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Last Lecture (online)

• Moments of the distribution function

• Fluid equations (“two fluid”)

• The “closure problem”

• MHD equations (“single fluid”)
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Outline
• Homework #4: Modeling Collisions and the Rosenbluth Potentials

• Force balance (equilibrium) in a magnetized plasma

• Z-pinch

• θ-pinch

• Screw-pinch (straight tokamak)

• Grad-Shafranov Equation

• Conservation principles in magnetized plasma (“frozen-in” and conservation of 
particles/flux tubes) 
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Modeling Collisions

• “Weakly ionized plasma” collisions with neutrals

• Fully ionized plasma: Coulomb collisions

Collisions ⌅ 45

It is convenient to write
*
as ·
@Fs

@v

+
= hasi ·

@ fs

@v
�Cs( f ), (3.8)

where Cs is an operator that accounts for the correlations. Because the most impor-
tant correlations result from close encounters between particles, Cs is known as the
collision operator (for species s). It is not generally a linear operator, and usually
involves the distribution functions of both colliding species (the subscript in the ar-
gument of Cs is omitted for this reason). Hence, the ensemble-averaged version of
Equation (3.4) is written
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@ fs
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= Cs( f ), (3.9)

where E and B are now understood to be the smooth, ensemble-averaged electro-
magnetic fields. Of course, in a weakly coupled plasma, the dominant collisions are
two-particle Coulomb collisions. Equation (3.9) is generally known as the kinetic
equation.

3.3 TWO-BODY ELASTIC COLLISIONS
Before specializing to two-body Coulomb collisions, it is convenient to develop a
general theory of two-body elastic collisions. Consider an elastic collision between
a species-s particle and a species-s0 particle. Let the mass and instantaneous velocity
of the former particle be ms and vs, respectively. Likewise, let the mass and instan-
taneous velocity of the latter particle be ms0 and vs0 , respectively. The velocity of the
center of mass is given by

Uss0 =
ms vs + ms0 vs0

ms + ms0
. (3.10)

Moreover, conservation of momentum implies that Uss0 is a constant of the motion.
The relative velocity is defined

uss0 = vs � vs0 . (3.11)

We can express vs and vs0 in terms of Uss0 and uss0 as follows:

vs = Uss0 +
µss0

ms
uss0 , (3.12)

vs0 = Uss0 �
µss0

ms0
uss0 . (3.13)

Here,
µss0 =

ms ms0

ms + ms0
(3.14)

is the reduced mass. The total kinetic energy of the system is written
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“Simple” Fixed-σ Model for Weakly Ionized Plasma

84 4 Stochastic Processes in a Plasma

Fig. 4.9 Cartoon of an
electron trajectory in a
homogeneous electric field.
The trajectory is interrupted
by elastic collisions with
neutral atoms

v

E
d

background gas.Most of the electron collisions are elastic. Therefore, wewill neglect
ionizing collisions in the calculation of friction forces. Because of the equal mass
of positive ions and atoms of the parent gas, the momentum exchange between the
heavy particles is very efficient. Besides elastic scattering, the process of charge
exchange plays an important role, in which a moving ion captures an electron and
leaves a slow ion behind. In the momentum balance this process is equivalent to a
head-on collision in a billiard game.

A cartoon of electron motion in a gas background is shown in Fig. 4.9. In the
collision between a light electron with a heavy atom the momentum transfer is small.
Rather, the incoming electrons experience a random redirection of their momentum.
The trajectory is a sequence of parabolic segments. Since we have no diagnostic to
follow the trajectories of individual electrons, we must be content with evaluating
the average motion of an ensemble of electrons.

The equation of motion for an individual electron can be written as

mev̇e = −eE +
∑

k

me!vkδ(t − tk) . (4.25)

Here me !vk is the momentum loss in the k-th collision. By averaging this equation
over many collisions we obtain the mean drift velocity 〈ve〉. Then, the sum on the
r.h.s. of (4.25) becomes me〈!ve〉τ−1

coll, which represents the average momentum loss
per unit time. τcoll is the mean free time between two collisions defined in (4.16).

The elastic scattering of electrons on atoms is almost isotropic [70] and will be
discussed within the model of hard-sphere collisions in Sect. 4.3.3.1. Therefore, on
average, the electron loses its mean momentum mev̄e and we can write the equation
of motion for an average electron

m ˙̄v = −eE − mv̄νm . (4.26)

This average electron now moves in −E-direction. The quantity νm = 1/τcoll is the
effective collision frequency formomentum transfer. Because of the one-dimensional
motion, the vector symbol was dropped. The solution of this equation of motion

v̄(t) = − eE
mνm

[
1 − e−νm t

]
+ v(0)e−νm t (4.27)
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Figure 3.1 A two-body Coulomb collision.

Here, zmax = 1/rmin, where rmin is the distance of closest approach. Now, by symme-
try, (dz/d✓)zmax = 0, so Equation (3.56) implies that

1 � b2 z2
max �

 
kss0

Ess0

!
zmax = 0. (3.59)

Combining Equations (3.56) and (3.58), we obtain
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, (3.60)

where ↵ = kss0/(Ess0 b), and
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max � ↵ ⇣max = 0. (3.61)

Integration (Spiegel, Liu, and Lipschutz 1999) yields
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. (3.62)

Hence, from Equation (3.57), we get
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which can be rearranged to give
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. (3.64)
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Note that the analysis in this section tacitly assumes that Coulomb collisions are
not significantly modified by any magnetic field that might pervade the plasma. This
assumption is justified provided that the particle gyroradii are all much larger than
the Debye length.

3.7 RUTHERFORD SCATTERING CROSS-SECTION
Consider a species-s particle, incident with relative velocity uss0 onto an ensemble of
species-s0 particles with number density ns0 . If ps(⌦) d⌦ is the probability per unit
time of the particle being scattered into the range of solid angle ⌦ to ⌦+ d⌦ then the
di↵erential scattering cross-section, d�/d⌦, is defined via (Reif 1965)

ps(⌦) d⌦ = ns0 uss0
d�
d⌦

d⌦. (3.65)

Assuming that the scattering is azimuthally symmetric (i.e., symmetric in �), we can
write d⌦ = 2⇡ sin � d�. Now, the probability per unit time of a collision having an
impact parameter in the range b to b + db is

ps(b) db = ns0 uss0 2⇡ b db. (3.66)

Furthermore, we can write

ps(⌦)
�����
d⌦
db

����� = ps(b), (3.67)

provided that � and b are related according to the two-particle scattering law, Equa-
tion (3.64). (The absolute value of d⌦/db is taken because � is a monotonically
decreasing function of b.) It follows that

d�
d⌦
=

2⇡ b
|d⌦/db|

. (3.68)

Equation (3.64) yields

d⌦
db
= 2⇡ sin �

d�
db
= �2⇡ sin �

 
4⇡ ✏0 µss0 u2

ss0

es es0

!
2 sin2(�/2). (3.69)

Finally, Equations (3.64), (3.68), and (3.69) can be combined to give the so-called
Rutherford scattering cross-section,

d�
d⌦
=

1
4

 
es es0

4⇡ ✏0 µss0 u2
ss0

!2 1
sin4(�/2)

(3.70)

(Rutherford 1911). It is immediately apparent, from the previous formula, that two-
particle Coulomb collisions are dominated by small-angle (i.e., small �) scattering
events.
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Modeling Collisions in Fully Ionized Plasma

KARNEY and FISCH

resonant region. The waves are, therefore, more
effective at accelerating the particles than waves which
interact with particles via the Landau resonance. The
greater perturbation in the cyclotron damping case
means first that more current is generated (for Fig.3,
J = 3 X 1CT3 for cyclotron damping and 6 X 1CT4 for
Landau damping). Since much of this current is
carried by relatively collisionless particles with high
perpendicular velocity, J/Pd is approximately twice
its value in the low-D limit. (For Wj = 4 and w2= 5,
J/Pd= 37 for D -• °o5 while J/Pd= 17 for D -* 0.) In fact,
the cyclotron-damped waves have caught up with the
Landau-damped waves which at low D were more
efficient in terms ofJ/Pd. (For Landau-damped waves
withwj =4 and w2=5, J/Pd= 37 for D-*°°and J/Pd=26
forD^O.)

