## Lecture 5: Plasma Physics 1

APPH E6101x Columbia University

- ✓ Homework #2
- Charged Particle Drifts (Summary)
- ✓ Gyro-averaging
- ✓ More details from last week
- Adiabatic Invariants (Part 1)

# Outline

#### Examples (Part 2):

- Mirror
- Magnetosphere (dipole)
- Tokamak

# Adiabatic Invariants (Part 1)



#### See Fitzpatrick Sec. 2.8

# $(\mu, J, \psi)$

# Motion with weakly inhomogeneous B...



#### Use Bernstein's notation...

(See "handout": <u>http://sites.apam.columbia.edu/courses/apph6101x/Plasma1-Adiabatic-Handout.pdf</u>)



## Magnetic Force does not Change Kinetic Energy







# B(x) changing slowly...

HERE WE START WITH ...

(2) (1)

 $\frac{d\pi}{dt} = \frac{\pi}{\pi} \left( \overline{\chi} + (\overline{g} \cdot \overline{g}) \overline{\chi} + \cdots \right)$ TAILON EXPAND ABOUT gyno CENTER  $\Sigma(\pi) = \overline{\Sigma(R+s)}$  $\approx \overline{\Sigma(R)} + (\overline{S} \cdot \overline{S}) \overline{\Sigma} + \cdots$ 

マガスズ + 充入(気・同)え + ... (3)

# Drifts (separately)





(3) TERMS ...



NOW, I WAT TO AVERAGE THE

W.P. TERMS

So I going TO DO TTIS FOLLOWing

 $\overline{w} \times (\overline{\rho} \cdot \overline{\sigma}) \overline{\Lambda} = \overline{w} (\overline{\rho} \cdot \overline{\sigma}) \times \overline{\Lambda}$ 

THIS IS JUST WHICH ACTS O

(IT'S THE SAMI

# Drifts (separately)

LAST IS THE PRODUCT OF TWO OSCILLATING

277  

$$d\theta \ \dot{\tau} \times (\bar{\vartheta} \cdot \bar{\vartheta}) \bar{\tau} = \frac{1}{2\pi} \int_{0}^{2\pi} d\theta \ \overline{w} \times (\bar{\vartheta} \cdot \bar{\vartheta}) \bar{\tau}$$
  
which Fires some  
LIKE A constant plus  
something treat goes Li  
 $2\omega_{ce}!$  we wat the  
CONSTANT PART...

THOR IRE E

# Drifts (separately)

THEN USING

g= z fasine + 2 corel





 $\overline{\omega} = \omega \int \hat{q} \cos \theta - \hat{q} \sin \theta$ 

< ng>= = = 1 1 1 de [2, coro - 2, si-o][2, sino + 2, coro]  $=\frac{\omega^2}{2\pi}$   $\pm \int_{\pi}^{\pi} \int_{\pi}^{\pi$ 

 $\langle \overline{w}_{p} \rangle_{0} = \frac{w^{2}}{2R} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$ 9

 $\langle i_X(\overline{p},\overline{\tau}) \overline{\lambda} \rangle_{a} = \frac{\omega^2}{2n} \left[ \overline{\ell_1} \overline{\ell_2} - \overline{\ell_2} \overline{\ell_1} \right] \cdot \overline{\sigma} \times \overline{\lambda}$  $= -\frac{\omega^2}{2} \left( \lambda \times \overline{z} \right) \times \overline{\lambda}$ 





dr = VXR - M FBI At = VXR - M FBI 10

 $\frac{d\overline{v}}{dt} = \overline{v} \times \overline{\lambda} - \frac{w^2}{2\lambda} (\overline{\partial} \times \overline{\sigma}) \times \overline{\lambda}$  $= \overline{v} \times \overline{\lambda} - \frac{w^2}{2\lambda} [\overline{\sigma}(\overline{\chi}, \overline{\delta}) - \overline{\sigma}_{\rho} \overline{\sigma}, \overline{\lambda}]$ 7.8-0 NOW DEFING ME ±mwl R

