} d^{3} \mathbf{v}_{s^{\prime}} \\
& \mathbf{D}_{s s^{\prime}}=\frac{\gamma_{s s^{\prime}}}{m_{s}} \int \mathbf{w}_{s s^{\prime}} f_{s^{\prime}} d^{3} \mathbf{v}_{s^{\prime}}
\end{aligned}
$$

"Drag"
"Diffusion"

Rosenbluth Potentials

$$
\begin{gathered}
\mathbf{B}_{s s^{\prime}}=\frac{2 \gamma_{s s^{\prime}}}{m_{s^{\prime}}} \frac{\partial H_{s^{\prime}}}{\partial \mathbf{v}_{s}}, \quad G_{s^{\prime}}\left(\mathbf{v}_{s}\right)=\int u_{s s^{\prime}} f_{s^{\prime}} d^{3} \mathbf{v}_{s^{\prime}}, \\
\mathbf{D}_{s s^{\prime}}=\frac{\gamma_{s s^{\prime}}}{m_{s}} \frac{\partial^{2} G_{s^{\prime}}}{\partial \mathbf{v}_{s} \partial \mathbf{v}_{s}} . H_{s^{\prime}}\left(\mathbf{v}_{s}\right)=\int u_{s s^{\prime}}^{-1} f_{s^{\prime}} d^{3} \mathbf{v}_{s^{\prime}} . \\
\nabla_{v}^{2} H_{s^{\prime}}=-4 \pi f_{s^{\prime}}(\mathbf{v}), \\
\nabla_{v}^{2} G_{s^{\prime}}=2 H_{s^{\prime}}(\mathbf{v}),
\end{gathered}
$$

Rosenbluth Potentials

APPENDIX: NUMERICAL TECHNIQUES

Here we describe with more detail the numerical technique used to solve the two-dimensional partial equation [Eq. (32)] given by

$$
\begin{equation*}
\frac{\partial F}{\partial t}=S+\frac{\Delta F}{\tau_{B}}-\frac{1}{v^{2}} \frac{\partial}{\partial v} v^{2} \Gamma_{v}-\frac{1}{v \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \Gamma_{\theta} \tag{A1}
\end{equation*}
$$

The rf currents are given by Eqs. (17), (18), (29), and (30), or

$$
\begin{align*}
& \Gamma_{v}=|\cos \theta|\left(\Gamma_{E} / L\right), \\
& \Gamma_{\theta}=\frac{B}{\sin \theta}\left(\frac{1}{R_{\mathrm{res}}}-\sin ^{2} \theta\right) \frac{\Gamma_{E}}{L} \tag{A2}
\end{align*}
$$

For the collisional currents, the form used by Cutter et al. ${ }^{20}$ is used with

$$
\begin{align*}
\Gamma_{v}= & \Gamma_{e \alpha}\left(1-\frac{M_{e \alpha}}{m_{e}}\right) F \frac{\partial H}{\partial v}-\frac{\Gamma_{e \alpha}}{2} \\
& \times\left[\frac{\partial^{2} G}{\partial v^{2}} \frac{\partial F}{\partial v}+\frac{1}{v^{2}}\left(\frac{\partial^{2} G}{\partial v \partial \theta}-\frac{\partial G}{\partial v \partial \theta}\right) \frac{\partial F}{\partial \theta}\right], \tag{A3}
\end{align*}
$$

$$
\begin{aligned}
\Gamma_{\theta}= & \Gamma_{e \alpha}\left(1-\frac{M_{e \alpha}}{m_{e}}\right) F \frac{1}{v} \frac{\partial H}{\partial \theta}-\frac{\Gamma_{e \alpha}}{2} \\
& \times\left[\frac{1}{v^{2}}\left(\frac{1}{v} \frac{\partial^{2} G}{\partial \theta^{2}}+\frac{\partial G}{\partial v}\right) \frac{\partial F}{\partial \theta}-\frac{1}{v} \frac{\partial^{2} G}{\partial v \partial \theta} \frac{\partial F}{\partial v}\right],
\end{aligned}
$$

where $\Gamma_{e \alpha}=4 \pi e^{2} e_{\alpha}^{2} \lambda_{e \alpha} / m_{e}^{2}$. Here H and G are the Rosenbluth potentials which are approximated by a truncated expansion of spherical harmonics. ${ }^{20}$ The first seven, even poly-