The ease with which cyclotron-damped waves can
perturb f has one interesting consequence, namely
that the power dissipated by the wave does not neces-
sarily saturate as D is increased. (Pd did saturate for
the case shown in Fig.3 because of the effective cut-off
on D at u = 10.) Such a saturation does occur with
waves which are Landau-damped and results in the
damping rate becoming zero as D ->°°. With cyclotron-
damped waves, the behaviour of the damping rate as
D varies is a function of the Vj.-dependence of D. In
particular, even when D is large enough to greatly
distort f, the damping rate may be fairly close to the
linear damping rate.

Figure 4 shows J/Pd and Pd as functions of D for Wj= 4
and w2 = 5. As D is increased, J/Pd shows a steady rise
while Pd is very nearly proportional to D, showing the
constancy of the damping rate. This is so even though
the distribution at the highest value of D given in
Fig.4, D = 0.25, is far from a Maxwellian (see Fig.5).
For comparison, the lower-hybrid case is illustrated
in Fig.4 also. Note the strong saturation of Pd.

A corollary of the nearly linear behaviour of Pd
with D is that the damping of a particular component
of the wave spectrum is not greatly affected by the
neighbouring components. This is illustrated in Table I
where the cases of (wj, w2) = (4, 5), (5, 6), and (4, 6)
with D = 0.1 are compared. We see that J and Pd for
the (4,6) case are given to within 10% by the sums of
the (4, 5) and (5, 6) cases. On the other hand, the
discrepancy with lower hybrid waves is a factor of
about two.

The results presented in this section need to be
taken with some caution because when Drf is constant
(as in these computations), there is a possibility of a
runaway in the perpendicular direction since at high Vj.
the collisions are not able to hold the electrons back
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FIG. 4. J/Pd (a) and Pd (b) as functions of D for w, = 4 and
w2

= 5. Open circles denote cyclotron damping and closed
circles Landau damping.
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FIG.5. Steady-state distribution for D = 0.25, w1 = 4, and
w2= 5 (cyclotron damping).

effectively so that particles would be continuously
accelerated in vx, precluding the establishment of a
steady state. The presence of the numerical cut-off
of the waves at u = 10 would then dramatically alter
the results. In practice, however, the finite perpendi-
cular wavelength of the waves causes D to take a
Bessel function dependence [5] so that Drf~ 1/vj/or
high Vj.. (In the special case of linear polarization,
there is a cancellation which results in Drf ~ l/vx.)
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CURRENTS DRIVEN BY ELECTRON
CYCLOTRON WAVES
C.F.F. KARNEY, NJ . FISCH
Plasma Physics Laboratory,
Princeton University,
Princeton, New Jersey,
United States of America

ABSTRACT. Certain aspects of the generation of steady-state currents by electron cyclotron waves are
explored. A numerical solution of the Fokker-Planck equation is used to verify the theory of Fisch and
Boozer and to extend their results into the non-linear regime. Relativistic effects on the current generated are
discussed. Applications to steady-state tokamak reactors are considered.

1. INTRODUCTION

The generation of electric currents in a plasma by
means of electron cyclotron wave absorption appears
to be one of the more promising schemes of providing
a steady-state toroidal current in a tokamak [1]. These
waves can be employed to generate toroidal current
merely by heating selected electrons and, interestingly,
without directly injecting substantial toroidal
momentum into these electrons. The wave launching
structures are advantageously simple; since the wave
need not have high parallel (to B, the DC magnetic
field) momentum content, its parallel phase velocity
can be superluminous and, accordingly, no slow-wave
structure is necessary. Moreover, the utilization of the
high-frequency range (the wave frequency, co, is
comparable to £2e> the electron cyclotron frequency)
implies that the wave power density is also high. It
follows that free space waves of high power density
may be injected into the plasma through conveniently
small waveguide apertures in order to drive the
toroidal current.

The main problem in generating current by this
means is the power requirement, both in terms of the
magnitude of the re-cycled power in a tokamak reactor
and the capital costs of the equipment. Efficient
CW power sources for this range of frequencies are yet
to be developed. Assuming that these sources can be
developed, the current must still be generated with
minimal power dissipation for the scheme to be
economically feasible in a fusion reactor. This
minimization requires the absorption of the wave by
only the fastest electrons, which are the most collision-
less and hence retain their directed current longest. In
this respect, this scheme is similar to the alternative

technique of current generation by lower hybrid waves
[2], which also exploits, among other things, the rela-
tive infrequency with which the superthermal electrons
experience collisions. The present scheme, however,
may allow the wave to resonate even with relativistic
electrons [3] whereas the lower hybrid waves are
constrained by an accessibility condition that, depending
on the plasma j3 and temperature, allows resonance
only with somewhat slower electrons.

It is an object of the present paper to analyse, both
analytically and numerically, the mechanisms by which
the absorption of electron cyclotron waves leads to the
production of current. The paper is organized as
follows: In Section 2, we consider analytically the
wave absorption from the standpoint of linear theory
in a slab-model low-density plasma. This simplified
analysis nonetheless indicates the most promising
injection angle of the wave into the tokamak and
reasonably estimates the speed of the electrons that
absorb the wave. In Section 3, we numerically check
the formula given in Ref.[l ] for J/Pd, the current
generated per power dissipated, and we find close
verification of the theory. We then turn to other
effects that are likely to enter the problem in important
parameter regimes. In Section 4, we consider non-
linear effects, i.e. the effect that finite or even large
wave power has on the amount of current generated
and the wave damping rate. In Section 5, we assess
the implications of relativistic effects [3] that become
pertinent in reactor-grade plasmas. In Section 6, we
present a summary of our findings.

Throughout our discussion we shall be comparing
our observations with analytical and numerical treat-
ments of the closely related and more familiar problem
of current generation by lower hybrid waves [2, 4]

NUCLEAR FUSION, Vol.21, No.12 (1981) 1549

https://doi.org/10.1088/0029-5515/21/12/004

 30 Septem
ber 2023 14:48:02

 30 Septem
ber 2023 14:48:02

https://doi.org/10.1063/1.864605
7



Modeling Collisions in Fully Ionized Plasma

54 ⌅ Plasma Physics: An Introduction (2nd Edition)

3.8 LANDAU COLLISION OPERATOR
The fact that two-particle Coulomb collisions are dominated by small-angle scat-
tering events allows some simplification of the Boltzmann collision operator in a
plasma. According to Equations (3.26) and (3.70), the Boltzmann collision opera-
tor for two-body Coulomb collisions between species-s particles (with mass ms and
charge es) and species-s0 particles (with mass ms0 and charge es0 ) can be written

Css0 =

Z Z Z
uss0

d�
d⌦

( f 0s f 0s0 � fs fs0 ) d3vs0 d⌦, (3.71)

where
d�
d⌦
=

1
4

 
es es0

4⇡ ✏0 µss0 u2
ss0

!2 1
sin4(�/2)

. (3.72)

Here, uss0 is the relative velocity prior to a collision, and d⌦ = sin � d� d�, where �
is the angle of deflection, and � is an azimuthal angle that determines the orientation
of the plane in which a given two-body collision occurs. Recall that f 0s , f 0s0 , fs, and
fs0 are short-hand for fs(r, v0s, t), fs0 (r, v0s0 , t), fs(r, vs, t), and fs0 (r, vs0 , t), respectively.

