Lecture7: Plasma Physics 1

APPH E6101x Columbia University

- Coulomb collisions and the Coulomb logarithm
- Ambipolar diffusion
- ("Classical") Transport in a magnetized plasma

Last Lecture

Review: $e_z \times (A \times e_z) = A_\perp \sim \langle \rho \rho \rangle \cdot A$

〒-77

3

Review: $e_z \times (A \times e_z) = A_{\perp} \sim \langle \rho \rho \rangle \cdot A$

(c) $e(\overline{u}, (\overline{p}, \overline{p})\overline{E}) = -e_A < \hat{b} \cdot \overline{p} \times (\overline{p}, \overline{p})\overline{E} >$ $BUT \overline{\rho}\overline{\rho} = \frac{\pi}{2\pi} \left(10 \right) 50$ = - MB · (DXE) PERPENSICULA = - M= 2B1 I DENTITY MAXRIX

Review: "Drift" with Collions

The elastic scattering of electrons on atoms is almost isotropic [68]. Therefore, on average, the electron loses its mean momentum $m_e \bar{v}_e$ and we can write the equation of motion for an *average electron*

 $m\dot{\bar{v}} = -$

This average electron now moves in -E-direction. The quantity $v_{\rm m} = 1/\tau_{\rm coll}$ is the effective collision frequency for momentum transfer.

$$-eE - m\bar{v}v_{\rm m} \,. \tag{4.25}$$

$$\frac{e}{n\nu_{\rm m}}E = -\mu_{\rm e}E$$

Review: Ambipolar Diffusion

$$\mu_{\rm e} = \frac{e}{m_{\rm e} \nu_{\rm m,e}} \quad ; \quad \mu_{\rm i} = \frac{1}{m_{\rm i}}$$

 $\boldsymbol{\Gamma}_{\mathrm{e,i}} = \pm n \mu_{\mathrm{e,i}} \mathbf{E} - D_{\mathrm{e,i}} \nabla n$

$$\frac{D}{\mu} = \frac{k_{\rm B}T}{e}$$

$$- m\mu e E - D_{0}\nabla m = m\mu_{i}E - D_{i}$$

$$E = -\frac{1}{n}\nabla m \left(\frac{De}{\mu_{0}}\right)$$

$$\frac{1}{n} - \frac{h}{n}\nabla m \left(\frac{De}{\mu_{0}}\right)$$

Review: Collisional "Drift" with a Magnetic Field

 $J = q m v = \overline{6} \cdot E$ FIND AJERAGE DRIFT WITH STATIC E, B AND COLLISIONS

 $\delta \widehat{\gamma} \stackrel{g}{=} E_{II} - \mathcal{V}_{m} \mathcal{V}_{II}$

 $\frac{d\overline{v}}{d\overline{t}} \approx 0 \approx \frac{g}{m} \overline{E} + \frac{w_c \overline{v}_t \times \hat{b}}{w_c \overline{v}_t \times \hat{b}} - \frac{v_m \overline{v}_L}{v_m \overline{v}_L} \right] \perp 9$ $0 \approx \frac{g}{m} \overline{E} \times \overline{b} - \frac{w_c \overline{v}_L B}{v_c \overline{v}_L B} - \frac{v_m \overline{v}_L \times \overline{b}}{v_m \overline{v}_L \times \overline{b}} \right]$ l B

7

Review: Collisional "Drift" with a Magnetic Field

Conductivity in a Magnetized Plasma

(PHO DISSENTATION)

Outline Today

Moments of the distribution function

- Fluid equations ("two fluid")
- The "closure problem"
- MHD equations ("single fluid")

(a) Electric and magnetic fields

Calculate force for next

Find trajectory of particles

Solve Maxwell's equations

(over simplified)

Piel, Ch. 9: Kinetic Theory

KINETIC THEORY

Boltzmann equation

FLUID MODELS

collisional MHD

SINGLE PARTICLE DRIFTS

concept of mobility

collisionality

(over simplified)

Particle Phase Space

but single particle effects are relatively small when the plasma parameter is large

So f(x,v,t) becomes "nearly smooth"

$\Delta N^{(\alpha)} = f^{(\alpha)}(\mathbf{r}, \mathbf{v}, t) \Delta x \Delta y \Delta z \Delta v_x \Delta v_y \Delta v_z$

