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Last Lecture

• Coulomb collisions and the Coulomb logarithm

• Ambipolar diffusion

• (“Classical”) Transport in a magnetized plasma
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Review: ez × (A × ez) = A⊥ ~ <ρρ>⋅A
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Review: ez × (A × ez) = A⊥ ~ <ρρ>⋅A
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Review: “Drift” with Collions
84 4 Stochastic Processes in a Plasma

loss per unit time. τcoll is the mean free time between two collisions defined in
Eq. (4.15).

The elastic scattering of electrons on atoms is almost isotropic [68]. Therefore, on
average, the electron loses its mean momentum mev̄e and we can write the equation
of motion for an average electron

m ˙̄v = −eE − mv̄νm . (4.25)

This average electron now moves in −E-direction. The quantity νm = 1/τcoll
is the effective collision frequency for momentum transfer. Because of the one-
dimensional motion, the vector symbol was dropped. The solution of this equation
of motion

v̄(t) = − eE
mνm

[
1 − e−νmt ]+ v(0)e−νmt (4.26)

has two parts: the first describes the approach to a terminal velocity

vd = − e
mνm

E = −µe E , (4.27)

the second the loss of memory on the initial velocity v0. The terminal velocity vd is
called the drift velocity, which is established when the electric field force is balanced
by the friction force. The mobilities of electrons and ions are defined as

µe = e
meνm,e

; µi = e
miνm,i

. (4.28)

4.3.2 Electrical Conductivity

The drift velocity of electrons and ions can be used to define the electric current
density

j = je + ji = n[(−e)vde + evdi] = ne(µe + µi)E = σ E . (4.29)

The linear relation between current density and electric field is the equivalent to
Ohm’s law. The quantity σ is the total conductivity1 of the gas discharge. Likewise
we define the conductivity of the electron and ion gas

σe,i = neµe,i = ne2

me,iνm
. (4.30)

1In the literature, the same symbol σ is used for the conductivity and the collision cross section,
or µ for the mobility and the magnetic moment, but confusion is unlikely because of the different
context
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Review: Ambipolar Diffusion

86 4 Stochastic Processes in a Plasma

4.3.3.1 Ambipolar Diffusion

The situation for plasma electrons is quite different, because diffusion does not
mean that the electrons collide with other electrons. This effect can be neglected
for weakly coupled plasmas. Rather, as described above, the net motion is only
determined by their thermal motion and the inhomogeneous density distribution. In
this way, electron diffusion is similar to drift motion with the electron temperature—
together with the density gradient—providing the driving force. The same consid-
erations can be applied to ions.

Einstein had shown that diffusion coefficient and mobility are related by the
temperature of the gas

D
µ

= kBT
e

. (4.32)

This relation quantifies the arguments given above that electron diffusion in a neutral
gas background with a density gradient is driven by the temperature and inhibited
by electron-neutral collisions. Because the diffusion of electrons and ions leads to
different values of the particle fluxes, which would lead to unequal densities of
electrons and ions, the plasma reacts by forming a space charge electric field E .
This field reduces the electron diffusion and accelerates the ion diffusion until the
two fluxes reach a common value and the plasma remains macroscopically neutral.
This final state is called ambipolar diffusion when electrons and ions are lost at the
same rate and E is called the ambipolar electric field.

Figure 4.11 shows schematically how electron and ion density profiles in a
plasma look like under the influence of ambipolar diffusion. The difference between
the two profiles is exaggerated, for clarity. In the plasma center, a surplus of ions is
expected that generates a positive plasma potential in the plasma center because
electrons have the tendency to leave the system faster than ions. Therefore, a
slight surplus of electrons is found in the outer plasma region. The correspond-
ing space charge field E that accelerates the ions but slows down the electrons,
is indicated.

The particle fluxes for this diffusion process are given by

Γ e,i = ±nµe,iE − De,i∇n . (4.33)

Fig. 4.11 Cartoon of ion and
electron density profile for
ambipolar diffusion. The
plasma is bounded by walls at
x = ±a
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Review: Collisional “Drift” with a Magnetic Field
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Review: Collisional “Drift” with a Magnetic Field
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Conductivity in a Magnetized Plasma

4.3 Transport 91

v̄x = νm,i"x = Ex

Bz

ωci/νm,i

1 + (ωci/νm,i)2 = µi Ex

1 + (ωci/νm,i)2

v̄y = νm,i"y = − Ex

Bz

(ωci/νm,i)
2

1 + (ωci/νm,i)2 (4.46)

Here, µi = e(mνm,i)
−1 is the ion mobility. The resulting velocities v̄x and v̄y are

plotted in Fig. 4.16 as a function of the Hall parameter. ωci/νm,i, which describes
the number of gyro periods between two collisions. The Hall effect in solid matter
was discovered, in 1879, by Edwin Hall (1855–1938). When ωci/νm,i " 1, the ions
experience only few collisions and the velocity v̄y approaches the E×B velocity
while v̄x → 0. This is the limit of a magnetized plasma. In the opposite limit,
ωci/νm,i " 1, the ion motion is preferentially in x-direction and approaches the
collisional result v̄x = µi Ex of the unmagnetized plasma.

Instead of particle velocities we can also consider current densities, which lead
to the ion conductivity tensor in a collisional magnetized plasma




jx
jy
jz



 = σi





1
1 + (ωci/νm,i)2

ωci/νm,i

1 + (ωci/νm,i)2 0

−ωci/νm,i

1 + (ωci/νm,i)2

1
1 + (ωci/νm,i)2 0

0 0 1




·




Ex
Ey
Ez



 . (4.47)

Here, σi = ne2/(miνm,i) is the ion conductivity in the unmagnetized plasma. The
current in electric field direction is called the Pedersen current and the cross-field
current the Hall current. The current along the magnetic field is the same as in the
unmagnetized case. Similar expressions can be derived for electrons, in which the
ratio ωce/νm,e determines the direction of the current.