The species-s and species-s0 particle velocities prior to the collision are vs and
vs0 , respectively, so that uss0 = vs�vs0 . Let us write the corresponding velocities after
the collision as (see Section 3.3)

v0s = vs +
µss0

ms
gss0 , (3.73)

v0s0 = vs0 �
µss0

ms0
gss0 . (3.74)

Here, gss0 = u0ss0 � uss0 is assumed to be small, which implies that the angle of
deflection is also small. Expanding f 0s ⌘ fs(r, v0s, t) to second order in gss0 , we obtain

fs(v0s) ' fs(vs) +
µss0

ms
gss0 ·

@ fs(vs)
@vs

+
1
2
µ2

ss0

m2
s

gss0gss0 :
@2 fs(vs)
@vs@vs

. (3.75)

Likewise, expanding f 0s0 ⌘ fs0 (r, v0s0 , t), we get

fs0 (v0s0 ) ' fs0 (vs) �
µss0

ms0
gss0 ·

@ fs0 (vs0 )
@vs0

+
1
2
µ2

ss0

m2
s0

gss0gss0 :
@2 fs0 (vs0 )
@vs0@vs0

. (3.76)

Note that, in writing the previous two equations, we have neglected the r and t de-
pendence of fs(r, v0s, t), et cetera, for ease of notation. Hence,

f 0s f 0s0 � fs fs0 ' µss0 gss0 ·
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2
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@ fs
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@ fs0

@vs0

!
.

(3.77)
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the collision as (see Section 3.3)
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Here, gss0 = u0ss0 � uss0 is assumed to be small, which implies that the angle of
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Note that, in writing the previous two equations, we have neglected the r and t de-
pendence of fs(r, v0s, t), et cetera, for ease of notation. Hence,
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Now, the kinetic energy is the same before and after an elastic collision. Hence, given
that Uss0 is constant, we deduce that the magnitude of the relative velocity, uss0 , is also
the same before and after such a collision. Thus, it is only the direction of the relative
velocity vector, rather than its length, that changes during an elastic collision.

3.4 BOLTZMANN COLLISION OPERATOR
Let �0(vs, vs0 ; v0s, v0s0 ) d3v0s d3v0s0 be the number of species-s particles per unit time,
per unit flux of species-s particles incident with velocity vs on a species-s0 particle of
velocity vs0 , that are scattered such that the species-s particles emerge in the velocity
range v0s to v0s+dv0s and the species-s0 particle emerges in the velocity range v0s0 to v0s0+
dv0s0 (Reif 1965). Assuming that the scattering process is reversible in time and space
(which is certainly the case for two-body Coulomb collisions), the corresponding
quantity for the inverse process must be equal to that for the forward process (Reif
1965). In other words,

�0(v0s, v0s0 ; vs, vs0 ) d3vs d3vs0 = �
0(vs, vs0 ; v0s, v0s0 ) d3v0s d3v0s0 . (3.16)

However, it is easily demonstrated from Equations (3.12) and (3.13) that
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The result d3uss0 = d3u0ss0 follows from the fact that the vectors uss0 and u0ss0 di↵er
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�0(v0s, v0s0 ; vs, vs0 ) = �0(vs, vs0 ; v0s, v0s0 ). (3.18)

The rate of decrease in the number of species-s particles located between
r and r + dr, and having velocities in the range vs to vs + dvs, due to scat-
tering of species-s particles by species-s0 particles is obtained by multiplying
�0(vs, vs0 ; v0s, v0s0 ) d3v0s d3v0s0 by the the relative flux, uss0 fs(r, vs, t) d3vs, of species-s
particles incident on a species-s0 particle, then multiplying by the number of species-
s0 particles, fs0 (r, vs0 , t) d3r d3vs0 , that can do the scattering, and, finally, summing
over all possible species-s initial velocities, and all possible species-s and species-s0
final velocities. In other words,

�

"
@ fs(r, vs, t)
@t

#

ss0
d3r d3vs =

Z
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v0s

Z
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[uss0 fs(r, vs, t) d3vs] [ fs0 (r, vs0 , t) d3r d3vs0 ]

⇥ [�0(vs, vs0 ; v0s, v0s0 ) d3v0s d3v0s0 ]. (3.19)

Here, uss0 = |vs�vs0 |. Moreover, fs(r, vs, t) and fs0 (r, vs0 , t) are the ensemble-averaged
distribution functions for species-s and species-s0 particles, respectively.

In writing the previous expression, we have assumed that the distribution func-
tions fs and fs0 are uncorrelated. This assumption is reasonable provided that the
mean-free-path is much longer than the e↵ective range of the inter-particle force.
(This follows because, before they encounter one another, two colliding particles

8
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3.8 LANDAU COLLISION OPERATOR
The fact that two-particle Coulomb collisions are dominated by small-angle scat-
tering events allows some simplification of the Boltzmann collision operator in a
plasma. According to Equations (3.26) and (3.70), the Boltzmann collision opera-
tor for two-body Coulomb collisions between species-s particles (with mass ms and
charge es) and species-s0 particles (with mass ms0 and charge es0 ) can be written
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Here, uss0 is the relative velocity prior to a collision, and d⌦ = sin � d� d�, where �
is the angle of deflection, and � is an azimuthal angle that determines the orientation
of the plane in which a given two-body collision occurs. Recall that f 0s , f 0s0 , fs, and
fs0 are short-hand for fs(r, v0s, t), fs0 (r, v0s0 , t), fs(r, vs, t), and fs0 (r, vs0 , t), respectively.

The species-s and species-s0 particle velocities prior to the collision are vs and
vs0 , respectively, so that uss0 = vs�vs0 . Let us write the corresponding velocities after
the collision as (see Section 3.3)

v0s = vs +
µss0

ms
gss0 , (3.73)

v0s0 = vs0 �
µss0

ms0
gss0 . (3.74)

Here, gss0 = u0ss0 � uss0 is assumed to be small, which implies that the angle of
deflection is also small. Expanding f 0s ⌘ fs(r, v0s, t) to second order in gss0 , we obtain

fs(v0s) ' fs(vs) +
µss0

ms
gss0 ·

@ fs(vs)
@vs

+
1
2
µ2

ss0

m2
s

gss0gss0 :
@2 fs(vs)
@vs@vs

. (3.75)
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Note that, in writing the previous two equations, we have neglected the r and t de-
pendence of fs(r, v0s, t), et cetera, for ease of notation. Hence,

f 0s f 0s0 � fs fs0 ' µss0 gss0 ·

 
@ fs

@vs

fs0

ms
�

fs

ms0

@ fs0

@vs0

!

+
1
2
µ2

ss0 gss0gss0 :
 
@2 fs

@vs@vs

fs0

m2
s
+

fs

m2
s0

@2 fs0

@vs0@vs0
�

2
ms ms0

@ fs

@vs

@ fs0

@vs0

!
.

(3.77)

54 ⌅ Plasma Physics: An Introduction (2nd Edition)

3.8 LANDAU COLLISION OPERATOR
The fact that two-particle Coulomb collisions are dominated by small-angle scat-
tering events allows some simplification of the Boltzmann collision operator in a
plasma. According to Equations (3.26) and (3.70), the Boltzmann collision opera-
tor for two-body Coulomb collisions between species-s particles (with mass ms and
charge es) and species-s0 particles (with mass ms0 and charge es0 ) can be written
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Here, uss0 is the relative velocity prior to a collision, and d⌦ = sin � d� d�, where �
is the angle of deflection, and � is an azimuthal angle that determines the orientation
of the plane in which a given two-body collision occurs. Recall that f 0s , f 0s0 , fs, and
fs0 are short-hand for fs(r, v0s, t), fs0 (r, v0s0 , t), fs(r, vs, t), and fs0 (r, vs0 , t), respectively.