Outline

- Homework \#4: Modeling Collisions and the Rosenbluth Potentials
- Force balance (equilibrium) in a magnetized plasma
- Z-pinch
- θ-pinch
- Screw-pinch (straight tokamak)
- Grad-Shafranov Equation
- Conservation principles in magnetized plasma ("frozen-in" and conservation of particles/flux tubes)

$$
\begin{gathered}
\text { MHD } \\
\frac{\partial n}{\partial t}+\nabla \cdot(n \mathbf{u})=0
\end{gathered}
$$

$$
\rho_{\mathrm{m}} \frac{\partial \mathbf{v}_{\mathrm{m}}}{\partial t}=\mathbf{j} \times \mathbf{B}-\nabla p+\rho_{\mathrm{m}} \mathbf{g}
$$

$$
\mathbf{E}+\mathbf{v}_{\mathrm{m}} \times \mathbf{B}=\eta \mathbf{j}+\frac{1}{n e}\left(\mathbf{j} \times \mathbf{B}-\nabla p_{\mathrm{e}}\right)
$$

plus magnetostatics

Statics

$$
\begin{gathered}
\nabla \times \mathbf{B}=\mu_{0} \mathbf{j} \\
0=\mathbf{j} \times \mathbf{B}-\nabla p
\end{gathered}
$$

(12) $\nabla(\mathbf{A} \cdot \mathbf{B})=\mathbf{A} \times(\nabla \times \mathbf{B})+\mathbf{B} \times(\nabla \times \mathbf{A})+(\mathbf{A} \cdot \nabla) \mathbf{B}+(\mathbf{B} \cdot \nabla) \mathbf{A}$

$$
\bar{\nabla} p=\bar{J} \times \bar{B}
$$

$$
=\frac{1}{\mu_{0}}(-\bar{B} \times(\nabla \times B))
$$

$$
=\frac{1}{\mu_{0}}\left(-\nabla\left(B^{2} / 2\right)+(\bar{B} \cdot \nabla) \bar{B}\right)
$$

Вut $\left.(\bar{B} \cdot \bar{B}) \bar{B}=\bar{B} \cdot \nabla(\bar{b} B)=B^{2} \bar{K}+\hat{b}(\bar{B} \cdot D) / \vec{B}\right)$

$$
F=\vec{b} \cdot \nabla \vec{b}
$$

Statics

$$
\nabla \times \mathbf{B}=\mu_{0} \mathbf{j}
$$

$$
0=\mathbf{j} \times \mathbf{B}-\nabla p
$$

(Theta) θ-Pinch

(Theta) θ-Pinch

$$
\begin{aligned}
\vec{B} & =B(n) \hat{z} \\
\bar{J} & =\hat{\theta} J(n) \\
\hat{b} \cdot \bar{\nabla} \hat{b} & =\hat{z} \cdot \bar{\nabla} \hat{z}=0
\end{aligned}
$$

no curvature
STRAIGHT B-LIMES
(Theta) θ-Pinch

$$
\nabla\left(P+\frac{B^{2}}{2 m_{0}}\right) \approx 0
$$

$$
J \times B=\nabla P
$$

$$
J=\frac{B \times \nabla P}{B^{2}}=\frac{D \operatorname{AmAnNaC}}{E}
$$

$$
J_{\theta}=\frac{1}{B} \frac{\partial P}{\partial 1}
$$

Fusion power. No magnets required.
$\left.\nabla_{+}\left(P_{+}+\frac{Q^{2}}{2 a}\right)=\frac{R^{2}}{R_{2}^{2}}\right)^{2}$ Z-Pinch

$$
\begin{aligned}
& \bar{J}=\hat{z} J_{z}(n) \\
& \bar{B}=\hat{\theta} \quad B_{\theta}(n)
\end{aligned}
$$