$f^{(\alpha)}(\mathbf{r}.\mathbf{v},t) = \sum \delta(\mathbf{r}-\mathbf{r}_k(t))\delta(\mathbf{v}-\mathbf{v}_k(t))$

 $N^{(\alpha)} = \iint f^{(\alpha)}(\mathbf{r}, \mathbf{v}, t) \,\mathrm{d}^3 r \,\mathrm{d}^3 v$

 $n^{(\alpha)}(\mathbf{r}, t) = \int f^{(\alpha)}(\mathbf{r}, \mathbf{v}, t) \mathrm{d}^3 v$

$u = (1/n) \int vf \, \mathrm{d}v$

 $p = \int m(v - u)^2 f \,\mathrm{d}v$

Particle Phase Space

plus higher-order velocity-space moments

Vlasov Equation (6 dimensions)

$$\frac{\partial f}{\partial t} = -\frac{\partial}{\partial x}(fv_x) - \frac{\partial}{\partial v_y}$$

$$\frac{\partial f}{\partial t} + v_x \frac{\partial f}{\partial x} + a \frac{\partial f}{\partial v_x} =$$

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_r f + \mathbf{a} \cdot \nabla_v f =$$

What is the "Boltzman Eq"? How does it differ from the Vlasov Eq?

Conservation Property of Vlasov Equation

 $\frac{\partial N}{\partial t} = \frac{\partial}{\partial t} \iint f \, \mathrm{d}x \, \mathrm{d}v = = -\int_{\infty}^{\infty} \mathrm{d}v \left\{ \begin{bmatrix} vf \end{bmatrix}_{x=0}^{x=0} \right\}_{x=0}^{x=0}$ $-\int_{v=0}^{\infty} \mathrm{d}x \left\{ \begin{bmatrix} af \end{bmatrix}_{v=0}^{v=0} \right\}$

 $\frac{\partial f}{\partial t} = -\frac{1}{\partial t}$

$$-\iint v \frac{\partial f}{\partial x} dx dv - \iint a \frac{\partial f}{\partial v} dx dv$$
$$= \infty - \int_{-\infty}^{\infty} f \frac{dv}{dx} dx \bigg\}$$
$$= \infty - \int_{-\infty}^{\infty} f \frac{da}{dv} dv \bigg\} = 0$$

by definition...

$$\frac{\partial}{\partial x}(fv_x) - \frac{\partial}{\partial v_x}(fa)$$
16

Particle Trajectories and the Vlasov Equation

 $\frac{\mathrm{d}f(\mathbf{x}(t),\mathbf{v}(t),t)}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial \mathbf{x}} \cdot \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} + \frac{\partial f}{\partial \mathbf{v}} \cdot \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}$

$= \frac{\partial f}{\partial t} + \frac{\partial f}{\partial \mathbf{x}} \cdot \mathbf{v} + \frac{\partial f}{\partial \mathbf{v}} \cdot \frac{q}{m} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) = 0$

Also...

The Vlasov equation is invariant under time reversal, $(t \rightarrow -t)$, $(\mathbf{v} \rightarrow -\mathbf{v})$.

Velocity-Space Moments of the Vlasov Equation

$$-\frac{\partial}{\partial x}(fv_x) - \frac{\partial}{\partial v_x}(fa)$$

$$\int_{\alpha} q_{\alpha} \int f_{\alpha} d^3 v$$

$$v f dv + a [f]_{-\infty}^{\infty} = \frac{\partial n}{\partial t} + \frac{\partial}{\partial x} (nu)$$

$$\begin{array}{c}
q_{\alpha} \int \mathbf{v}_{\alpha} f_{\alpha} d^{3} v \\
\frac{\partial}{\partial x} \int v^{2} f dv + a \int v \frac{\partial f}{\partial v} dv \\
\end{array}$$

The Fluid Closure Problem...

$$0 = \frac{\partial}{\partial t} \int mvf \, dv + \frac{\partial}{\partial x} \int v^2 f \, dv + a \int v \frac{\partial f}{\partial v} \, dv$$

$$= \frac{\partial}{\partial t} \int mvf \, dv + \frac{\partial}{\partial x} \left[\int m(v-u)^2 f \, dv + nmu^2 \right]$$

$$+ a \left([vf]_{-\infty}^{\infty} - \int f \frac{dv}{dv} \, dv \right)$$

$$= \frac{\partial}{\partial t} (nmu) + \frac{\partial p}{\partial x} + u \frac{\partial}{\partial t} (nmu) + (nmu) \frac{\partial u}{\partial x} - nma$$

$$= nm \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} \right) + \frac{\partial p}{\partial x} - nma,$$

$$p = \int m(v-u)^2 f \, du$$

19

What is the dynamics of p?