In the ionosphere, the conductivity parallel to the field lines is several orders of
magnitude higher than the Hall and Pedersen conductivities. Therefore, magnetic
field lines connecting the ionosphere with the magnetosphere can be considered
as wires that transport current between these regions. Moreover, magnetic field

Fig. 4.16 Normalized ion
velocities in a crossed field
situation with collisions

Pedersen Hall
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Outline Today

• Moments of the distribution function

• Fluid equations (“two fluid”)

• The “closure problem”

• MHD equations (“single fluid”)
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Piel, Ch. 5: Fluid Theory

(over simplified)11



Piel, Ch. 9: Kinetic Theory
220 9 Kinetic Description of Plasmas

Fig. 9.1 The hierarchy
of plasma models
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of a dielectric with any of the three levels of plasma description. In particular, we
will see in kinetic theory, what the concepts of cold plasma and warm plasma really
mean.

9.1 The Vlasov Model

A complete description of a plasma must on the one hand include fluid aspects
and self-consistent fields, and on the other hand the velocity distributions of the
particle species. Such a concept is developed in kinetic theory. In this Section, we
will abandon the true particle positions, but use the probability distribution in real
space and in velocity space. For collisionless plasmas this can be done in terms of
the Vlasov model that was introduced, in 1938, by Anatoly Vlasov (1908–1975).

9.1.1 Heuristic Derivation of the Vlasov Equation

In the fluid model we became acquainted with the concept of replacing particle
trajectories by a statistical description of the mean properties of the plasma particles
within small fluid elements. There, we had defined the mass density ρm(r, t) and
the flow velocity u(r, t), which are connected by the conservation of mass

∂

∂t
ρm(r, t) + ∇ · [ρm(r, t)u(r, t)] = 0 . (9.1)

In kinetic theory, it is no longer sufficient to consider a mean flow velocity, but
the evolution of the number of particles in a certain velocity interval d3v about
a velocity vector v has to be explicitely described. The mass #m inside a small
volume ∆x∆y∆z of real space was defined by

#m = ρm(r, t)#x#y#z . (9.2)

(over simplified)12



Particle Phase Space

9.1 The Vlasov Model 221

In analogy, we now subdivide velocity space into small bins, !vx!vy!vz , and
consider the number of particles !N (α) of species α inside an element of a six-
dimensional phase space that is spanned by three spatial coordinates and three
velocity coordinates

!N (α) = f (α)(r, v, t)!x!y!z!vx!vy!vz . (9.3)

Taking the limit of infinitesimal size, d3r d3v, needs a short discussion. When phase
space is subdivided into ever finer bins, the problem arises that, in the end, we will
find one or no plasma particle inside such a bin. The distribution function f (α)

would then become a sum of δ-functions

f (α)(r.v, t) =
∑

k

δ(r − rk(t))δ(v − vk(t)) , (9.4)

which represents the exact particle positions and velocities. However, then we had
recovered the problem of solving the equations of motion for a many-particle sys-
tem, of say 1020 particles; instead, we are searching for a mathematically simpler
description by statistical methods.

For this purpose, we start with finite bins, !x!y!z!vx!vy!vz , of macro-
scopic size, which contain a sufficient number of particles to justify statistical tech-
niques. Then we define a continuous distribution f ( j) on this intermediate scale and
require that f (α) remains continuous in taking the limit. One could imagine that this
is equivalent to grind the real particles into a much finer “Vlasov sand”, where each
grain of sand has the same value of q/m (which is the only property of the particle
in the equation of motion) as the real plasma particles, and is distributed such as
to preserve the continuity of f (α). This approach is called the Vlasov picture. This
subdivision comes at a price, because we loose the information of the arrangement
of neighboring particles, i.e., correlated motion or collisions. Hence, the Vlasov
model does only apply to weakly coupled plasmas with $ " 1.

A different way to give a kinetic description will be introduced below in Sect. 9.4
by combining the particles inside a mesoscopic bin into a superparticle of the same
q/m. Then we may end up with only 104–105 superparticles for which the equations
of motion can be solved on a computer. However, forming superparticles enhances
the grainyness of the system and the particles inside a superparticle are artificially
correlated.

The function f (α) has the following normalisation,

N (α) =
∫∫

f (α)(r, v, t) d3r d3v , (9.5)

where N (α) is the total number of particles of species α. The particle density in real
space, the mass density, and the charge density then become

n(α)(r, t) =
∫

f (α)(r, v, t)d3v (9.6)
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but single particle effects are relatively small 
when the plasma parameter is large 

So f(x,v,t) becomes “nearly smooth”
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Particle Phase Space
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which is just the continuity equation (5.8). Here, u = (1/n)
∫

v f dv is again the
fluid velocity. Likewise, we can multiply all terms by mv and perform the integration
to obtain

0 = ∂

∂t

∫
mv f dv + ∂

∂x

∫
v2 f dv + a

∫
v
∂ f
∂v

dv

= ∂

∂t

∫
mv f dv + ∂

∂x

[∫
m(v − u)2 f dv + nmu2

]

+ a
([

v f
]∞
−∞ −

∫
f

dv

dv
dv

)

= ∂

∂t
(nmu) + ∂p

∂x
+ u

∂

∂t
(nmu) + (nmu)

∂u
∂x

− nma

= nm
(
∂u
∂t

+ u
∂u
∂x

)
+ ∂p
∂x

− nma , (9.17)

which is the momentum transport equation (5.28). In the second line, we have used
Steiner’s theorem for second moments of a distribution, and in the last line, we have
used the continuity equation, which cancels two terms. p =

∫
m(v − u)2 f dv is the

kinetic pressure.
By multiplying with vn and integrating the terms in the Vlasov equation, we

can define an infinite hierarchy of moment equations. Note that each of these equa-
tions is linked to the next higher member in the hierarchy: The continuity equation
links the change in density to the divergence of the particle flux. The momentum
equation describing the particle flux invokes the pressure gradient, which is defined
in the equation for the third moments, and so on. Hence, the fluid model must be
terminated by truncation. Instead of using a third moment equation that describes
the heat transport, one is often content with using an equation of state, p = nkBT ,
to truncate the momentum equation.

9.2 Application to Current Flow in Diodes

As a first example, we use the Vlasov equation to study the steady-state current
flow in electron diodes under the influence of space charge. The difference from the
treatment of the Child-Langmuir law in Sect. 7.2 is that we now allow for a thermal
velocity distribution of the electrons at the entrance point of a vacuum diode.