Constant curvient Density ExampL

$$
\begin{aligned}
& I_{p}=\pi a^{2} J_{0} \\
& B^{\psi}=\frac{\mu_{0} I_{p}}{2 \pi a}=\text { FiELD AT EAgl }^{2 \pi}
\end{aligned}
$$

$$
\nabla_{1}\left(p+\frac{B^{2}}{2 \mu_{0}}\right)=\frac{B^{2}}{\mu_{0}} E
$$

Z-Pinch

$$
\begin{aligned}
& B_{\sigma}(n)=\frac{1}{2 \pi_{n}} \int_{0}^{1} 2 \pi_{n}{ }^{\prime} \mu_{0} J_{0} d_{n}{ }^{\prime} \\
& =\frac{1}{2} \mu_{0} J_{0}=B^{*}\left(\frac{1}{a}\right) \\
& \bar{J} \times \bar{B}=\nabla p \Rightarrow J_{0} B^{*}\left(\frac{\eta}{\omega}\right)=\frac{2 p}{21} \\
& P(n)+\frac{B^{2}}{2 m_{0}}=\frac{B^{x^{2}}}{2 \mu_{0}}\left(2-\frac{n^{2}}{a^{2}}\right) \\
& \frac{B^{2}}{\mu_{0}} K^{-}=-\frac{1}{1} \frac{B^{x^{2}}}{\mu_{0}}\left(\frac{n^{2}}{a^{2}}\right)
\end{aligned}
$$

"Screw-Pinch"
(a.k.a. "Straight Tokamak")

$$
\begin{aligned}
& \bar{J}=\bar{J}_{z}(n)+\bar{J}_{\theta}(n) \\
& \bar{B}=\bar{B}_{7}(n)+\bar{D}_{\sigma}(n)
\end{aligned}
$$

"Screw-Pinch"
(a.k.a. "Straight Tokamak" or "Straight RFP")

(a.k.a. "Straight Tokamak")

$$
\begin{aligned}
& J_{z}=J_{0} \quad B_{\theta}=B_{\theta}^{*}\left(\frac{7}{a}\right) \\
& \frac{B^{2} \bar{K}=-\frac{\hat{\imath}}{1} \frac{B_{\theta}^{2}}{\mu_{0}}=-\frac{\hat{\imath}}{1} \frac{B_{z}^{2}}{\mu_{\theta}}\left(\frac{7}{a}\right)^{2}}{\lambda \cdot(\bar{J} \times \bar{B})=J_{\theta} B_{z}-J_{z} B_{\theta}=\frac{2 p}{2 \eta}} \\
& \nabla\left(P+\frac{B_{z}^{2}}{2 a_{0}}+\frac{B_{\sigma}^{2}}{2 \mu_{20}}\right)=\frac{B_{0}^{2}}{\mu_{0}} \bar{K}=-\frac{B^{0}}{n \mu_{j}}\left(\frac{1}{a}\right)^{2}
\end{aligned}
$$

"Screw-Pinch"
(a.k.a. "Straight Tokamak") $\nabla\left(p+\frac{B_{s}^{2}}{2 a_{0}}+\frac{D_{x}^{2}}{2 \alpha_{0}}\right)=\frac{D_{0}^{2}}{\mu_{0}} \bar{K}=-\frac{B^{2}}{\mu_{0}}\left(\frac{1}{\mu_{0}}\right)^{2}$