The species-s and species-s0 particle velocities prior to the collision are vs and
vs0 , respectively, so that uss0 = vs�vs0 . Let us write the corresponding velocities after
the collision as (see Section 3.3)

v0s = vs +
µss0

ms
gss0 , (3.73)

v0s0 = vs0 �
µss0

ms0
gss0 . (3.74)

Here, gss0 = u0ss0 � uss0 is assumed to be small, which implies that the angle of
deflection is also small. Expanding f 0s ⌘ fs(r, v0s, t) to second order in gss0 , we obtain
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Note that, in writing the previous two equations, we have neglected the r and t de-
pendence of fs(r, v0s, t), et cetera, for ease of notation. Hence,
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3.8 LANDAU COLLISION OPERATOR
The fact that two-particle Coulomb collisions are dominated by small-angle scat-
tering events allows some simplification of the Boltzmann collision operator in a
plasma. According to Equations (3.26) and (3.70), the Boltzmann collision opera-
tor for two-body Coulomb collisions between species-s particles (with mass ms and
charge es) and species-s0 particles (with mass ms0 and charge es0 ) can be written

Css0 =

Z Z Z
uss0

d�
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( f 0s f 0s0 � fs fs0 ) d3vs0 d⌦, (3.71)

where
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Here, uss0 is the relative velocity prior to a collision, and d⌦ = sin � d� d�, where �
is the angle of deflection, and � is an azimuthal angle that determines the orientation
of the plane in which a given two-body collision occurs. Recall that f 0s , f 0s0 , fs, and
fs0 are short-hand for fs(r, v0s, t), fs0 (r, v0s0 , t), fs(r, vs, t), and fs0 (r, vs0 , t), respectively.

The species-s and species-s0 particle velocities prior to the collision are vs and
vs0 , respectively, so that uss0 = vs�vs0 . Let us write the corresponding velocities after
the collision as (see Section 3.3)

v0s = vs +
µss0

ms
gss0 , (3.73)

v0s0 = vs0 �
µss0

ms0
gss0 . (3.74)

Here, gss0 = u0ss0 � uss0 is assumed to be small, which implies that the angle of
deflection is also small. Expanding f 0s ⌘ fs(r, v0s, t) to second order in gss0 , we obtain
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Note that, in writing the previous two equations, we have neglected the r and t de-
pendence of fs(r, v0s, t), et cetera, for ease of notation. Hence,

f 0s f 0s0 � fs fs0 ' µss0 gss0 ·

 
@ fs

@vs

fs0

ms
�

fs

ms0

@ fs0

@vs0

!

+
1
2
µ2

ss0 gss0gss0 :
 
@2 fs

@vs@vs

fs0

m2
s
+

fs

m2
s0

@2 fs0

@vs0@vs0
�

2
ms ms0

@ fs

@vs

@ fs0

@vs0

!
.

(3.77)

9



Modeling Collisions in Fully Ionized Plasma

54 ⌅ Plasma Physics: An Introduction (2nd Edition)

3.8 LANDAU COLLISION OPERATOR
The fact that two-particle Coulomb collisions are dominated by small-angle scat-
tering events allows some simplification of the Boltzmann collision operator in a
plasma. According to Equations (3.26) and (3.70), the Boltzmann collision opera-
tor for two-body Coulomb collisions between species-s particles (with mass ms and
charge es) and species-s0 particles (with mass ms0 and charge es0 ) can be written
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Here, uss0 is the relative velocity prior to a collision, and d⌦ = sin � d� d�, where �
is the angle of deflection, and � is an azimuthal angle that determines the orientation
of the plane in which a given two-body collision occurs. Recall that f 0s , f 0s0 , fs, and
fs0 are short-hand for fs(r, v0s, t), fs0 (r, v0s0 , t), fs(r, vs, t), and fs0 (r, vs0 , t), respectively.

The species-s and species-s0 particle velocities prior to the collision are vs and
vs0 , respectively, so that uss0 = vs�vs0 . Let us write the corresponding velocities after
the collision as (see Section 3.3)

v0s = vs +
µss0

ms
gss0 , (3.73)

v0s0 = vs0 �
µss0

ms0
gss0 . (3.74)

Here, gss0 = u0ss0 � uss0 is assumed to be small, which implies that the angle of
deflection is also small. Expanding f 0s ⌘ fs(r, v0s, t) to second order in gss0 , we obtain
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Note that, in writing the previous two equations, we have neglected the r and t de-
pendence of fs(r, v0s, t), et cetera, for ease of notation. Hence,
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It follows that

Css0 '
1
4

 
es es0

4⇡ ✏0 µss0

!2

⇥

ZZ "
µss0 gss0 · Jss0 +

1
2
µ2

ss0 gss0gss0 :
 

1
ms

@

@vs
�

1
ms0

@

@vs0

!
Jss0

#
d3vs0 d⌦

u3
ss0 sin4(�/2)

,

(3.78)

where
Jss0 =

@ fs

@vs

fs0

ms
�

fs

ms0

@ fs0

@vs0
. (3.79)

Let l, m, and n be a right-handed set of mutually orthogonal unit vectors. Suppose
that uss0 = uss0 l. Recall that u0ss0 = uss0 + gss0 . Now, in an elastic collision for which
the angle of deviation is �, we require |u0ss0 | = |uss0 |, |uss0 ⇥ u0ss0 | = u2

ss0 sin �, and
u0ss0 = uss0 when � = 0. In other words, we need |gss0 + uss0 l| = uss0 , |l ⇥ gss0 | =
uss0 sin �, and gss0 = 0 when � = 0. We deduce that

gss0 ' uss0
⇥
(cos � � 1) l + sin � cos �m + sin � sin �n

⇤
. (3.80)

Thus,
Z

gss0 d⌦
sin4(�/2)

=

Z ⇡

0

I
gss0 sin � d� d�

sin4(�/2)
= uss0

Z
(cos � � 1) d⌦

sin4(�/2)
= �uss0

Z
2 d⌦

sin2(�/2)
,

(3.81)

and
Z

gss0gss0 d⌦
sin4(�/2)

'
u2

ss0

2
(mm + nn)

Z
sin2 � d⌦
sin4(�/2)

' u2
ss0 (I � ll)

Z
2 d⌦

sin2(�/2)
, (3.82)

where use has again been made of the fact that � is small.
Now,
Z

2 d⌦
sin2(�/2)

=

Z
4⇡ sin � d�
sin2(�/2)

' 16⇡
Z

d(�/2)
sin(�/2)

= 16⇡ ln
 
�max

�min

!
, (3.83)

where �max and �min are the maximum and minimum angles of deflection, respec-
tively. However, according to Equation (3.64), small-angle two-body Coulomb colli-
sions are characterized by

� '
es es0

2⇡ ✏0 µss0 u2
ss0 b
, (3.84)

where b is the impact parameter. Thus, we can write
Z

2 d⌦
sin2(�/2)

= 16⇡ ln⇤c, (3.85)

where the quantity

ln⇤c = ln
 
�max

�min

!
= ln

 
bmax

bmin

!
(3.86)
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Figure 3.1 A two-body Coulomb collision.

Here, zmax = 1/rmin, where rmin is the distance of closest approach. Now, by symme-
try, (dz/d✓)zmax = 0, so Equation (3.56) implies that

1 � b2 z2
max �

 
kss0

Ess0

!
zmax = 0. (3.59)

Combining Equations (3.56) and (3.58), we obtain

⇥ =

Z zmax

0

b dz
p

1 � b2 z2 � kss0 z/Ess0
=

Z ⇣max

0

d⇣
1 � ⇣2 � ↵ ⇣

, (3.60)

where ↵ = kss0/(Ess0 b), and

1 � ⇣2
max � ↵ ⇣max = 0. (3.61)

Integration (Spiegel, Liu, and Lipschutz 1999) yields

⇥ =
⇡

2
� sin�1

 
↵

p
4 + ↵2

!
. (3.62)

Hence, from Equation (3.57), we get

� = 2 sin�1
 
↵

p
4 + ↵2

!
, (3.63)

which can be rearranged to give

cot
✓�

2

◆
=

2 Ess0 b
kss0

=
4⇡ ✏0 µss0 u2

ss0 b
es es0

. (3.64)
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Note that the analysis in this section tacitly assumes that Coulomb collisions are
not significantly modified by any magnetic field that might pervade the plasma. This
assumption is justified provided that the particle gyroradii are all much larger than
the Debye length.