Chapter 5 Fluid Models

5	Fluid	Models	
	5.1	The Tw	o-Fluid Model
		5.1.1	Maxwell's Equation
		5.1.2	The Concept of a l
		5.1.3	The Continuity Eq
		5.1.4	Momentum Transp
		5.1.5	Shear Flows
	5.2	Magnet	ohydrostatics
		5.2.1	Isobaric Surfaces
		5.2.2	Magnetic Pressure
		5.2.3	Diamagnetic Drift
	5.3	Magnet	ohydrodynamics
		5.3.1	The Generalized C
		5.3.2	Diffusion of a Mag
		5.3.3	The Frozen-in Ma
		5.3.4	The Pinch Effect.
		5.3.5	(Application: Alfvé
		5.3.6	Application: The I
	Probl	ems	

tions
a Fluid Description 109
Equation
sport
8
re
ft
Ohm's Law
agnetic Field
lagnetic Flux
vén Waves
Parker Spiral 128

Chapter 5 **Fluid Models**

 $-\frac{\partial N}{\partial t} = I_N(x + t)$

Fig. 5.3 Definitions used to derive the continuity equation

$$\Delta x) - I_N(x) \approx \frac{\partial I_N}{\partial x} \Delta x$$
 (5.6)

 $\frac{l}{t} + \frac{\partial (n \, u_x)}{\partial x} = 0$

Convective Derivative $\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t} = \frac{\partial \mathbf{u}}{\partial t} + \frac{\partial \mathbf{u}}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial \mathbf{u}}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t} + \frac{\partial \mathbf{u}}{\partial z}\frac{\mathrm{d}z}{\mathrm{d}t}$

∂t

 $\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\mathbf{u}} = \frac{\partial \mathbf{u}}{\partial u} + (\mathbf{u} \cdot \nabla)\mathbf{u}$

(Field Variables)

Eulerian Description FLUID DELAMICS IS MOST COMONLY Discribbo Using FIELD QUALTITIES $\rho(x,\epsilon) \quad \overline{u}(x,\epsilon) \quad T(x,\epsilon)$ TH PROPERTY AT X EUCLUSINTIME. THIS IS THE EULERIAN DESCRIPTION. LAGRANGIAN CO EULERIAN ANE DIFFERENT WAYS TO NESCRUSP THE SAMO THING. THEY ARD FOUIDALENT! EULERIAN LAGRAMIAN $P(\overline{x}, \epsilon) \qquad P(\overline{x}_{o}, \epsilon) = p[\overline{x}_{o}(\overline{x}, \epsilon), \epsilon]$ $p(\overline{x}, \epsilon) = p[\overline{x}(\overline{x}_{o}, \epsilon), \epsilon] \qquad p(\overline{x}_{o}, \epsilon)$

Integral Relations

Osborn Reynolds (Reynolds Transport Theory)

1842-1912

Integral Relations (Section 4.2)

 $\frac{d}{dt} \int_{V(t)} (\rho f) dV = \int_{V} \frac{\partial(\rho f)}{\partial t} dV + \int_{A} d\mathbf{A} \cdot \mathbf{U}(\rho f)$ $= \int_{V} \left(\rho \frac{\partial f}{\partial t} + f \frac{\partial \rho}{\partial t} + \nabla \cdot \rho f \mathbf{U} \right) dV$ $= \int_{V} \left(\rho \frac{\partial f}{\partial t} + f \frac{\partial \rho}{\partial t} + f \nabla \cdot \rho \mathbf{U} \right) + \rho \mathbf{U} \cdot \nabla f dV$ $= \int_{V} \rho \left(\frac{\partial f}{\partial t} + \mathbf{U} \cdot \nabla f \right) dV$ $= \int_{V} \rho \frac{df}{dt} dV$

CONSERVATION DE Mass

 $\frac{2\rho}{2\epsilon} + \overline{\nabla} \cdot (\rho \overline{u}) = 0$ $\frac{29}{2\epsilon} + (\overline{U} \cdot \overline{D}) = -9 \nabla \cdot \overline{U}$ $\frac{Dg}{Dt} = -\rho \nabla \cdot \overline{u}$

$$= -\frac{2}{2x_{i}}(\rho H_{i})\Delta x_{i}\Delta$$
$$= -\Delta v \nabla \cdot (\rho \overline{u})$$

!!