LET $P(n)=P_{0}\left(1-\frac{n^{2}}{a^{2}}\right)$

$$
\begin{aligned}
& \bar{J}=\bar{J}_{z}(n)+\bar{J}_{\theta}(n) \\
& \overline{\bar{B}}=\overline{\bar{B}}_{7}(n)+\bar{D}_{\sigma}(n) \\
& \frac{B_{z}^{2}}{2 \mu_{0}}=\frac{B_{z}^{z^{2}}}{2 \mu_{0}}-\frac{\left(\Delta B_{z}\right)^{2}}{2 \mu_{0}}\left(\frac{1}{a}\right)^{2} \\
& \frac{B_{0}^{2}}{2 a_{0}}=\frac{B_{0}^{*}}{2 a_{0}}\left(\frac{7}{a}\right)^{2} \\
& \frac{2}{\partial 1}\left(\left(\frac{n^{2}}{a v}\right)\left(-P_{b}-\frac{\left(\Delta B_{7}\right)^{2}}{2 m_{0}}+\frac{B_{0}^{2}}{\partial{ }^{2}}\right)\right)=-\frac{D_{0}^{D_{0}^{2}}}{n A_{0}}\left(\frac{1}{a}\right)^{2} \\
& 2\left(t P_{0}+\frac{\left(\Delta D_{7}\right)^{2}}{2 \mu_{0}}-\frac{B_{\theta}^{y^{2}}}{2 \mu_{0}}\right)=\frac{B_{0}^{\gamma^{2}}}{\mu_{0}}
\end{aligned}
$$

"Screw-Pinch"
(a.k.a. "Straight Tokamak") $2\left(P_{0}+\frac{\left(\Delta D_{7}\right)^{2}}{2 \mu_{0}}-\frac{B_{0}^{2}}{2 \mu_{0}}\right)=\frac{B_{0}^{* 2}}{\mu_{0}}$

$$
\begin{aligned}
& \beta_{p}+\mu-1=0 \\
& B_{p}=\frac{P_{0}}{B_{o}^{* 2} / 2 \mu_{0}} \\
& \mu=\frac{\left(\Delta B_{z}\right)^{2}}{B_{0}^{* 2}}= \begin{cases}>1 & P_{\text {ARAMASNEDC }} \\
C 1 & \text { DIAMAGNETLC }\end{cases}
\end{aligned}
$$

$$
\bar{J}=\bar{J}_{z}(n)+\bar{J}_{\theta}(n)
$$

$$
\bar{B}=\bar{B}_{7}(n)+\bar{D}_{\sigma}(n)
$$

$$
B_{p}=1 \Rightarrow \Delta B_{7}=0 \quad B_{7}=\text { consinnt }
$$

Review paper

PLASMA EQUILIBRIUM IN A TOKAMAK

V.S. MUKHOVATOV, V.D. SHAFRANOV

I.V. Kurchatov Institute of Atomic Energy, Moscow, Union of Soviet Socialist Republics

ABSTRACT. The paper summarizes the basic information on the equilibrium of a toroidal plasma column in systems of the Tokamak type. It considers the methods of maintaining a plasma in equilibrium with the help of a conducting casing, an external maintaining field and the iron core of a transformer. Attention is paid to the role of the inhomogeneity of the maintaining field. It is shown in particular how the shape of the column cross-section depends on the curvature of the lines of force of the maintaining field. For the case (which has practical importance) weak asymmetry of the field distribution in the transverse cross-section, this paper describes a uniform method of consideration, which takes into account the influence of different factors on the equilibrium position of the column. This method is used for calculating plasma equilibrium in a Tokamak model with a conducting casing. Account is here taken of the effect of gaps in the casing and of finite electrical conductivity. Some cases of plasma equilibrium which are outside the standard Tokamak scheme are also considered, such as equilibrium in a conducting shell having the shape of a racetrack, equilibrium where the whole current is transferred by relativistic runaway electrons and equilibrium at high plasma pressure $B_{1} \sim R / a$.

FIG.4. Diagram of the combination of the proper magnetic field of a ring current with transverse balancing magnetic field.

[^0]
Numerical Determination of Axisymmetric Toroidal

 Magnetohydrodynamic EquilibriaJ. L. Johnson,* H. E. Dalhed, J. M. Greene, R. C. Grimm, Y. Y. Hsieh,
S. C. Jardin, J. Manickam, M. Okabayashi, R. G. Storer, ${ }^{\dagger}$ A. M. M. Todd,
D. E. Voss, and K. E. Weimer

Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08544
Received July 13, 1978; revised October 20, 1978

Numerical schemes for the determination of stationary axisymmetric toroidal equilibria appropriate for modeling real experimental devices are given. Iterative schemes are used to solve the elliptic nonlinear partial differential equation for the poloidal flux function Ψ. The principal emphasis is on solving the free boundary (plasma-vacuum interface) equilibrium problem where external current-carrying toroidal coils support the plasma column, but fixed boundary (e.g., conducting shell) cases are also included. The toroidal current distribution is given by specifying the pressure and either the poloidal current or the safety factor profiles as functions of Ψ. Examples of the application of the codes to tokamak design at PPPL are given.