## Magnetic Force does not Change Kinetic Energy

 $\frac{1}{b} \cdot \int \frac{dv}{dt} = \nabla$ 



 $m_{U}(T)P(T, DY, V_{U}, ..., V_{U}, ..., N_{U}) = -\frac{M}{M} \frac{2|0|}{25} = -\frac{M}{M} \frac{2|0|}{25}$ THEN, IF EM = CONSTANTS  $\frac{d}{dt}\left(\frac{1}{z}V_{1}^{2}+\frac{M}{m}B\right)=\frac{d}{dt}\left(\frac{1}{z}V_{1}^{2}+\frac{1}{z}V_{2}^{2}+\frac{1}{z}V_{2}^{2}\right)=0$ 

$$5.000 = -\frac{4}{2} \frac{2}{2}$$
  
 $here 5.5 = \frac{2}{5}$ 





# Magnetic Mirror(s)



 $\frac{d}{dt}\left(\frac{1}{2}V_{||}^2(s) + \frac{\mu}{m}B(s)\right) = 0$ 





# Adiabatic Invariants (Part 2)





## Harmonic Oscillate

- Separate descriptions of perpendicular and parallel motion,
- Fast gyration around B
- Slow perpendicular drift of gyro center



$$\frac{d^2 x}{dt^2} + \omega^2 x = 0$$

 $\omega = constant \qquad X(t) = x_0 cin(wt + \phi)$  $\frac{dx}{dt} = w x_0 coz(wt + \phi)$ 

KINETIC ENERgy PER UNIT MASS = 
$$\frac{1}{2} \left( \frac{dx}{dt} \right)^2$$
  
FORCE PER UNIT MASS =  $-\nabla V = -\frac{2V}{2x}$   
 $V = POTENTIAL PER UNIT$ 

So 
$$U(x) = \frac{1}{2} \omega^2 x^2$$

TOTAL ENERGY PEN UNIT MASS

$$W = \frac{1}{2} \left( \frac{q \times}{dr} \right)^{2} + V(x)$$
$$= \frac{1}{2} \omega^{2} \times \sqrt{2}$$

14



## Hamiltonian for an Oscillator



$$P_0 = m\Theta$$
  
 $V(0) = -\frac{m9}{\rho} \cos\Theta$ 

.

## Hamiltonian for an Oscillator

DURING THE CANNONICAL TRANSFORMATION, WE REQURE

59 Ldt = 59 (P.

| <br>A~         | s Tr | IESE | Two   |
|----------------|------|------|-------|
| <br>TE.        | ems  | mus7 | - DIF |
| <br>$\rho_{e}$ | RIVA | TUR  | OF    |

SINCE  $\frac{dF}{dt} = \frac{\partial 2F}{\partial 0} +$ 

HAVE

. .

 $H_{NEW} = H_{OLO} + \dot{\varphi}$ 

$$\left(P_{+}+\frac{2F}{2\varphi}\right)-\Theta\left(P_{+}-\frac{2F}{2\varphi}\right)+\frac{2F}{2z}$$

WE ARE FREE TO CHOOSE F(O, P, E) AS WE WISH PROVIDED THAT IT SATISFIES OUR REQUIREMENT.

## Hamiltonian for an Oscillator

 $\partial H$ dq $\overline{dt}$  $\partial p$  $\frac{dp}{dt}$  $\partial H$  $=-\overline{\partial q}$ 





WE CHOOSE  $P_A = \frac{2F}{20}$  $P_{f} = -\frac{2F}{20}$ THEN, HNEW = HOLD + 2F (LERT MILE) FOR A PENOULUM, IF F(O, Q, E) = zm wglei 0 Sing Po=m0=20=mwoosing But 0=0\_sing = m w om cosp & So  $P_{J} = -\frac{2F}{2\varphi} = \pm n w_{I} \theta_{n}^{2} = J$  $H_{NEW} = \omega_g J + \frac{1}{2} J s_{1N2} \varphi \frac{1}{\omega_g} \frac{2\omega_g}{2t}$ HARMONIC OF DSCILLATION FREQUENCY Very nice!

# Adiabatic Invariants (Part 3)





## For an oscillator x(t), What happens when $\omega(t)$ changes slowly with time?

- Separate descriptions of perpendicular and parallel motion
- Fast gyration around B
- Slow perpendicular drift of gyro center

$$\frac{dx}{dt} =$$

$$\frac{d^2 \times}{dt^2} =$$



PUTTING THIS INTO OUR EQUATION Cule! 