Before starting with the calculation, we summarize our expectations. The elec-
trons are in thermal contact with a heated cathode at x = 0, and only electrons
with a positive velocity leave the cathode. An anode with a positive bias voltage
is assumed at some distance x = L . Close to the cathode, the velocity distribution
function will be a half-Maxwellian with a temperature determined by the cathode
temperature. The limiting current from the Child-Langmuir law corresponds to the
situation that the electric field at the cathode vanishes. When the emitted current is
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Vlasov Equation (6 dimensions)
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ρm(r, t) =
∑

α

m(α)n(α)(r, t) (9.7)

ρ(r, t) =
∑

α

q(α)n(α)(r, t) . (9.8)

9.1.2 The Vlasov Equation

We now seek an equation of motion for the distribution function f (r, v, t) that gen-
eralizes the continuity equation (9.1). Let us first recall that, in the fluid model,
u(r, t) represents a physically measurable variable. Now, the velocity v becomes a
coordinate of velocity space. The difference lies in the fact that, in the fluid model,
the mean flow velocity is attached to a group of particles whereas in the kinetic
model the particles have this velocity because they happen to be in a bin with the
label v. However, when we arbitrarily select a small volume of phase space d3r d3v

about the vector (r, v), the particles in this bin form a group that behaves like a fluid
with the streaming velocity v.

To simplify our arguments, we consider the phase space of a one-dimensional
system, which has only the coordinates (x, vx ). The particle balance within a phase
space volume #x#vx is determined by the difference of inflow and outflow in
real space and, in addition, by acceleration and deceleration (see Fig. 9.2). For the
moment, we drop the superscript (α) and consider only one of the plasma species,
e.g., the electrons. Since f#x#vx is the number of particles in that small phase-
space element, we can write in analogy to the continuity equation (9.1)

∂ f
∂t

= − ∂

∂x
( f vx ) − ∂

∂vx
( f a) , (9.9)

in which f vx is the flux in real space and f a the flux in vx direction caused by
an acceleration a, as indicated by the arrows in Fig. 9.2. Here, we have neglected
creation and annihilation of charge carriers by ionization and recombination, as well

Fig. 9.2 The Vlasov equation
describes the flow of a
probability fluid in phase
space. A gain within the
shaded phase-space volume
#V = #x#v can be
achieved by a flux imbalance
(horizontal arrows) in real
space (x) or by a difference
of acceleration (vertical
arrows) in velocity space (v)
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What is the “Boltzman Eq”?  
How does it differ from the Vlasov Eq?

9.1 The Vlasov Model 223

as collisions that kick particles from one phase-space cell to another cell at far
distance. Noting that the phase-space coordinate vx is independent of x and that the
x-component of the Lorentz force is independent of vx , we have

∂ f
∂t

+ vx
∂ f
∂x

+ a
∂ f
∂vx

= 0 . (9.10)

Generalizing to three space coordinates and three velocities, we obtain

∂ f
∂t

+ v · ∇r f + a · ∇v f = 0 . (9.11)

Here, we have introduced the short-hand notations ∇r = (∂/∂x, ∂/∂y, ∂/∂z) and
∇v = (∂/∂vx , ∂/∂vy, ∂/∂vz). The particle acceleration a is determined by the elec-
tric and magnetic fields, which are the sum of external fields and internal fields from
the particle currents

a = q
m

(E + v × B) . (9.12)

It must be emphasized here that the internal electric and magnetic fields result from
average quantities like the space charge distribution ρ = ∑

α qα
∫

fαd3v and the
current distribution j = ∑

α qα
∫

vα fαd3v, which are both defined as integrals over
the distribution function. In this sense, the fields are average quantities of the Vlasov
system and any memory of the pair interaction of individual particles is lost. This is
equivalent to assuming weak coupling between the plasma particles and neglecting
collisions.

Combining (9.11) and (9.12) we obtain the Vlasov equation

∂ f
∂t

+ v · ∇r f + q
m

(E + v × B) · ∇v f = 0 . (9.13)

There are individual Vlasov equations for electrons and ions.

9.1.3 Properties of the Vlasov Equation

Before discussing applications of the Vlasov model, we consider general properties
of the Vlasov equation:

1. The Vlasov equation conserves the total number of particles N of a species,
which can be proven, for the one-dimensional case, as follows:

∂N
∂t

= ∂

∂t

∫∫
f dxdv = −

∫∫
v
∂ f
∂x

dxdv −
∫∫

a
∂ f
∂v

dxdv
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Conservation Property of Vlasov Equation 
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dx
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dv
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Here we have used that the expressions in square brackets vanish, because f
decays faster than x−2 for x → ±∞, otherwise the total number of particles
would be infinite. Similarly, f decays faster as v−2 for v → ±∞, otherwise the
total kinetic energy would become infinite. Further, dv/ dx = 0, because v and
x are independent variables, and da/ dv = 0 because the x component of the
Lorentz force does not depend on vx .

2. Any function, g[ 1
2 mv2 + qΦ(x)], which can be written in terms of the total

energy of the particle, is a solution of the Vlasov equation (cf. Problem 9.1).
3. The Vlasov equation has the property that the phase-space density f is constant

along the trajectory of a test particle that moves in the electromagnetic fields E
and B. Let [x(t), v(t)] be the trajectory that follows from the equation of motion
mv̇ = q(E + v × B) and ẋ = v, then

d f (x(t), v(t), t)
dt

= ∂ f
∂t

+ ∂ f
∂x

· dx
dt

+ ∂ f
∂v

· dv
dt

= ∂ f
∂t

+ ∂ f
∂x

· v + ∂ f
∂v

· q
m

(E + v × B) = 0 . (9.15)

4. The Vlasov equation is invariant under time reversal, (t → −t), (v → −v). This
means that there is no change in entropy for a Vlasov system.

9.1.4 Relation Between the Vlasov Equation and Fluid Models

Obviously, the Vlasov model is more sophisticated than the fluid models in that now
arbitrary distribution functions can be treated correctly. The fluid models did only
catch the first three moments of the distribution function: density, drift velocity and
effective temperature. Does this mean that the Vlasov model is just another model
that competes with the fluid models in accuracy?