Fig. 1. Computational domain \mathscr{R}.

Solution Procedure with $p(\Psi)$ and $g(\Psi)$ Specified

$$
\begin{aligned}
& \nabla p=\mathbf{J} \times \mathbf{B}, \\
& \mathbf{J}=\boldsymbol{\nabla} \times \mathbf{B}, \quad \mathbf{B}=\frac{1}{2 \pi} \nabla \phi \times \nabla \Psi+R B_{0} g \nabla \phi \\
& \nabla \cdot \mathbf{B}=0 .
\end{aligned}
$$

$$
X \frac{\partial}{\partial X} \frac{1}{X} \frac{\partial \Psi}{\partial X}+\frac{\partial^{2} \Psi}{\partial Z^{2}}=2 \pi X J_{\phi},
$$

$$
J_{\phi}=-2 \pi\left(X \frac{d p}{d \Psi}+\frac{R^{2} B_{0}{ }^{2}}{2 X} \frac{d g^{2}}{d \Psi}\right) .
$$

Grad-Shafranov Equation

$$
\begin{aligned}
& \nabla \times \mathbf{B}=\mu_{0} \mathbf{j} \\
& 0=\mathbf{j} \times \mathbf{B}-\nabla p \\
& \text { - } \bar{B}=\bar{\nabla} \varphi \times \bar{\nabla} \psi+G \bar{\nabla} \varphi \\
& \text { - Cycindrical symmetry } \bar{\nabla} \varphi=\frac{\hat{\varphi}}{R} \quad \bar{\nabla} \varphi \cdot \bar{\nabla}(a \sim+\pi+\cdots T)=0 \\
& \text { - } P(\psi), 6(\psi) \quad 6=\text { Toronone fluX } \bar{B}_{\varphi}=\frac{6}{R} \hat{\varphi} \\
& \text { - } \bar{B} \cdot \bar{B}=(\nabla \varphi \times \nabla \psi) \cdot(\nabla \varphi \times \nabla \psi)+\sigma^{2}\left(\left.\nabla \varphi\right|^{2}\right. \\
& =|\nabla \varphi|^{2}\left(|\nabla \psi|^{2}+\sigma^{2}\right)
\end{aligned}
$$

Grad-Shafranov Equation

$$
\begin{gathered}
\nabla \times \mathbf{B}=\mu_{0} \mathbf{j} \\
0=\mathbf{j} \times \mathbf{B}-\nabla p
\end{gathered}
$$

-

$$
\begin{aligned}
& \mu_{0} \bar{J}=\forall \times \bar{B} \\
& =\nabla \times(\nabla \varphi \times \nabla \psi)+\nabla \times(6 \nabla \varphi) \\
& =\bar{\nabla} \varphi(\nabla \cdot \nabla \psi)-\bar{\nabla} \psi(\nabla \cdot \bar{\nabla} \varphi)+(\nabla \psi \cdot \bar{\nabla}) \bar{\nabla} \varphi \\
& -(\nabla \varphi \cdot \bar{\nabla}) \bar{\nabla} \psi+6 \nabla \times \nabla \varphi+\bar{\nabla} 6 \times \bar{\nabla} \varphi \\
& =\bar{\nabla} \varphi\left[\nabla^{2} \psi-\frac{1}{2 n} \frac{2 \psi}{21}\right]+\underbrace{\frac{26}{2 \psi} \bar{\nabla} \times \bar{\nabla} \varphi}_{\rho_{0} 0.0 x} \\
& \begin{array}{l}
\text { pociont withi- } \\
1 \text { curnent withe } \\
\text { flot sunfure }
\end{array} \\
& J_{\varphi}
\end{aligned}
$$

$$
\text { (10) } \nabla \times(\mathbf{A} \times \mathbf{B})=\mathbf{A}(\nabla \cdot \mathbf{B})-\mathbf{B}(\nabla \cdot \mathbf{A})+(\mathbf{B} \cdot \nabla) \mathbf{A}-(\mathbf{A} \cdot \nabla) \mathbf{B}
$$