3.7 RUTHERFORD SCATTERING CROSS-SECTION
Consider a species-s particle, incident with relative velocity uss0 onto an ensemble of
species-s0 particles with number density ns0 . If ps(⌦) d⌦ is the probability per unit
time of the particle being scattered into the range of solid angle ⌦ to ⌦+ d⌦ then the
di↵erential scattering cross-section, d�/d⌦, is defined via (Reif 1965)

ps(⌦) d⌦ = ns0 uss0
d�
d⌦

d⌦. (3.65)

Assuming that the scattering is azimuthally symmetric (i.e., symmetric in �), we can
write d⌦ = 2⇡ sin � d�. Now, the probability per unit time of a collision having an
impact parameter in the range b to b + db is

ps(b) db = ns0 uss0 2⇡ b db. (3.66)

Furthermore, we can write

ps(⌦)
�����
d⌦
db

����� = ps(b), (3.67)

provided that � and b are related according to the two-particle scattering law, Equa-
tion (3.64). (The absolute value of d⌦/db is taken because � is a monotonically
decreasing function of b.) It follows that

d�
d⌦
=

2⇡ b
|d⌦/db|

. (3.68)

Equation (3.64) yields

d⌦
db
= 2⇡ sin �

d�
db
= �2⇡ sin �

 
4⇡ ✏0 µss0 u2

ss0

es es0

!
2 sin2(�/2). (3.69)

Finally, Equations (3.64), (3.68), and (3.69) can be combined to give the so-called
Rutherford scattering cross-section,

d�
d⌦
=

1
4

 
es es0

4⇡ ✏0 µss0 u2
ss0

!2 1
sin4(�/2)

(3.70)

(Rutherford 1911). It is immediately apparent, from the previous formula, that two-
particle Coulomb collisions are dominated by small-angle (i.e., small �) scattering
events.
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3.9 ROSENBLUTH POTENTIALS
It is sometimes convenient to write the Landau collision operator in the form

Css0 = �
1

ms

@

@vs
· Ass0 , (3.95)

where
Ass0 = Bss0 fs � Dss0 ·

@ fs

@vs
, (3.96)

and
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�ss0

ms0

Z
wss0 ·

@ fs0

@vs0
d3vs0 , (3.97)

Dss0 =
�ss0

ms

Z
wss0 fs0 d3vs0 . (3.98)

Let

Gs0 (vs) =
Z

uss0 fs0 d3vs0 , (3.99)

Hs0 (vs) =
Z

u�1
ss0 fs0 d3vs0 . (3.100)

Now, from Equation (3.88),
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�↵�
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�

uss0 ↵ uss0 �
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. (3.101)

Moreover,

@uss0
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, (3.102)

@uss0 ↵

@uss0 �
= �↵�. (3.103)

Hence, it is easily demonstrated that
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where we have integrated the first equation by parts, making use of Equation (3.92).
Thus, we deduce from Equations (3.104) and (3.105) that
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The quantities Hs0 (v) and Gs0 (v) are known as Rosenbluth potentials (Rosenbluth,
MacDonald, and Judd 1957), and can easily be seen to satisfy

r
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r
2
vGs0 = 2 Hs0 (v), (3.111)

where r2
v denotes a velocity-space Laplacian operator. The former result follows

because r2
v (1/v) = �4⇡ �(v), and the latter because r2

v (v) = 2/v.
When expressed in terms of the Rosenbluth potentials, the Landau collision op-

erator, (3.93), takes the form
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where
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3.10 COULOMB LOGARITHM
According to Equation (3.85), the Coulomb logarithm can be written

ln⇤c =

Z
d�
�
, (3.114)

where we have made use of the fact that scattering angle � is small, Obviously, the
integral appearing in the previous expression diverges at both large and small �.

The divergence of the integral on the right-hand side of the previous equation
at large � is a consequence of the breakdown of the small-angle approximation.
The standard prescription for avoiding this divergence is to truncate the integral at
some �max above which the small-angle approximation becomes invalid. According
to Equation (3.84), this truncation is equivalent to neglecting all collisions whose
impact parameters fall below the value

bmin '
es es0

2⇡ ✏0 µss0 u2
ss0
. (3.115)
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Outline
• Homework #4: Modeling Collisions and the Rosenbluth Potentials

• Force balance (equilibrium) in a magnetized plasma

• Z-pinch

• θ-pinch

• Screw-pinch (straight tokamak)

• Grad-Shafranov Equation

• Conservation principles in magnetized plasma (“frozen-in” and conservation of 
particles/flux tubes) 
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116 5 Fluid Models

nmi
∂ui

∂t
= ne(E + ui × B) − ∇ pi + nmig + nνeime(ue − ui)

nme
∂ue

∂t
= −ne(E + ue × B) − ∇ pe + nmeg + nνeime(ui − ue) . (5.37)

The momentum exchange between the electron and ion fluid is described by a colli-
sion frequency νei and the mean exchanged momentum per volume, nme(ue − ui).

Instead of solving the pair of fluid equations, it is useful to transform these equa-
tions into a set of new variables that describe the mean mass motion vm and the
relative motion ∝ j of the two fluids. This approach is similar to splitting a two-
particle problem into center-of-mass motion and relative motion. The mean mass
motion is described by

ρm
∂vm

∂t
= j × B − ∇ p + ρmg (5.38)

with the mass density ρm = n(mi + me), total pressure p = pe + pi and the mean
mass velocity

vm = (miui + meue)

me + mi
. (5.39)

Note that now the Lorentz force j×B acts on the total current density. Moreover, the
mass motion is not affected by the friction between electron and ion fluid because
it does not change the total momentum, but leads only to redistribution between
electron and ion fluid.

When ∂vm/∂t = 0, (5.38) defines the static equilibria of a magnetized plasma,
which are defined by the force balance

0 = j × B − ∇ p + ρmg . (5.40)

This framework is called magnetohydrostatics. In the next two paragraphs we will
discuss two simple applications of this concept.

5.2.1 Isobaric Surfaces

Let us shortly return to the problem of toroidal confinement. Neglecting gravita-
tional forces as small compared to the magnetic forces, we define the magnetohy-
drostatic equilibrium by

j × B = ∇ p . (5.41)

By taking the dot product with B on the both sides of the equation, the dot product
vanishes yielding 0 = B · ∇ p, i.e., B and ∇ p are perpendicular to each other.

5.3 Magnetohydrodynamics 121

5.3.1 The Generalized Ohm’s Law

A dynamic equation for the spatio-temporal evolution of the current results from the
momentum (5.37) after multiplying the ion equation by me and the electron equation
by mi, and subtracting the equations:

nmime
∂

∂t
(ui − ue) = ne(me + mi)E + ne(meui + miue) × B

−me∇ pi + mi∇ pe + n(me + mi)νeime(ue − ui) . (5.53)

This equation can be simplified by neglecting me in the sum of the masses. The
mixed term

meui + miue = miui + meue + mi(ue − ui) + me(ui − ue) (5.54)

= 1
n
ρmvm − (mi − me)

1
ne

j (5.55)

can be decomposed into contributions from mass motion and current density, which
results in

mime

e
∂j
∂t

= eρm

(
E + vm × B − νeime

ne2 j
)

−mij × B − me∇ pi + mi∇ pe . (5.56)

As long as we are interested in slowly varying phenomena, we can set ∂j/∂t = 0 and
neglect terms of the order of me/mi. In this way we obtain the generalized Ohm’s
law

E + vm × B = ηj + 1
ne

(j × B − ∇ pe) . (5.57)

Here, η = νeime/ne2 is the plasma resistivity that arises from Coulomb collisions
between electrons and ions. The l.h.s. of (5.57) is the correct electric field in the
moving reference frame. This electric field balances the voltage drop η j by the
resistivity, the contribution from the Hall effect j×B/(ne), and the electron pressure
term −∇ pe/ne.