The answer is that the collisionless fluid model is a special case of the Vlasov
model. The fluid equations can be exactly derived from the Vlasov equation by
taking the appropriate velocity moments for the terms of the Vlasov equation. We
give here two examples for this procedure and restrict the discussion to the simple
1-dimensional case.
Integrating the individual terms of the Vlasov equation over all velocities gives

0 = ∂

∂t

∫
f dv + ∂

∂x

∫
v f dv + a

[
f
]∞
−∞ = ∂n

∂t
+ ∂

∂x
(nu) , (9.16)
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in which f vx is the flux in real space and f a the flux in vx direction caused by
an acceleration a, as indicated by the arrows in Fig. 9.2. Here, we have neglected
creation and annihilation of charge carriers by ionization and recombination, as well
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Velocity-Space Moments of the Vlasov Equation

9.1 The Vlasov Model 223

as collisions that kick particles from one phase-space cell to another cell at far
distance. Noting that the phase-space coordinate vx is independent of x and that the
x-component of the Lorentz force is independent of vx , we have

∂ f
∂t

+ vx
∂ f
∂x

+ a
∂ f
∂vx

= 0 . (9.10)

Generalizing to three space coordinates and three velocities, we obtain

∂ f
∂t

+ v · ∇r f + a · ∇v f = 0 . (9.11)

Here, we have introduced the short-hand notations ∇r = (∂/∂x, ∂/∂y, ∂/∂z) and
∇v = (∂/∂vx , ∂/∂vy, ∂/∂vz). The particle acceleration a is determined by the elec-
tric and magnetic fields, which are the sum of external fields and internal fields from
the particle currents

a = q
m

(E + v × B) . (9.12)

It must be emphasized here that the internal electric and magnetic fields result from
average quantities like the space charge distribution ρ = ∑

α qα
∫

fαd3v and the
current distribution j = ∑

α qα
∫

vα fαd3v, which are both defined as integrals over
the distribution function. In this sense, the fields are average quantities of the Vlasov
system and any memory of the pair interaction of individual particles is lost. This is
equivalent to assuming weak coupling between the plasma particles and neglecting
collisions.

Combining (9.11) and (9.12) we obtain the Vlasov equation
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There are individual Vlasov equations for electrons and ions.
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x-component of the Lorentz force is independent of vx , we have

∂ f
∂t

+ vx
∂ f
∂x

+ a
∂ f
∂vx

= 0 . (9.10)

Generalizing to three space coordinates and three velocities, we obtain

∂ f
∂t

+ v · ∇r f + a · ∇v f = 0 . (9.11)

Here, we have introduced the short-hand notations ∇r = (∂/∂x, ∂/∂y, ∂/∂z) and
∇v = (∂/∂vx , ∂/∂vy, ∂/∂vz). The particle acceleration a is determined by the elec-
tric and magnetic fields, which are the sum of external fields and internal fields from
the particle currents

a = q
m

(E + v × B) . (9.12)

It must be emphasized here that the internal electric and magnetic fields result from
average quantities like the space charge distribution ρ = ∑

α qα
∫

fαd3v and the
current distribution j = ∑

α qα
∫

vα fαd3v, which are both defined as integrals over
the distribution function. In this sense, the fields are average quantities of the Vlasov
system and any memory of the pair interaction of individual particles is lost. This is
equivalent to assuming weak coupling between the plasma particles and neglecting
collisions.

Combining (9.11) and (9.12) we obtain the Vlasov equation

∂ f
∂t

+ v · ∇r f + q
m

(E + v × B) · ∇v f = 0 . (9.13)

There are individual Vlasov equations for electrons and ions.

9.1.3 Properties of the Vlasov Equation

Before discussing applications of the Vlasov model, we consider general properties
of the Vlasov equation:

1. The Vlasov equation conserves the total number of particles N of a species,
which can be proven, for the one-dimensional case, as follows:

∂N
∂t

= ∂

∂t

∫∫
f dxdv = −
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v
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dxdv −
∫∫

a
∂ f
∂v

dxdv
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Here we have used that the expressions in square brackets vanish, because f
decays faster than x−2 for x → ±∞, otherwise the total number of particles
would be infinite. Similarly, f decays faster as v−2 for v → ±∞, otherwise the
total kinetic energy would become infinite. Further, dv/ dx = 0, because v and
x are independent variables, and da/ dv = 0 because the x component of the
Lorentz force does not depend on vx .

2. Any function, g[ 1
2 mv2 + qΦ(x)], which can be written in terms of the total

energy of the particle, is a solution of the Vlasov equation (cf. Problem 9.1).
3. The Vlasov equation has the property that the phase-space density f is constant

along the trajectory of a test particle that moves in the electromagnetic fields E
and B. Let [x(t), v(t)] be the trajectory that follows from the equation of motion
mv̇ = q(E + v × B) and ẋ = v, then

d f (x(t), v(t), t)
dt

= ∂ f
∂t

+ ∂ f
∂x

· dx
dt

+ ∂ f
∂v

· dv
dt

= ∂ f
∂t

+ ∂ f
∂x

· v + ∂ f
∂v

· q
m

(E + v × B) = 0 . (9.15)

4. The Vlasov equation is invariant under time reversal, (t → −t), (v → −v). This
means that there is no change in entropy for a Vlasov system.

9.1.4 Relation Between the Vlasov Equation and Fluid Models

Obviously, the Vlasov model is more sophisticated than the fluid models in that now
arbitrary distribution functions can be treated correctly. The fluid models did only
catch the first three moments of the distribution function: density, drift velocity and
effective temperature. Does this mean that the Vlasov model is just another model
that competes with the fluid models in accuracy?

The answer is that the collisionless fluid model is a special case of the Vlasov
model. The fluid equations can be exactly derived from the Vlasov equation by
taking the appropriate velocity moments for the terms of the Vlasov equation. We
give here two examples for this procedure and restrict the discussion to the simple
1-dimensional case.
Integrating the individual terms of the Vlasov equation over all velocities gives

0 = ∂

∂t

∫
f dv + ∂

∂x

∫
v f dv + a

[
f
]∞
−∞ = ∂n

∂t
+ ∂

∂x
(nu) , (9.16)9.2 Application to Current Flow in Diodes 225

which is just the continuity equation (5.8). Here, u = (1/n)
∫

v f dv is again the
fluid velocity. Likewise, we can multiply all terms by mv and perform the integration
to obtain

0 = ∂

∂t

∫
mv f dv + ∂

∂x

∫
v2 f dv + a

∫
v
∂ f
∂v

dv

= ∂

∂t

∫
mv f dv + ∂

∂x

[∫
m(v − u)2 f dv + nmu2

]