MOST RAPID MOTION IS IN THE OSCILLATION.

Order by Order with  $\dot{\nu}/\nu \ll 1$ 



 $\frac{24}{2e}$  is user show  $|X| < 2 \sqrt{2}$ 

# THEN, TO LEADING ORDER ... .

Order by Order with  $\dot{\nu}/\nu \ll 1$ 



but, how does energy and amplitude change with frequency?

## Understanding Energy/Amplitude for a Slowly Changing Oscillator

LET'S MULTIPLE BY 30

$$\frac{2}{26}\left(\frac{1}{2}\gamma^2\left(\frac{2\times}{26}\right)^2\right) +$$

 $\frac{2}{26}\left(\frac{1}{2}\gamma^{2}\left(\frac{2\times}{26}\right)^{2}+\frac{1}{2}\omega^{2}\times^{2}\right)=-\frac{2\times}{26}\frac{2^{2}\times}{2\epsilon^{2}}-\frac{2}{2\epsilon}\left(\gamma\left(\frac{2\times}{2\epsilon}\right)^{2}\right)$ NOW, THE TERM 20 24 is UERT VERT SMALL

 $\frac{2}{2\theta}\left(\frac{1}{2}\omega^2 x^2\right)$ 

 $= -\frac{2\times 2^{2}\times}{20} - \frac{\sqrt{2}}{2\varepsilon^{2}} - \frac{\sqrt{2}}{2\varepsilon} \left( \frac{2\times}{20} \right)^{2} - \frac{d^{2}}{d\varepsilon} \left( \frac{2\times}{20} \right)^{2}$ 



## Understanding Energy/Amplitude for a Slowly Changing Oscillator

SO IN THE SPIRIT OF OUR PENTURBATION ANALYSIS, WEIRE going TO IGNORG THIS TERM.

THEN  $\frac{2}{24}\left(\gamma\left(\frac{2\pi}{2\sigma}\right)^2\right) =$ 

BUT X(0)



NOW, THE TERM 20 222 is UERT VERT SMALL

$$-\frac{2}{2\theta}\left(\frac{1}{2}Y^{2}\left(\frac{2x}{2\theta}\right)^{2}+\frac{1}{2}\omega^{2}x^{2}\right)$$
must BE PENIDOIC

$$\frac{1}{2}Y^{2}\left(\frac{2x}{2\theta}\right)^{2}+\frac{1}{2}\omega^{2}x^{2}=PENIDOIC$$

$$\frac{1}{2}Y^{2}\left(\frac{2x}{2\theta}\right)^{2}+\frac{1}{2}\omega^{2}x^{2}=PENIDOIC$$

$$\frac{1}{2}Y^{2}\left(\frac{2x}{2\theta}\right)^{2}+\frac{1}{2}\omega^{2}x^{2}=0$$

$$\frac{1}{2}Y^{2}\left(\frac{2x}{2\theta}\right)^{2}+\frac{1}{2}\omega^{2}x^{2}=0$$

23



## Understanding Energy/Amplitude for a Slowly Changing Oscillator



AcTION



$$\frac{1}{2} \sqrt{x_{0}^{2}} = \frac{1}{2} \omega x_{0}^{2} = \frac{(1/2)\omega^{2}x_{0}^{2}}{\omega} = \frac{\text{Energy}}{\text{frequent}}$$

$$P = \frac{dx}{dt} \sim \sqrt{\frac{2x}{2g}}$$

$$dg = \frac{dx}{26}d\theta$$

$$= \oint P dq =$$

$$0 \le \theta \le 2\pi$$





### How Good are Adiabatic Invariants?



### How Good are Adiabatic Invariants?

### Answer: Exponentially good

 $\Delta J = 2 Re \left\{ \int_{at}^{a} dt \Lambda_{p} e^{iP \frac{2}{2} \frac{\omega_{0}}{2}} \right\}$ =  $2 \pi \left\{ \int d\phi \Lambda_{pe} e^{ip\phi} \frac{2w_{B}}{2\phi} \right\} \left( dt = \frac{d\phi}{w_{p}} \right)$ A hang a INTERNAL THIS UANISHE . " Kwo The y 00 THE INTEGRAX 1-COMPLEX P-PLANE ipwo  $\Delta J \sim \varrho$ WO = LOWEST WHERE SINGULARITY IN UPER  $W_0$  is singularity of  $W_g(t)$ Example:  $W_g(t) = W_0^2 \frac{1+ae}{1+ae}$ HALF PLANE K K So  $1 + e^{\alpha t}$ a>0 1~5 -(~a) + 00 Im ho = Tima a<sup>2</sup> THEN 26