5.3.2 Diffusion of a Magnetic Field

As an application of the generalized Ohm’s law, we consider a plasma that is moving
at a velocity vm, and at an arbitrary angle to the magnetic field direction. We start
from

E + vm × B = ηj = η

µ0
∇ × B , (5.58)

5.1 The Two-Fluid Model 111

In the last step, we have Taylor-expanded the particle flux and retained only
the differential change of the flux. Dividing by !V = A!x and taking the limit
!V → 0 gives

∂n
∂t

+ ∂(n ux )

∂x
= 0 . (5.7)

This result can easily be generalized to a three-dimensional flow pattern, which
results in the continuity equation

∂n
∂t

+ ∇ · (nu) = 0 . (5.8)

This balance equation describes the conservation of the number of particles in the
flow. When particles are generated or annihilated inside the cell, say by ionization
or recombination, the zero on the right hand side is replaced by a net production rate
S (see Sect. 4.2.3).

The continuity equation can be easily generalized to an equation for the conser-
vation of charge by introducing the charge density ρ = ∑

α nαqα and the current
density j = ∑

α nαqαuα

∂ρ

∂t
+ ∇ · j = 0 . (5.9)

5.1.4 Momentum Transport

The net force in the balance of the considered cell is a result of the sum of all forces
acting on the particles within the cell plus the export and import of momentum
by particles that leave and enter the cell. The starting point of our calculation is
Newton’s equation for the force acting on a single particle

m
dv
dt

= q(E + v × B) . (5.10)

Here, d/dt is the derivative calculated at the position of the point-like particle.
The correct momentum balance for a many-particle system can be obtained by mul-
tiplying (5.10) with the density n. However, in an inhomogeneous flow, the time
derivative has to be calculated according to the rules of hydrodynamic flow

du
dt

= ∂u
∂t

+ ∂u
∂x

dx
dt

+ ∂u
∂y

dy
dt

+ ∂u
∂z

dz
dt

. (5.11)

The vector (dx/dt, dy/dt, dz/dt) is just the velocity u of the cell. This leads to
the compact notation

du
dt

= ∂u
∂t

+ (u · ∇)u , (5.12)

plus magnetostatics
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116 5 Fluid Models

nmi
∂ui

∂t
= ne(E + ui × B) − ∇ pi + nmig + nνeime(ue − ui)

nme
∂ue

∂t
= −ne(E + ue × B) − ∇ pe + nmeg + nνeime(ui − ue) . (5.37)

The momentum exchange between the electron and ion fluid is described by a colli-
sion frequency νei and the mean exchanged momentum per volume, nme(ue − ui).

Instead of solving the pair of fluid equations, it is useful to transform these equa-
tions into a set of new variables that describe the mean mass motion vm and the
relative motion ∝ j of the two fluids. This approach is similar to splitting a two-
particle problem into center-of-mass motion and relative motion. The mean mass
motion is described by

ρm
∂vm

∂t
= j × B − ∇ p + ρmg (5.38)

with the mass density ρm = n(mi + me), total pressure p = pe + pi and the mean
mass velocity

vm = (miui + meue)

me + mi
. (5.39)

Note that now the Lorentz force j×B acts on the total current density. Moreover, the
mass motion is not affected by the friction between electron and ion fluid because
it does not change the total momentum, but leads only to redistribution between
electron and ion fluid.

When ∂vm/∂t = 0, (5.38) defines the static equilibria of a magnetized plasma,
which are defined by the force balance

0 = j × B − ∇ p + ρmg . (5.40)

This framework is called magnetohydrostatics. In the next two paragraphs we will
discuss two simple applications of this concept.

5.2.1 Isobaric Surfaces

Let us shortly return to the problem of toroidal confinement. Neglecting gravita-
tional forces as small compared to the magnetic forces, we define the magnetohy-
drostatic equilibrium by

j × B = ∇ p . (5.41)

By taking the dot product with B on the both sides of the equation, the dot product
vanishes yielding 0 = B · ∇ p, i.e., B and ∇ p are perpendicular to each other.

5.2 Magnetohydrostatics 117

Fig. 5.6 Nested magnetic
surfaces in a tokamak. Each
surface is spanned by a set of
magnetic field lines and
current stream lines. The
force j × B points inward,
balancing the pressure
gradient

j

B

The same is true for j and ∇ p. Therefore, the vectors B and j must lie in a plane
of constant pressure. The magnetic field lines and the current streamlines span a
magnetic surface, which is also an isobaric surface. Figure 5.6 shows that the force
j × B is directed inward and balances the pressure force.

5.2.2 Magnetic Pressure

The relationship between current density and magnetic induction follows from
Ampere’s law

∇ × B = µ0j , (5.42)

which yields

j × B = 1
µ0

(∇ × B) × B = − 1
µ0

B × (∇ × B) . (5.43)

This expression can be evaluated by using the vector identity for arbitrary vectors a
and b,

a × (∇ × b) = (∇b) · ac − (a · ∇)b . (5.44)

Then, we obtain a tensor ∇B with components (∇B)i j = ∂B j/∂xi . The symbol ac
means that a is held constant in the differentiation by the ∇-operator on its left side.
Finally, we can use (∇B) · B = (1/2)∇(B · B) and obtain

j × B = − 1
2µ0

∇(B2) + 1
µ0

(B · ∇)B . (5.45)

In the term (B · ∇)B we recognize the analogy to the convective derivative in fluid
motion discussed in Sect. (5.1.4). Here, the derivative describes the change of B
(regarding magnitude and orientation) along a field line. Combining (5.41) and
(5.45), we obtain a pressure balance

∇(p + pmag) = (B · ∇)B
µ0

, (5.46)

VECTOR IDENTITIES4

Notation: f, g, are scalars; A, B, etc., are vectors; T is a tensor; I is the unit
dyad.

(1) A ·B×C = A×B ·C = B ·C×A = B×C ·A = C ·A×B = C×A ·B

(2) A × (B × C) = (C × B) × A = (A · C)B − (A · B)C

(3) A × (B × C) + B × (C × A) + C × (A × B) = 0

(4) (A × B) · (C × D) = (A · C)(B · D) − (A · D)(B · C)

(5) (A × B) × (C × D) = (A × B · D)C − (A × B · C)D

(6) ∇(fg) = ∇(gf) = f∇g + g∇f

(7) ∇ · (fA) = f∇ · A + A · ∇f

(8) ∇ × (fA) = f∇ × A + ∇f × A

(9) ∇ · (A × B) = B · ∇ × A − A · ∇ × B

(10) ∇ × (A × B) = A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B

(11) A × (∇ × B) = (∇B) · A − (A · ∇)B

(12) ∇(A · B) = A × (∇ × B) + B × (∇ × A) + (A · ∇)B + (B · ∇)A

(13) ∇2f = ∇ · ∇f

(14) ∇2A = ∇(∇ · A) − ∇ × ∇ × A

(15) ∇ × ∇f = 0

(16) ∇ · ∇ × A = 0

If e1, e2, e3 are orthonormal unit vectors, a second-order tensor T can be
written in the dyadic form

(17) T =
∑

i,j
Tijeiej

In cartesian coordinates the divergence of a tensor is a vector with components

(18) (∇·T )i =
∑

j
(∂Tji/∂xj)

[This definition is required for consistency with Eq. (29)]. In general

(19) ∇ · (AB) = (∇ · A)B + (A · ∇)B

(20) ∇ · (fT ) = ∇f ·T+f∇·T

4

+
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nmi
∂ui

∂t
= ne(E + ui × B) − ∇ pi + nmig + nνeime(ue − ui)

nme
∂ue

∂t
= −ne(E + ue × B) − ∇ pe + nmeg + nνeime(ui − ue) . (5.37)

The momentum exchange between the electron and ion fluid is described by a colli-
sion frequency νei and the mean exchanged momentum per volume, nme(ue − ui).

Instead of solving the pair of fluid equations, it is useful to transform these equa-
tions into a set of new variables that describe the mean mass motion vm and the
relative motion ∝ j of the two fluids. This approach is similar to splitting a two-
particle problem into center-of-mass motion and relative motion. The mean mass
motion is described by

ρm
∂vm

∂t
= j × B − ∇ p + ρmg (5.38)

with the mass density ρm = n(mi + me), total pressure p = pe + pi and the mean
mass velocity

vm = (miui + meue)

me + mi
. (5.39)

Note that now the Lorentz force j×B acts on the total current density. Moreover, the
mass motion is not affected by the friction between electron and ion fluid because
it does not change the total momentum, but leads only to redistribution between
electron and ion fluid.