+ a
([

v f
]∞
−∞ −

∫
f

dv

dv
dv

)

= ∂

∂t
(nmu) + ∂p

∂x
+ u

∂

∂t
(nmu) + (nmu)

∂u
∂x

− nma

= nm
(
∂u
∂t

+ u
∂u
∂x

)
+ ∂p
∂x

− nma , (9.17)

which is the momentum transport equation (5.28). In the second line, we have used
Steiner’s theorem for second moments of a distribution, and in the last line, we have
used the continuity equation, which cancels two terms. p =

∫
m(v − u)2 f dv is the

kinetic pressure.
By multiplying with vn and integrating the terms in the Vlasov equation, we

can define an infinite hierarchy of moment equations. Note that each of these equa-
tions is linked to the next higher member in the hierarchy: The continuity equation
links the change in density to the divergence of the particle flux. The momentum
equation describing the particle flux invokes the pressure gradient, which is defined
in the equation for the third moments, and so on. Hence, the fluid model must be
terminated by truncation. Instead of using a third moment equation that describes
the heat transport, one is often content with using an equation of state, p = nkBT ,
to truncate the momentum equation.

9.2 Application to Current Flow in Diodes

As a first example, we use the Vlasov equation to study the steady-state current
flow in electron diodes under the influence of space charge. The difference from the
treatment of the Child-Langmuir law in Sect. 7.2 is that we now allow for a thermal
velocity distribution of the electrons at the entrance point of a vacuum diode.

Before starting with the calculation, we summarize our expectations. The elec-
trons are in thermal contact with a heated cathode at x = 0, and only electrons
with a positive velocity leave the cathode. An anode with a positive bias voltage
is assumed at some distance x = L . Close to the cathode, the velocity distribution
function will be a half-Maxwellian with a temperature determined by the cathode
temperature. The limiting current from the Child-Langmuir law corresponds to the
situation that the electric field at the cathode vanishes. When the emitted current is
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ρm(r, t) =
∑

α

m(α)n(α)(r, t) (9.7)

ρ(r, t) =
∑

α

q(α)n(α)(r, t) . (9.8)

9.1.2 The Vlasov Equation

We now seek an equation of motion for the distribution function f (r, v, t) that gen-
eralizes the continuity equation (9.1). Let us first recall that, in the fluid model,
u(r, t) represents a physically measurable variable. Now, the velocity v becomes a
coordinate of velocity space. The difference lies in the fact that, in the fluid model,
the mean flow velocity is attached to a group of particles whereas in the kinetic
model the particles have this velocity because they happen to be in a bin with the
label v. However, when we arbitrarily select a small volume of phase space d3r d3v

about the vector (r, v), the particles in this bin form a group that behaves like a fluid
with the streaming velocity v.

To simplify our arguments, we consider the phase space of a one-dimensional
system, which has only the coordinates (x, vx ). The particle balance within a phase
space volume #x#vx is determined by the difference of inflow and outflow in
real space and, in addition, by acceleration and deceleration (see Fig. 9.2). For the
moment, we drop the superscript (α) and consider only one of the plasma species,
e.g., the electrons. Since f#x#vx is the number of particles in that small phase-
space element, we can write in analogy to the continuity equation (9.1)

∂ f
∂t

= − ∂

∂x
( f vx ) − ∂

∂vx
( f a) , (9.9)

in which f vx is the flux in real space and f a the flux in vx direction caused by
an acceleration a, as indicated by the arrows in Fig. 9.2. Here, we have neglected
creation and annihilation of charge carriers by ionization and recombination, as well

Fig. 9.2 The Vlasov equation
describes the flow of a
probability fluid in phase
space. A gain within the
shaded phase-space volume
#V = #x#v can be
achieved by a flux imbalance
(horizontal arrows) in real
space (x) or by a difference
of acceleration (vertical
arrows) in velocity space (v)
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velocity distribution of the electrons at the entrance point of a vacuum diode.
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with a positive velocity leave the cathode. An anode with a positive bias voltage
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Chapter 5
Fluid Models

“The time has come,” the Walrus said,
“To talk of many things:
Of shoes—and ships—and sealing wax—
Of cabbages—and kings—
And why the sea is boiling hot—
And whether pigs have wings.”

Lewis Carroll, Through the Looking-Glass

In the single-particle model (Chap. 3) the motion of the particles was derived from
fixed external electric and magnetic fields. This approach is very useful to obtain a
first insight into the richness of plasma motion, which results in a host of particle
drifts. The major drawback of this model is the neglect of the modification of the
fields by the electric currents represented by these drifts. The present chapter on
fluid models attempts to overcome this weakness.

The self-consistency of a plasma model is an important aspect. Only in such
models (Fig. 5.1) phenomena can be described where a magnetic field is apparently
frozen in the highly conductive plasma, such as in solar prominences. The Swedish
physicist and Nobel prize winner Hannes Alfvén (1908–1995) had recognized this
cooperative action of plasma and magnetic field and had predicted that a new type
of magnetohydrodynamic waves should exist, which are now named Alfvén waves.

Fig. 5.1 (a) A plasma model
with prescribed forces. (b) A
self-consistent plasma model
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Fig. 5.2 Shifted Maxwellian
with a mean drift velocity u.
Thee group of particles in the
interval [vx , vx +!vx ]
contains !n(vx ) particles

In the following, electrons and ions are assumed to form two independent fluids
that penetrate each other (two-fluid model). The defining properties of a plasma for
the fluid description are the densities ne and ni of electrons and ions, the tempera-
tures Te and Ti, as well as the streaming velocities ue and ui.

A streaming electron population can be described by a shifted distribution func-
tion (Fig. 5.2), which for simplicity is assumed to be Maxwellian. However, the
arguments given below apply to arbitrary distributions. In one dimension, the shifted
Maxwellian has the form

fM(vx ) = n
(

m
2πkBT

)1/2

exp
(

−m(vx − ux )
2

2kBT

)
, (5.5)

with a mean drift velocity u = (ux , 0, 0) that defines the x-direction.

5.1.3 The Continuity Equation

The balance for the number of particles in a fixed cell of size !V = !x!y!z is
discussed for the one-dimensional flow described by (5.5). The number of particles
inside the interval [x, x +!x] is N = n A!x with A = !y!z. The incident particle
flux is IN = n Aux . When this flux is decelerated or accelerated inside the cell by
external forces, the flux on the exit side is larger or smaller.