Newton's Law

NEWTON'S LAW	F=
PARTICLE	F = -

NEWTON'S LAW FOR A FLUID:

 $F = \frac{B}{2}(p\overline{u})$ $= \exists_{i}(p\overline{u}) + \overline{\nabla} \cdot (p\overline{u} \overline{u})$ $= \frac{1}{2\epsilon} \left(\rho u_i \right) + \frac{1}{2\epsilon} \left(\rho u_i u_j \right)$ $= g \left[\frac{2\overline{u}}{2\overline{t}} + (\overline{u} \cdot \overline{\sigma}) \overline{u} \right] + \overline{u} \left[\frac{2\overline{u}}{2\overline{t}} + \overline{\sigma} \cdot f \overline{\sigma} \overline{v} \right]$ -CONSERVATION σF MASS 27

->(pū)u. FLUX Montar FROM FLUID ELEMENT

Ma de (mū)

Momentum $\mathcal{P}\left(\frac{2\overline{u}}{2t} + (\overline{u} \cdot \overline{v})\overline{u}\right) = \mathcal{P}\overline{g} + \nabla \cdot \overline{z}$ = T = STRESS TENSON = USUALLY SYMMETRIC

- = HAS NORMAL STRESS ~ PRESSURP = HAS SHEAN SMESS ~ (OFF DIAJONAL) 6 RADIENTS OF STRESS PADDUCE FUNCE

C. DO IMPLIES TENSILE STRESS Tii CO INPUES COMPRESSIVE STRESS Ti; (iti) And SMEAN STRESSES

Fluid Mechanics (Eulerian and Lagrangian Description part 1)

https://youtu.be/zyyzEiKftIM?si=dBo1EKIqRpKLTRAx

Momentum/Force Equation

 $\Delta I_{\rm P} = (mv_x) \Delta n(v_x) |v_x| \Delta y \Delta z$

Fig. 5.4 Calculation of pressure forces

Gain at x_0 : $I_{\mathbf{P}}^+(x_0)$

Loss at x_0 : $I_{\mathbf{P}}^-(x_0)$

Gain at $x_0 + \Delta x_0 : I_P^-(x_0 + \Delta x)$

Loss at $x_0 + \Delta x_0 : I_P^+(x_0 + \Delta x)$

$$\frac{\partial P_x}{\partial t} = I_{\rm P}^+(x_0) - I_{\rm P}^+(x_0)$$

$$\begin{aligned} s(x) &= \sum_{v_x > 0} \left[\Delta n(v_x)(mv_x) |v_x| \right]_{x_0} \Delta y \Delta z \\ s(x) &= \sum_{v_x < 0} \left[\Delta n(v_x)(mv_x) |v_x| \right]_{x_0} \Delta y \Delta z \\ s(x) &= \sum_{v_x < 0} \left[\Delta n(v_x)(mv_x) |v_x| \right]_{x_0 + \Delta x} \Delta y \Delta z \\ s(x) &= \sum_{v_x > 0} \left[\Delta n(v_x)(mv_x) |v_x| \right]_{x_0 + \Delta x} \Delta y \Delta z \end{aligned}$$

 $+\Delta x) + I_{\rm P}^{-}(x_0 + \Delta x) - I_{\rm P}^{-}(x_0)$

Pressure Gradient Force

$$n\langle v_x^2\rangle = \int f(v_x)v_x^2 \mathrm{d}v_x$$

$$v_{\chi} = u_{\chi} + \tilde{v}_{\chi}$$

$$\frac{\partial}{\partial t}(nmu_{x}) = -m\frac{\partial}{\partial x}\left[n\left(\langle u_{x}^{2}\rangle + 2u_{x}\langle \tilde{v}_{x}\rangle + \langle \tilde{v}_{x}\rangle\right)\right) + \langle \tilde{v}_{x}\rangle$$

$$\sim \mathbf{Pressure}$$

$$\frac{\partial}{\partial t}(nmu_{x}) = -\frac{\partial}{\partial x}\left[nmu_{x}^{2} + nk_{B}T\right]$$