#### Nonadiabaticity in mirror machines

Ronald H. Cohen, George Rowlands,<sup>a)</sup> and James H. Foote

Lawrence Livermore Laboratory, University of California, Livermore, California 94550 (Received 14 February 1977; final manuscript received 25 October 1977)



FIG. 1.  $\Delta \mu / \mu$  versus  $v^{-1}$  for the model field defined by Eqs. (21) and (29) with L = 20.2 cm,  $B_{00} = 10$  kG. Protons are started at z = 0,  $r_0 = 3$  cm with  $\mathbf{v}_{\perp}$  radial,  $v_{\perp} / v = 0.544$ .

#### Phys. Fluids 21(4), April 1978

See:

#### Hamiltonian\_Method\_I.nb

(Mathematica Notebook with charged-particle orbits in a magnetic mirror.)

#### Hamiltonian\_Method\_II.nb

(Mathematica Notebook with charged-particle orbits in a point dipole.)





# Drift Hamiltonian (Famous!)

$$H(\rho_{\scriptscriptstyle \parallel},\,\alpha\,,\,\psi,\,\chi)=\frac{1}{2}\,\rho_{\scriptscriptstyle \parallel}^2\,\frac{eB^2}{m\,c}\,+\,$$

then

$$\frac{d\chi}{dt} = \frac{\partial H}{\partial \rho_{\parallel}}, \quad \frac{d\rho_{\parallel}}{dt} = -\frac{\partial H}{\partial \chi}, \quad \frac{d\eta_{\parallel}}{\partial \chi}$$

The adiabatic invariance of J,

$$J=\frac{e}{c}\int\rho_{\parallel}d\mathbf{X}=\int mv_{\parallel}\,dl\,,$$

then follows from the standard classical mechanics<sup>4</sup> treatment. The Hamiltonian is just the energy E times c/e and it is conserved.

#### Guiding center drift equations

Allen H. Boozer

- $\mathbf{B} = \nabla \boldsymbol{\alpha} \times \nabla \boldsymbol{\psi},$  $\frac{\mu c}{\rho}B + c\Phi;$  $\mathbf{B} = \nabla \chi + \beta \nabla \psi + \gamma \nabla \alpha \; .$  $\nabla \chi \cdot (\nabla \alpha \times \nabla \psi) = B^2$
- $\frac{d\psi}{dt} = \frac{\partial H}{\partial \alpha}, \quad \frac{d\alpha}{dt} = -\frac{\partial H}{\partial \psi}.$

Phys. Fluids 23(5), May 1980

# Examples of Confined Orbits (Part 2)



gyration :: bounce :: toroidal precession 1 :: p/R :: (p/R)<sup>2</sup> Fast :: Not so fast :: "Slow"

#### nter Orbit Banana ~ Sion Poloidal Gyroradius



KONSKOR - SHOKSAANON CRITTARA

STATIS

ABE >1 RBp

## **Toroidal Magnetic Field** *|B| varies along the magnetic field*

BRCARDO OF ID, THIS FILLE LINKS ADA "NESTED" TORE -> HELICAL TRAJECTORIAS







$$\frac{R}{2} > 3$$

$$\epsilon = \frac{\mathbf{A}}{\mathbf{R}}$$

Cocousia

## **Toroidal Magnetic Field** Trapped and Passing Particles



BOURDARY RIVE TRAPPOL PASSING

4. 4

 $z_{10}^{2} + \mu B_{00} = \mu B_{10}$ "Mirror Trapping"  $\frac{2}{2}\sqrt{3} + \frac{1}{2}\sqrt{3} = \frac{1}{2}\sqrt{3}\frac{B_{12}}{B_{0}\sqrt{3}}$   $R = \frac{B_{12}}{B_{0}\sqrt{3}} = \frac{B_$ 

 $V_{10}^{?} = V_{10}^{?} (R-1)$ =  $Y_{10}^{?} 2E$  32

@ OUTSIDS EQUADORIAL MIDES

# **Toroidal Magnetic Field**





How Many Trapped Particles?