Accordingly, the number of particles in the cell is diminished or increased
(Fig. 5.3)

− ∂N
∂t

= IN (x +!x) − IN (x) ≈ ∂ IN

∂x
!x . (5.6)

Fig. 5.3 Definitions used to
derive the continuity equation

N

x
x

x+∆x

IN(x+∆x)IN(x)

Chapter 5
Fluid Models

“The time has come,” the Walrus said,
“To talk of many things:
Of shoes—and ships—and sealing wax—
Of cabbages—and kings—
And why the sea is boiling hot—
And whether pigs have wings.”

Lewis Carroll, Through the Looking-Glass

In the single-particle model (Chap. 3) the motion of the particles was derived from
fixed external electric and magnetic fields. This approach is very useful to obtain a
first insight into the richness of plasma motion, which results in a host of particle
drifts. The major drawback of this model is the neglect of the modification of the
fields by the electric currents represented by these drifts. The present chapter on
fluid models attempts to overcome this weakness.

The self-consistency of a plasma model is an important aspect. Only in such
models (Fig. 5.1) phenomena can be described where a magnetic field is apparently
frozen in the highly conductive plasma, such as in solar prominences. The Swedish
physicist and Nobel prize winner Hannes Alfvén (1908–1995) had recognized this
cooperative action of plasma and magnetic field and had predicted that a new type
of magnetohydrodynamic waves should exist, which are now named Alfvén waves.

Fig. 5.1 (a) A plasma model
with prescribed forces. (b) A
self-consistent plasma model

(b)(a)
Electric and

magnetic fields

Find trajectory
of particles

Find trajectories from
solving equations of motion F

ind space charge and
current from

 trajectories

Solve Maxwell's equations

C
al

cu
la

te
 fo

rc
e 

fo
r 

ne
xt

po
in

t o
n 

tr
aj

ec
to

rie
s

A. Piel, Plasma Physics, DOI 10.1007/978-3-642-10491-6_5,
C© Springer-Verlag Berlin Heidelberg 2010

107

5.1 The Two-Fluid Model 111

In the last step, we have Taylor-expanded the particle flux and retained only
the differential change of the flux. Dividing by !V = A!x and taking the limit
!V → 0 gives

∂n
∂t

+ ∂(n ux )

∂x
= 0 . (5.7)

This result can easily be generalized to a three-dimensional flow pattern, which
results in the continuity equation

∂n
∂t

+ ∇ · (nu) = 0 . (5.8)

This balance equation describes the conservation of the number of particles in the
flow. When particles are generated or annihilated inside the cell, say by ionization
or recombination, the zero on the right hand side is replaced by a net production rate
S (see Sect. 4.2.3).

The continuity equation can be easily generalized to an equation for the conser-
vation of charge by introducing the charge density ρ = ∑

α nαqα and the current
density j = ∑

α nαqαuα

∂ρ

∂t
+ ∇ · j = 0 . (5.9)

5.1.4 Momentum Transport

The net force in the balance of the considered cell is a result of the sum of all forces
acting on the particles within the cell plus the export and import of momentum
by particles that leave and enter the cell. The starting point of our calculation is
Newton’s equation for the force acting on a single particle

m
dv
dt

= q(E + v × B) . (5.10)

Here, d/dt is the derivative calculated at the position of the point-like particle.
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Momentum/Force Equation

112 5 Fluid Models

in which u · ∇ represents the convective derivative, which describes the change of a
quantity originating from the motion of the flow. To gain an insight into this quantity,
consider a man in a boat that is driven by the flow of a river from a narrow region
with rapid flow speed to a wide reach of slow speed. Although the flow pattern is
continuous, and does not change in time, the experience of a subject following the
flow is a change in velocity. Hence, the correct balance of the internal forces for a
fluid element is

nm
[
∂u
∂t

+ (u · ∇)u
]

= nq(E + u × B) . (5.13)

We now need to sum up the surface forces that arise from particles entering and
leaving the fluid cell. For this purpose we consider the particle exchange through
the cell surface sketched in Fig. 5.4.

The calculation is presented for the x-direction only. The cell boundaries are at
x0 and x0 +"x . Further, we select a group of velocities between vx and vx +"vx .
The particle flux represented by this group of velocities is

"IN (vx ) = "n(vx )vx"y"z . (5.14)

The number density "n(vx ) of this particle group is related to the distribution
function f (v) by

"n(vx ) = "vx

∫∫
f (vx , vy, vz)dvydvz , (5.15)

In analogy to the definition of particle flux, we introduce the momentum flux that
is carried by the group of particles around vx

"IP = (mvx )"n(vx )|vx |"y"z . (5.16)

The momentum flux is the momentum transported through a boundary per unit time.
The factor |vx | is a measure for the rate at which the particles pass through the

Fig. 5.4 Calculation of
pressure forces
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boundary, and therefore a positive quantity. The gain and loss balance for the interval
[x0, x0 +!x] can hence be written as

Gain at x0 : I +
P (x0) =

∑

vx >0

[
!n(vx )(mvx )|vx |

]

x0
!y!z (5.17)

Loss at x0 : I −
P (x0) =

∑

vx <0

[
!n(vx )(mvx )|vx |

]

x0
!y!z (5.18)

Gain at x0 +!x0 : I −
P (x0 +!x) =

∑

vx <0

[
!n(vx )(mvx )|vx |

]

x0+!x
!y!z (5.19)

Loss at x0 +!x0 : I +
P (x0 +!x) =

∑

vx >0

[
!n(vx )(mvx )|vx |

]

x0+!x
!y!z . (5.20)

The upper index ± describes the sign of the velocity. Gain and loss by particles
moving to the left represent negative values. The net gain of momentum per unit
time then becomes

∂Px

∂t
= I +

P (x0) − I +
P (x0 +!x) + I −

P (x0 +!x) − I −
P (x0) . (5.21)

By Taylor expanding the momentum flux and replacing negative velocities by
|vx | = −vx , we can combine the result as

∂Px

∂t
= −m

∞∑

vx =−∞

([
!n(vx )v

2
x
]

x0+!x − [!n(vx )v
2
x ]x0

)
(5.22)