When ∂vm/∂t = 0, (5.38) defines the static equilibria of a magnetized plasma,
which are defined by the force balance

0 = j × B − ∇ p + ρmg . (5.40)

This framework is called magnetohydrostatics. In the next two paragraphs we will
discuss two simple applications of this concept.

5.2.1 Isobaric Surfaces

Let us shortly return to the problem of toroidal confinement. Neglecting gravita-
tional forces as small compared to the magnetic forces, we define the magnetohy-
drostatic equilibrium by

j × B = ∇ p . (5.41)

By taking the dot product with B on the both sides of the equation, the dot product
vanishes yielding 0 = B · ∇ p, i.e., B and ∇ p are perpendicular to each other.
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balancing the pressure
gradient

j

B

The same is true for j and ∇ p. Therefore, the vectors B and j must lie in a plane
of constant pressure. The magnetic field lines and the current streamlines span a
magnetic surface, which is also an isobaric surface. Figure 5.6 shows that the force
j × B is directed inward and balances the pressure force.

5.2.2 Magnetic Pressure

The relationship between current density and magnetic induction follows from
Ampere’s law

∇ × B = µ0j , (5.42)

which yields

j × B = 1
µ0

(∇ × B) × B = − 1
µ0

B × (∇ × B) . (5.43)

This expression can be evaluated by using the vector identity for arbitrary vectors a
and b,

a × (∇ × b) = (∇b) · ac − (a · ∇)b . (5.44)

Then, we obtain a tensor ∇B with components (∇B)i j = ∂B j/∂xi . The symbol ac
means that a is held constant in the differentiation by the ∇-operator on its left side.
Finally, we can use (∇B) · B = (1/2)∇(B · B) and obtain

j × B = − 1
2µ0

∇(B2) + 1
µ0

(B · ∇)B . (5.45)

In the term (B · ∇)B we recognize the analogy to the convective derivative in fluid
motion discussed in Sect. (5.1.4). Here, the derivative describes the change of B
(regarding magnitude and orientation) along a field line. Combining (5.41) and
(5.45), we obtain a pressure balance

∇(p + pmag) = (B · ∇)B
µ0

, (5.46)
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Scylla was completed in 1958
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(Theta) θ-Pinch
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Z-Pinch
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Z-Pinch
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“Screw-Pinch” 
(a.k.a. “Straight Tokamak”)
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“Screw-Pinch” 
(a.k.a. “Straight Tokamak” or “Straight RFP”)
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RFX (2007)
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(a.k.a. “Straight Tokamak”)

26



“Screw-Pinch” 
(a.k.a. “Straight Tokamak”)
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“Screw-Pinch” 
(a.k.a. “Straight Tokamak”)
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Grad-Shafranov Equation
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nmi
∂ui

∂t
= ne(E + ui × B) − ∇ pi + nmig + nνeime(ue − ui)

nme
∂ue

∂t
= −ne(E + ue × B) − ∇ pe + nmeg + nνeime(ui − ue) . (5.37)

The momentum exchange between the electron and ion fluid is described by a colli-
sion frequency νei and the mean exchanged momentum per volume, nme(ue − ui).

Instead of solving the pair of fluid equations, it is useful to transform these equa-
tions into a set of new variables that describe the mean mass motion vm and the
relative motion ∝ j of the two fluids. This approach is similar to splitting a two-
particle problem into center-of-mass motion and relative motion. The mean mass
motion is described by

ρm
∂vm

∂t
= j × B − ∇ p + ρmg (5.38)

with the mass density ρm = n(mi + me), total pressure p = pe + pi and the mean
mass velocity

vm = (miui + meue)

me + mi
. (5.39)

Note that now the Lorentz force j×B acts on the total current density. Moreover, the
mass motion is not affected by the friction between electron and ion fluid because
it does not change the total momentum, but leads only to redistribution between
electron and ion fluid.

When ∂vm/∂t = 0, (5.38) defines the static equilibria of a magnetized plasma,
which are defined by the force balance

0 = j × B − ∇ p + ρmg . (5.40)

This framework is called magnetohydrostatics. In the next two paragraphs we will
discuss two simple applications of this concept.

5.2.1 Isobaric Surfaces

Let us shortly return to the problem of toroidal confinement. Neglecting gravita-
tional forces as small compared to the magnetic forces, we define the magnetohy-
drostatic equilibrium by

j × B = ∇ p . (5.41)

By taking the dot product with B on the both sides of the equation, the dot product
vanishes yielding 0 = B · ∇ p, i.e., B and ∇ p are perpendicular to each other.
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The same is true for j and ∇ p. Therefore, the vectors B and j must lie in a plane
of constant pressure. The magnetic field lines and the current streamlines span a
magnetic surface, which is also an isobaric surface. Figure 5.6 shows that the force
j × B is directed inward and balances the pressure force.

5.2.2 Magnetic Pressure

The relationship between current density and magnetic induction follows from
Ampere’s law

∇ × B = µ0j , (5.42)

which yields

j × B = 1
µ0

(∇ × B) × B = − 1
µ0

B × (∇ × B) . (5.43)

This expression can be evaluated by using the vector identity for arbitrary vectors a
and b,

a × (∇ × b) = (∇b) · ac − (a · ∇)b . (5.44)

Then, we obtain a tensor ∇B with components (∇B)i j = ∂B j/∂xi . The symbol ac
means that a is held constant in the differentiation by the ∇-operator on its left side.
Finally, we can use (∇B) · B = (1/2)∇(B · B) and obtain

j × B = − 1
2µ0

∇(B2) + 1
µ0

(B · ∇)B . (5.45)

In the term (B · ∇)B we recognize the analogy to the convective derivative in fluid
motion discussed in Sect. (5.1.4). Here, the derivative describes the change of B
(regarding magnitude and orientation) along a field line. Combining (5.41) and
(5.45), we obtain a pressure balance

∇(p + pmag) = (B · ∇)B
µ0

, (5.46)
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The momentum exchange between the electron and ion fluid is described by a colli-
sion frequency νei and the mean exchanged momentum per volume, nme(ue − ui).

Instead of solving the pair of fluid equations, it is useful to transform these equa-
tions into a set of new variables that describe the mean mass motion vm and the
relative motion ∝ j of the two fluids. This approach is similar to splitting a two-
particle problem into center-of-mass motion and relative motion. The mean mass
motion is described by

ρm
∂vm

∂t
= j × B − ∇ p + ρmg (5.38)

with the mass density ρm = n(mi + me), total pressure p = pe + pi and the mean
mass velocity

vm = (miui + meue)

me + mi
. (5.39)

Note that now the Lorentz force j×B acts on the total current density. Moreover, the
mass motion is not affected by the friction between electron and ion fluid because
it does not change the total momentum, but leads only to redistribution between
electron and ion fluid.

When ∂vm/∂t = 0, (5.38) defines the static equilibria of a magnetized plasma,
which are defined by the force balance

0 = j × B − ∇ p + ρmg . (5.40)

This framework is called magnetohydrostatics. In the next two paragraphs we will
discuss two simple applications of this concept.

5.2.1 Isobaric Surfaces

Let us shortly return to the problem of toroidal confinement. Neglecting gravita-
tional forces as small compared to the magnetic forces, we define the magnetohy-
drostatic equilibrium by

j × B = ∇ p . (5.41)

By taking the dot product with B on the both sides of the equation, the dot product
vanishes yielding 0 = B · ∇ p, i.e., B and ∇ p are perpendicular to each other.
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The same is true for j and ∇ p. Therefore, the vectors B and j must lie in a plane
of constant pressure. The magnetic field lines and the current streamlines span a
magnetic surface, which is also an isobaric surface. Figure 5.6 shows that the force
j × B is directed inward and balances the pressure force.