## **Toroidal Magnetic Field Bounce Motion**





How wang A Kouro Engineng?



 $d\theta = 8d\varphi$ 

 $(ds)^{2} = (dd)^{2} + (Rd\phi)^{2}$ =  $(dd)^{2} + (\frac{R}{g}dG)^{2}$  $= \left(\frac{R}{8}\right)^{2} \left(1 + \left(\frac{2}{R}\right)^{2}\right) d\theta$  $ds = \frac{R}{8}d\theta$ 

 $\int ds = \frac{R}{q} T = \frac{\pi R}{q}$ 

Bound Engrage -  $\frac{4}{L}$   $\frac{\sqrt{28}}{\pi n}$  $\frac{\sqrt{28}}{\pi}$   $\frac{2}{\pi} g(\frac{9}{R}) < <1$ 

34

# **Toroidal Magnetic Field**









Toroidal curvature >> Poloidal Curvature

 $\overline{R} = (\overline{P} \cdot \overline{V}) \overline{P} - \frac{1}{R} + (\overline{P} + (\overline{P} + \overline{P} + \overline{$ 

# **Toroidal Magnetic Field**







Drift Motion



## **Toroidal Magnetic Field** $I \approx I = \oint \mathbf{p} \cdot \frac{\partial \mathbf{q}}{\partial \gamma} d\gamma.$ (2)

How FAR off A FLUX Surface? Por constat = RENY + ZAQ] Defio Ay = Sopan So  $A_{\varphi}(n_{o}) = 0$   $A_{e}(n) = A_{\varphi}(n_{o}) + \Delta B_{\rho}$ THUS  $V_{ij} = \frac{1}{2} \frac{3B}{cm} A$ 

Banana Orbits

ere, *I* is an adiabatic invariant.

To evaluate I for a magnetized plasma recall that the canonical momentum for arged particles is (Jackson 1998)

$$\mathbf{p} = m\mathbf{v} + e\mathbf{A},\tag{2}$$

here A is the vector potential.

But if we can  

$$B = B_{0}(1 - E \cos \theta)$$
  
 $M B_{0}(1 - E \cos \theta) = \frac{1}{2}V_{0}^{2} + M B_{0}(1 - E \cos \theta)$   
 $THOW$   
 $V_{11}^{2} = 2M B_{0} E (\cos \theta - \cos \theta)$   
 $U_{11} = 0$   
 $U_{12} = 0$   
 $U_{12}$ 





# **Toroidal Magnetic Field**

COUNTERT

 $R_{m}V_{i} = (R - \Lambda + \delta) M V_{i} + \frac{\pi}{2} R \delta B_{p}$   $\Lambda V_{i} = \Delta V_{i} + \frac{\pi}{2} \frac{B}{c_{n}} R \delta$  $\omega_p = poloidal$  "cyclotron" frequency  $\frac{1}{n} V_{\mu} = 0$ 

Passing Orbits





# **Toroidal Magnetic Field**

**Toroidal Precession Frequency** 

 $\hat{\varphi} \cdot \bar{\psi}_{p} = \hat{\varphi} \cdot \hat{F} \times \left( \frac{\mu \bar{\eta}}{2} + \frac{\mu^{2} \bar{F}}{2} \right)$ 

= \$x\$.()

 $= -\frac{1}{2} \frac{1}{2} \frac$ <u>L'B</u> 12 Depending upon turning point, toroidal drift reverses!

$$A \cdot f \times c = -A \cdot e \times g$$
$$= -A \times c \cdot A$$



Or wonwen in a Be (MB + Vi) 1  $\frac{N}{BR^2} \frac{Bp}{w_c} \frac{v^2}{w_c^2} = \frac{Bp}{R} \frac{w_c}{e} \left(\frac{p}{R}\right)^2$ SLIGHTLY SLOWER







- Fitzpatrick: Exercise #1 in Chapter 2
- Piel: All seven problems in Ch. 3 (answers in back of text)

# Monday: Homework #3

- Piel / Chapter 4: Stochastic Processes in Plasma
- Distribution function
- Collisions

# Next Lecture