Momentum/Force Equation $nm\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) = nq(\mathbf{E} + \mathbf{u} \times \mathbf{B}) - \nabla p^{\mathbf{b}}$

- = T = STRESS TENSON = USUALLY SYMMETRIC = HAS NORMAL STRESS ~ PRESSURP = HAS SHEAN SMESS ~ (OFF DIAJONAL) 6 RADIENTS OF STRESS PRODUCE FURCE
- C. DO IMPLIES TENSILE STRESS Tii CO INPUES COMPRESSIVE STRESS Ti; (iti) And SMEAN STRESSES

Momentum

$nm_{i}\frac{\partial \mathbf{u}_{i}}{\partial t} = ne(\mathbf{E} + \mathbf{u}_{i} \times \mathbf{B}) - \nabla p_{i} + nm_{i}\mathbf{g} + n\nu_{ei}m_{e}(\mathbf{u}_{e} - \mathbf{u}_{i})$ $nm_{\rm e}\frac{\partial \mathbf{u}_{\rm e}}{\partial t} = -ne(\mathbf{E} + \mathbf{u}_{\rm e} \times \mathbf{B}) - \nabla p_{\rm e} + nm_{\rm e}\mathbf{g} + n\nu_{\rm ei}m_{\rm e}(\mathbf{u}_{\rm i} - \mathbf{u}_{\rm e})$

"Two Fluid"

MHD: "Single Fluid" from "Two Fluid"

 $nm_{i}\frac{\partial \mathbf{u}_{i}}{\partial t} = ne(\mathbf{E} + \mathbf{u}_{i} \times \mathbf{B})$ $nm_{\rm e}\frac{\partial \mathbf{u}_{\rm e}}{\partial t} = -ne(\mathbf{E} + \mathbf{u}_{\rm e} \times \mathbf{B}) - \nabla p_{\rm e} + nm_{\rm e}\mathbf{g} + n\nu_{\rm ei}m_{\rm e}(\mathbf{u}_{\rm i} - \mathbf{u}_{\rm e})$

 $\rho_{\rm m} = n(m_{\rm i} + m_{\rm e})$ p =

Difference:

 $\frac{m_{\rm i}m_{\rm e}}{e}\frac{\partial \mathbf{j}}{\partial t} = e\rho_{\rm m}$ -m

 $\mathbf{E} + \mathbf{v}_{m} \times \mathbf{B} =$

$$\mathbf{S}) - \nabla p_{i} + nm_{i}\mathbf{g} + n\nu_{ei}m_{e}(\mathbf{u}_{e} - \mathbf{u}_{i})$$

$$= \mathbf{j} \times \mathbf{B} - \nabla p + \rho_{\mathrm{m}} \mathbf{g}$$

$$p = p_{\mathrm{e}} + p_{\mathrm{i}}$$

$$\mathbf{v}_{\mathrm{m}} = \frac{(m_{\mathrm{i}} \mathbf{u}_{\mathrm{i}} + m_{\mathrm{e}} \mathbf{u}_{\mathrm{e}})}{m_{\mathrm{e}} + m_{\mathrm{i}}}$$

$$\mathbf{j} = ne(\mathbf{u}_{\mathrm{i}} - \mathbf{u}_{\mathrm{e}})$$

$$\int_{n} \left(\mathbf{E} + \mathbf{v}_{\mathrm{m}} \times \mathbf{B} - \frac{\nu_{\mathrm{ei}} m_{\mathrm{e}}}{n e^{2}} \mathbf{j} \right)$$
$$n_{\mathrm{i}} \mathbf{j} \times \mathbf{B} - m_{\mathrm{e}} \nabla p_{\mathrm{i}} + m_{\mathrm{i}} \nabla p_{\mathrm{e}}$$
$$1$$

$$= \eta \mathbf{j} + \frac{\mathbf{I}}{ne} (\mathbf{j} \times \mathbf{B} - \nabla p_{e})$$
35

More: Piel / Chapter 5: "Fluid" Equations

Equilibrium and force balance

Alfvén wave

Next Lecture