5.2.2 Magnetic Pressure

The relationship between current density and magnetic induction follows from
Ampere’s law

∇ × B = µ0j , (5.42)

which yields

j × B = 1
µ0

(∇ × B) × B = − 1
µ0

B × (∇ × B) . (5.43)

This expression can be evaluated by using the vector identity for arbitrary vectors a
and b,

a × (∇ × b) = (∇b) · ac − (a · ∇)b . (5.44)

Then, we obtain a tensor ∇B with components (∇B)i j = ∂B j/∂xi . The symbol ac
means that a is held constant in the differentiation by the ∇-operator on its left side.
Finally, we can use (∇B) · B = (1/2)∇(B · B) and obtain

j × B = − 1
2µ0

∇(B2) + 1
µ0

(B · ∇)B . (5.45)

In the term (B · ∇)B we recognize the analogy to the convective derivative in fluid
motion discussed in Sect. (5.1.4). Here, the derivative describes the change of B
(regarding magnitude and orientation) along a field line. Combining (5.41) and
(5.45), we obtain a pressure balance

∇(p + pmag) = (B · ∇)B
µ0

, (5.46)

VECTOR IDENTITIES4

Notation: f, g, are scalars; A, B, etc., are vectors; T is a tensor; I is the unit
dyad.

(1) A ·B×C = A×B ·C = B ·C×A = B×C ·A = C ·A×B = C×A ·B

(2) A × (B × C) = (C × B) × A = (A · C)B − (A · B)C

(3) A × (B × C) + B × (C × A) + C × (A × B) = 0

(4) (A × B) · (C × D) = (A · C)(B · D) − (A · D)(B · C)

(5) (A × B) × (C × D) = (A × B · D)C − (A × B · C)D

(6) ∇(fg) = ∇(gf) = f∇g + g∇f

(7) ∇ · (fA) = f∇ · A + A · ∇f

(8) ∇ × (fA) = f∇ × A + ∇f × A

(9) ∇ · (A × B) = B · ∇ × A − A · ∇ × B

(10) ∇ × (A × B) = A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B

(11) A × (∇ × B) = (∇B) · A − (A · ∇)B

(12) ∇(A · B) = A × (∇ × B) + B × (∇ × A) + (A · ∇)B + (B · ∇)A

(13) ∇2f = ∇ · ∇f

(14) ∇2A = ∇(∇ · A) − ∇ × ∇ × A

(15) ∇ × ∇f = 0

(16) ∇ · ∇ × A = 0

If e1, e2, e3 are orthonormal unit vectors, a second-order tensor T can be
written in the dyadic form

(17) T =
∑

i,j
Tijeiej

In cartesian coordinates the divergence of a tensor is a vector with components

(18) (∇·T )i =
∑

j
(∂Tji/∂xj)

[This definition is required for consistency with Eq. (29)]. In general

(19) ∇ · (AB) = (∇ · A)B + (A · ∇)B

(20) ∇ · (fT ) = ∇f ·T+f∇·T

4
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The momentum exchange between the electron and ion fluid is described by a colli-
sion frequency νei and the mean exchanged momentum per volume, nme(ue − ui).

Instead of solving the pair of fluid equations, it is useful to transform these equa-
tions into a set of new variables that describe the mean mass motion vm and the
relative motion ∝ j of the two fluids. This approach is similar to splitting a two-
particle problem into center-of-mass motion and relative motion. The mean mass
motion is described by

ρm
∂vm

∂t
= j × B − ∇ p + ρmg (5.38)

with the mass density ρm = n(mi + me), total pressure p = pe + pi and the mean
mass velocity

vm = (miui + meue)

me + mi
. (5.39)

Note that now the Lorentz force j×B acts on the total current density. Moreover, the
mass motion is not affected by the friction between electron and ion fluid because
it does not change the total momentum, but leads only to redistribution between
electron and ion fluid.

When ∂vm/∂t = 0, (5.38) defines the static equilibria of a magnetized plasma,
which are defined by the force balance

0 = j × B − ∇ p + ρmg . (5.40)

This framework is called magnetohydrostatics. In the next two paragraphs we will
discuss two simple applications of this concept.

5.2.1 Isobaric Surfaces

Let us shortly return to the problem of toroidal confinement. Neglecting gravita-
tional forces as small compared to the magnetic forces, we define the magnetohy-
drostatic equilibrium by

j × B = ∇ p . (5.41)

By taking the dot product with B on the both sides of the equation, the dot product
vanishes yielding 0 = B · ∇ p, i.e., B and ∇ p are perpendicular to each other.
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The same is true for j and ∇ p. Therefore, the vectors B and j must lie in a plane
of constant pressure. The magnetic field lines and the current streamlines span a
magnetic surface, which is also an isobaric surface. Figure 5.6 shows that the force
j × B is directed inward and balances the pressure force.

5.2.2 Magnetic Pressure

The relationship between current density and magnetic induction follows from
Ampere’s law

∇ × B = µ0j , (5.42)

which yields

j × B = 1
µ0

(∇ × B) × B = − 1
µ0

B × (∇ × B) . (5.43)

This expression can be evaluated by using the vector identity for arbitrary vectors a
and b,

a × (∇ × b) = (∇b) · ac − (a · ∇)b . (5.44)

Then, we obtain a tensor ∇B with components (∇B)i j = ∂B j/∂xi . The symbol ac
means that a is held constant in the differentiation by the ∇-operator on its left side.
Finally, we can use (∇B) · B = (1/2)∇(B · B) and obtain

j × B = − 1
2µ0

∇(B2) + 1
µ0

(B · ∇)B . (5.45)

In the term (B · ∇)B we recognize the analogy to the convective derivative in fluid
motion discussed in Sect. (5.1.4). Here, the derivative describes the change of B
(regarding magnitude and orientation) along a field line. Combining (5.41) and
(5.45), we obtain a pressure balance

∇(p + pmag) = (B · ∇)B
µ0

, (5.46)

VECTOR IDENTITIES4

Notation: f, g, are scalars; A, B, etc., are vectors; T is a tensor; I is the unit
dyad.

(1) A ·B×C = A×B ·C = B ·C×A = B×C ·A = C ·A×B = C×A ·B

(2) A × (B × C) = (C × B) × A = (A · C)B − (A · B)C

(3) A × (B × C) + B × (C × A) + C × (A × B) = 0

(4) (A × B) · (C × D) = (A · C)(B · D) − (A · D)(B · C)

(5) (A × B) × (C × D) = (A × B · D)C − (A × B · C)D

(6) ∇(fg) = ∇(gf) = f∇g + g∇f

(7) ∇ · (fA) = f∇ · A + A · ∇f

(8) ∇ × (fA) = f∇ × A + ∇f × A

(9) ∇ · (A × B) = B · ∇ × A − A · ∇ × B

(10) ∇ × (A × B) = A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B

(11) A × (∇ × B) = (∇B) · A − (A · ∇)B

(12) ∇(A · B) = A × (∇ × B) + B × (∇ × A) + (A · ∇)B + (B · ∇)A

(13) ∇2f = ∇ · ∇f

(14) ∇2A = ∇(∇ · A) − ∇ × ∇ × A

(15) ∇ × ∇f = 0

(16) ∇ · ∇ × A = 0

If e1, e2, e3 are orthonormal unit vectors, a second-order tensor T can be
written in the dyadic form

(17) T =
∑

i,j
Tijeiej

In cartesian coordinates the divergence of a tensor is a vector with components

(18) (∇·T )i =
∑

j
(∂Tji/∂xj)

[This definition is required for consistency with Eq. (29)]. In general

(19) ∇ · (AB) = (∇ · A)B + (A · ∇)B

(20) ∇ · (fT ) = ∇f ·T+f∇·T
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Next Lecture

• More Piel / Chapter 5: “Fluid” Equations

• “Frozen-in” flux condition 

• Alfvén wave

• Monday, October 9: Homework #5
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