Grad-Shafranov Equation

$$
\begin{gathered}
\nabla \times \mathbf{B}=\mu_{0} \mathbf{j} \\
0=\mathbf{j} \times \mathbf{B}-\nabla p
\end{gathered}
$$

$$
\begin{aligned}
& \overline{\nabla p}=\bar{J} \times \bar{B} \\
& \mu_{0} \bar{\nabla} \psi \cdot \overline{\nabla p}=\bar{\nabla} \psi \mu_{0} \cdot(\bar{J} \times \bar{B}) \\
& \mu_{0}|\nabla \psi|^{2} \frac{2 P}{2 \psi}=\mu_{0} \bar{J} \cdot(\bar{B} \times \nabla \psi) \\
& =\mu_{0} \bar{J} \cdot[-\nabla \psi \times(\nabla \varphi \times \nabla \psi) \\
& +6 \overline{\nabla \varphi} \times \nabla \psi] \\
& =-\mu_{0} J \varphi|\nabla \varphi||\nabla \psi|^{2}+\mu_{0} \sigma \bar{J} \cdot \nabla \varphi \times \nabla \psi \\
& =-\mu_{0} J_{\varphi} \left\lvert\, \nabla \varphi(\nabla \psi)^{2}+6 \frac{26}{2 \psi}(\nabla \psi \times \nabla \varphi) \cdot(\nabla \varphi \times \nabla \psi)\right. \\
& =-\mu_{0} J_{\varphi}|\nabla \varphi|(\nabla \psi)^{2}-6 \frac{\partial 6}{2 t}|\nabla \varphi|^{2}|\nabla \psi|^{2} \\
& \{\overbrace{\mu_{0} J_{\varphi}|\nabla \varphi|=-\mu_{0} \frac{2 D}{2 \varphi}-(\nabla \varphi)^{2} 6 \frac{26}{2 \varphi}}\} \quad\left(\nabla \varphi=\frac{1}{R}\right) \\
& \Delta^{*} \psi=-\mu_{0} R^{2} \frac{2 D}{2 \psi}-6 \frac{26}{2 \psi} \\
& \Delta^{*}=R \frac{2}{2 R}\left(\frac{1}{R} \frac{2 \psi}{\partial R}\right)+\frac{2^{2} \psi}{2 z^{2}}
\end{aligned}
$$

(1) $\mathbf{A} \cdot \mathbf{B} \times \mathbf{C}=\mathbf{A} \times \mathbf{B} \cdot \mathbf{C}=\mathbf{B} \cdot \mathbf{C} \times \mathbf{A}=\mathbf{B} \times \mathbf{C} \cdot \mathbf{A}=\mathbf{C} \cdot \overparen{\mathbf{A}} \times \mathbf{B}=\mathbf{C} \times \mathbf{A} \cdot \mathbf{B}$
(2) $\mathbf{A} \times(\mathbf{B} \times$
$\mathbf{C})=(\mathbf{C} \times \mathbf{B})$
$\mathbf{B}) \times \mathbf{A}=(\mathbf{A}$.
$\mathbf{C}) \mathbf{B}-(\mathbf{A} \cdot \mathbf{B}) \mathbf{C}$

JOURNAL OF COMPUTATONAL PHYSICS 32, 212-234 (1979)

Fig. 4. A typical PLT equilibrium with $\beta_{p}=0.23$ and $1.05<q<5.3$. The solid curve marks the position of the vacuum vessel. The pluses and minuses denote the noloidal field coils.

(b)

IG. 6. Typical PDX equilibria, showing that the plasma can be attac s or (b) the outside divertor coils. Here $\alpha=\beta=2$.

Next Lecture

- More Piel / Chapter 5: "Fluid" Equations
- "Frozen-in" flux condition
- Alfvén wave
- Monday, October 9: Homework \#5

[^0]: FIG.1. Distribution of a toroidal magnetic field.