= −m
∂

∂x

(
n〈v2

x 〉
)
!x!y!z (5.23)

and n〈v2
x 〉 =

∫
f (vx )v

2
x dvx . The next step is to split the particle velocities into a

mean flow ux and a random thermal motion ṽx

vx = ux + ṽx . (5.24)

Then, we obtain the momentum balance as

∂

∂t
(nmux ) = −m

∂

∂x

[
n
(
〈u2

x 〉 + 2ux 〈ṽx 〉 + 〈ṽ2
x 〉
) ]

. (5.25)

For a one-dimensional Maxwellian we know that (1/2) m〈ṽ2
x 〉 = (1/2) kBT . By

definition, the average of the random motion is 〈ṽx 〉 = 0. Hence, the momentum
balance becomes

∂

∂t
(nmux ) = − ∂

∂x

[
nmu2

x + nkBT
]
. (5.26)
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balance becomes

∂

∂t
(nmux ) = − ∂

∂x

[
nmu2

x + nkBT
]
. (5.26)

30



Pressure Gradient Force

5.1 The Two-Fluid Model 113

boundary, and therefore a positive quantity. The gain and loss balance for the interval
[x0, x0 +!x] can hence be written as

Gain at x0 : I +
P (x0) =

∑

vx >0

[
!n(vx )(mvx )|vx |

]

x0
!y!z (5.17)

Loss at x0 : I −
P (x0) =

∑

vx <0

[
!n(vx )(mvx )|vx |

]

x0
!y!z (5.18)

Gain at x0 +!x0 : I −
P (x0 +!x) =

∑

vx <0

[
!n(vx )(mvx )|vx |

]

x0+!x
!y!z (5.19)

Loss at x0 +!x0 : I +
P (x0 +!x) =

∑

vx >0

[
!n(vx )(mvx )|vx |

]

x0+!x
!y!z . (5.20)

The upper index ± describes the sign of the velocity. Gain and loss by particles
moving to the left represent negative values. The net gain of momentum per unit
time then becomes

∂Px

∂t
= I +

P (x0) − I +
P (x0 +!x) + I −

P (x0 +!x) − I −
P (x0) . (5.21)

By Taylor expanding the momentum flux and replacing negative velocities by
|vx | = −vx , we can combine the result as

∂Px

∂t
= −m

∞∑

vx =−∞

([
!n(vx )v

2
x
]

x0+!x − [!n(vx )v
2
x ]x0

)
(5.22)

= −m
∂

∂x

(
n〈v2

x 〉
)
!x!y!z (5.23)

and n〈v2
x 〉 =

∫
f (vx )v

2
x dvx . The next step is to split the particle velocities into a

mean flow ux and a random thermal motion ṽx
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n
(
〈u2

x 〉 + 2ux 〈ṽx 〉 + 〈ṽ2
x 〉
) ]

. (5.25)

For a one-dimensional Maxwellian we know that (1/2) m〈ṽ2
x 〉 = (1/2) kBT . By

definition, the average of the random motion is 〈ṽx 〉 = 0. Hence, the momentum
balance becomes

∂

∂t
(nmux ) = − ∂

∂x

[
nmu2

x + nkBT
]
. (5.26)
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boundary, and therefore a positive quantity. The gain and loss balance for the interval
[x0, x0 +!x] can hence be written as
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∑
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x0
!y!z (5.17)
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P (x0) =

∑
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x0
!y!z (5.18)
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!y!z . (5.20)

The upper index ± describes the sign of the velocity. Gain and loss by particles
moving to the left represent negative values. The net gain of momentum per unit
time then becomes

∂Px

∂t
= I +

P (x0) − I +
P (x0 +!x) + I −

P (x0 +!x) − I −
P (x0) . (5.21)

By Taylor expanding the momentum flux and replacing negative velocities by
|vx | = −vx , we can combine the result as
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2
x
]

x0+!x − [!n(vx )v
2
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This is the correct balance for a fixed volume in space. On the r.h.s. of (5.26) we
find the stagnation pressure nmu2

x and the kinetic pressure p = nkBT . Evaluating
the derivatives on both sides and using the continuity Eq. (5.8) we obtain

nm
(
∂ux

∂t
+ ux

∂ux

∂x

)
= −∂p

∂x
. (5.27)

In this representation, the fluid element is considered to follow the flow, which can
be identified by the convective derivative on the l.h.s. of the equation. Generalizing
this one-dimensional result to three dimensions, and adding the volume forces, the
final result gives the momentum transport equation

nm
(
∂u
∂t

+ (u · ∇)u
)

= nq(E + u × B) − ∇ p . (5.28)

5.1.5 Shear Flows

In the previous paragraph, we have calculated the momentum exchange between
neighboring cells along the mean flow. This could be summed up into a new net
volume force, the pressure gradient. Now, we focus our attention on the momen-
tum exchange across the flow (Fig. 5.5). Because of their random thermal motion,
particles passing the boundaries at y and y + "y belong to populations that have
different mean flow velocities.

The calculation is quite similar to that of the previous paragraph, but now we
define a shear stress tensor Pi j

Pi j = nm〈ṽi ṽ j 〉 , (5.29)

which involves the random thermal velocities that are responsible for the momentum
exchange between neighboring cells. Pi j replaces the scalar pressure. Instead of the
pressure gradient we now have the divergence of the shear stress tensor. Shear flows
are associated with viscosity, which, however, is negligible in many plasmas.

Fig. 5.5 Momentum
transport in a shear flow. The
black horizontal arrows mark
the mean local velocity in the
flow. The shaded arrows
indicate the momentum
exchange by particles
traversing the boundary at y
and y +"y

x

y
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nmi
∂ui

∂t
= ne(E + ui × B) − ∇ pi + nmig + nνeime(ue − ui)

nme
∂ue

∂t
= −ne(E + ue × B) − ∇ pe + nmeg + nνeime(ui − ue) . (5.37)

The momentum exchange between the electron and ion fluid is described by a colli-
sion frequency νei and the mean exchanged momentum per volume, nme(ue − ui).

Instead of solving the pair of fluid equations, it is useful to transform these equa-
tions into a set of new variables that describe the mean mass motion vm and the
relative motion ∝ j of the two fluids. This approach is similar to splitting a two-
particle problem into center-of-mass motion and relative motion. The mean mass
motion is described by

ρm
∂vm

∂t
= j × B − ∇ p + ρmg (5.38)

with the mass density ρm = n(mi + me), total pressure p = pe + pi and the mean
mass velocity

vm = (miui + meue)

me + mi
. (5.39)

Note that now the Lorentz force j×B acts on the total current density. Moreover, the
mass motion is not affected by the friction between electron and ion fluid because
it does not change the total momentum, but leads only to redistribution between
electron and ion fluid.

When ∂vm/∂t = 0, (5.38) defines the static equilibria of a magnetized plasma,
which are defined by the force balance

0 = j × B − ∇ p + ρmg . (5.40)

This framework is called magnetohydrostatics. In the next two paragraphs we will
discuss two simple applications of this concept.

5.2.1 Isobaric Surfaces

Let us shortly return to the problem of toroidal confinement. Neglecting gravita-
tional forces as small compared to the magnetic forces, we define the magnetohy-
drostatic equilibrium by

j × B = ∇ p . (5.41)

By taking the dot product with B on the both sides of the equation, the dot product
vanishes yielding 0 = B · ∇ p, i.e., B and ∇ p are perpendicular to each other.
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Fig. 5.9 Magnetic pressure
and kinetic pressure in the
cross-section of a hot plasma
column with effective radius
a. The diamagnetic currents
weaken the magnetic
induction. The decrease of
magnetic pressure in the
center is described by the β
factor

(3.34), and the density of guiding centers. Hence, the diamagnetic magnetization is
proportional to the particle pressure. This is just what the fluid model says when
it balances pressure gradient and the Lorentz force from the diamagnetic current
in (5.28).

Applying this understanding of the diamagnetic current to a magnetically con-
fined fusion device, we can start from the pressure balance pkin + pmag = ptotal =
const, which results from (5.46), when we neglect the curvature force. Since the
kinetic pressure vanishes in the cool outer layers at the plasma surface, the mag-
netic field inside the plasma is weakened by the diamagnetism which increases with
plasma kinetic pressure pmag = ptotal − pkin, and takes a minimum in the center
of the plasma (see Fig. 5.9). This decrease of magnetic confinement in the plasma
center is described by the ratio β of the kinetic pressure at the center to the total
pressure at the surface, which is given by the magnetic pressure,

β = pkin(0)

ptotal
. (5.51)

5.3 Magnetohydrodynamics

In the preceding section we have described the plasma by two interpenetrating
fluids. The resulting momentum equations could be combined into a single equa-
tion that describes the mass motion. In this section we further introduce the rel-
ative motion between electron and ion fluid, which represents the electric current
density

j = ne(ui − ue) . (5.52)

Such a single-fluid model of mass motion and electric current flow is called magne-
tohydrodynamics (MHD).

5.3 Magnetohydrodynamics 121

5.3.1 The Generalized Ohm’s Law

A dynamic equation for the spatio-temporal evolution of the current results from the
momentum (5.37) after multiplying the ion equation by me and the electron equation
by mi, and subtracting the equations:

nmime
∂

∂t
(ui − ue) = ne(me + mi)E + ne(meui + miue) × B

−me∇ pi + mi∇ pe + n(me + mi)νeime(ue − ui) . (5.53)

This equation can be simplified by neglecting me in the sum of the masses. The
mixed term

meui + miue = miui + meue + mi(ue − ui) + me(ui − ue) (5.54)

= 1
n
ρmvm − (mi − me)

1
ne

j (5.55)

can be decomposed into contributions from mass motion and current density, which
results in

mime

e
∂j
∂t

= eρm

(
E + vm × B − νeime

ne2 j
)

−mij × B − me∇ pi + mi∇ pe . (5.56)

As long as we are interested in slowly varying phenomena, we can set ∂j/∂t = 0 and
neglect terms of the order of me/mi. In this way we obtain the generalized Ohm’s
law

E + vm × B = ηj + 1
ne

(j × B − ∇ pe) . (5.57)

Here, η = νeime/ne2 is the plasma resistivity that arises from Coulomb collisions
between electrons and ions. The l.h.s. of (5.57) is the correct electric field in the
moving reference frame. This electric field balances the voltage drop η j by the
resistivity, the contribution from the Hall effect j×B/(ne), and the electron pressure
term −∇ pe/ne.

5.3.2 Diffusion of a Magnetic Field

As an application of the generalized Ohm’s law, we consider a plasma that is moving
at a velocity vm, and at an arbitrary angle to the magnetic field direction. We start
from

E + vm × B = ηj = η

µ0
∇ × B , (5.58)
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nmi
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∂t
= ne(E + ui × B) − ∇ pi + nmig + nνeime(ue − ui)

nme
∂ue

∂t
= −ne(E + ue × B) − ∇ pe + nmeg + nνeime(ui − ue) . (5.37)

The momentum exchange between the electron and ion fluid is described by a colli-
sion frequency νei and the mean exchanged momentum per volume, nme(ue − ui).

Instead of solving the pair of fluid equations, it is useful to transform these equa-
tions into a set of new variables that describe the mean mass motion vm and the
relative motion ∝ j of the two fluids. This approach is similar to splitting a two-
particle problem into center-of-mass motion and relative motion. The mean mass
motion is described by

ρm
∂vm

∂t
= j × B − ∇ p + ρmg (5.38)

with the mass density ρm = n(mi + me), total pressure p = pe + pi and the mean
mass velocity

vm = (miui + meue)

me + mi
. (5.39)

Note that now the Lorentz force j×B acts on the total current density. Moreover, the
mass motion is not affected by the friction between electron and ion fluid because
it does not change the total momentum, but leads only to redistribution between
electron and ion fluid.

When ∂vm/∂t = 0, (5.38) defines the static equilibria of a magnetized plasma,
which are defined by the force balance

0 = j × B − ∇ p + ρmg . (5.40)

This framework is called magnetohydrostatics. In the next two paragraphs we will
discuss two simple applications of this concept.

5.2.1 Isobaric Surfaces

Let us shortly return to the problem of toroidal confinement. Neglecting gravita-
tional forces as small compared to the magnetic forces, we define the magnetohy-
drostatic equilibrium by

j × B = ∇ p . (5.41)

By taking the dot product with B on the both sides of the equation, the dot product
vanishes yielding 0 = B · ∇ p, i.e., B and ∇ p are perpendicular to each other.
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