Lecture4:
 Plasma Physics 1

APPH E6101x
Columbia University

Outline

- Homework \#2
- Charged Particle Drifts (Summary)
- Gyro-averaging
- More details from last week
- Examples (Part 2):
- Mirror
- Magnetosphere (dipole)
- Tokamak
- Adiabatic Invariants (Part 1)

Gyro Motion (Summary)

$$
\begin{aligned}
& \begin{array}{l}
\bar{\tau}=\bar{R}+\bar{\rho} \\
\bar{v}=\bar{V}+\bar{u}
\end{array} \quad\binom{R=\text { quionin Cater }}{\bar{V}=\text { quioina Cats velocts }} \\
& \bar{\rho}=\frac{w}{\Omega}\left[\hat{e}_{1} \operatorname{sen} \theta+\hat{e}_{2} \cos \theta\right] \quad \theta(t)=\int_{0}^{t} d t^{\prime} \Omega\left(t^{\prime}\right)+\phi \quad \text { gyro phase } \\
& \bar{w}=\frac{\partial \hat{p}}{\partial t} \quad \frac{d v_{u}}{d t}=-\frac{\mu}{m} \hat{f} \cdot \bar{\nabla}|B| \\
& \mu=\frac{\frac{1}{2} m w^{2}}{B}=\text { cost }=(1 s t) \text { adiabatic invariant } \\
& \bar{V}=\frac{\bar{a} \times \bar{r}}{\Omega^{2}}+\frac{1}{\Omega^{2}} \frac{d}{d t} \bar{a} \frac{\hat{i} \times}{\Omega}\left(\frac{\mu \bar{\nabla}|0|}{m}+\frac{v_{11}^{2} \bar{T}}{}\right) \\
& +V_{11} \hat{b}
\end{aligned}
$$

and for trapped particles with $\rho / L \ll 1$,
$(\mu, J, \Phi) \sim \operatorname{adiabatic}_{3}$ invariants

Gyroaveraging: Piel Sec. 3.2

$$
\begin{array}{ll}
\mathbf{F}=q \mathbf{v} \times \mathbf{B} & \text { Taylor expansion... } \\
F_{y}=-q v_{x} B_{z}(y) & B_{z}(y)=B_{0}+y(t)\left(\partial B_{z} / \partial y\right)
\end{array}
$$

$$
F_{y}=-q v_{\perp} \sin \left(\omega_{\mathrm{c}} t\right)\left[B_{0} \pm r_{L} \sin \left(\omega_{\mathrm{c}} t\right) \frac{\partial B_{z}}{\partial y}\right]
$$

Key "multiple timescale" approximation...

$$
F_{y}=-q v_{\perp} \sin \left(\omega_{\mathrm{c}} t\right) B_{0}\left[1 \pm \frac{r_{L}\left(\partial B_{z} / \partial y\right)}{B_{0}} \sin \left(\omega_{\mathrm{c}} t\right)\right]
$$

$$
\left\langle F_{y}\right\rangle=\mp q v_{\perp} r_{\mathrm{L}} \frac{\partial B_{z}}{\partial y}\left\langle\sin ^{2}\left(\omega_{\mathrm{c}} t\right)\right\rangle=e v_{\perp} r_{L} \frac{\partial B_{z}}{\partial y} \frac{1}{2}
$$

Average over gyro phase.

Gyroaveraging: Fitzpatrick Sec. 2.3

Multiple Timescales
$\frac{\partial \mathbf{z}}{\partial t}+\frac{1}{\epsilon} \frac{\partial \mathbf{z}}{\partial \tau}=\mathbf{f}(\mathbf{z}, t, \tau), \quad \begin{aligned} & \tau=\text { fast } \\ & t=\text { slow }\end{aligned}$
$\mathbf{z}(t, \tau)=\mathbf{Z}(t)+\epsilon \boldsymbol{\zeta}(\mathbf{Z}, t, \tau) . \quad$ Average over gyro phase..
$\langle\zeta(\mathbf{Z}, t, \tau)\rangle \equiv \frac{1}{2 \pi} \oint \zeta(\mathbf{Z}, t, \tau) d \tau=0$.

$$
\begin{aligned}
& \text { "Multiple timescale" approximation... } \\
& \zeta=\zeta_{0}(\mathbf{Z}, t, \tau)+\epsilon \zeta_{1}(\mathbf{Z}, t, \tau)+\epsilon^{2} \zeta_{2}(\mathbf{Z}, t, \tau)+\cdots, \\
& \frac{d \mathbf{Z}}{d t}=\mathbf{F}_{0}(\mathbf{Z}, t)+\epsilon \mathbf{F}_{1}(\mathbf{Z}, t)+\epsilon^{2} \mathbf{F}_{2}(\mathbf{Z}, t)+\cdots,
\end{aligned}
$$

Evidently, the secular motion of the "guiding center" position \mathbf{Z} is determined to lowest order by the average of the "force" \mathbf{f}, and to next order by the correlation between the oscillation in the "position" \mathbf{z} and the oscillation in the spatial gradient of the "force."

Separating the Vector E.O.M.

Parallel:
$\hat{b} \cdot\left[\frac{d^{2} \bar{i}}{d t^{2}}=\bar{a}-\bar{r} \times \frac{d \lambda}{d t}\right]$

$$
\begin{aligned}
& \frac{d v_{11}}{d t}=\hat{\sigma} \cdot \bar{a} \\
& V_{11}(t)=\hat{t} \cdot \bar{a} t+U_{11}(0)
\end{aligned}
$$

PERT: $\hat{f} \times(\cdots \times \hat{b})=$ PERPENDICULAM COMpONENT

$$
\hat{B} \times(\bar{A} \times \hat{A})=\bar{A}-\hat{C}(\hat{B} \cdot \bar{A})=\bar{A}_{\perp}
$$

THEA

$$
\frac{d^{2} \bar{R}_{1}}{d t^{2}}+\frac{d^{2} \rho}{d t^{2}}=\bar{a}_{1}-\bar{r} \times \bar{w}-\bar{R} \times \bar{V}
$$

Fast Gyromotion
(Separately)

$$
\begin{gathered}
\frac{d^{2} \bar{\rho}}{d t^{2}}=\frac{d \bar{\omega}}{d t}=-\bar{r} \times \bar{\omega} \\
\bar{\omega}=-\bar{r} \times \bar{\rho}=\frac{d \bar{\rho}}{d t} \\
\frac{d^{2} \bar{\rho}}{d t^{2}}=+\bar{r} \times(\bar{r} \times \bar{\rho})=-|\lambda|^{2} \rho^{-} \\
\bar{\rho}=\frac{\omega}{r}\left[\hat{e}_{1} \sin (\Omega t+\phi)+\hat{e}_{z} \cos (\Omega t+\phi)\right] \\
\bar{\omega}=\omega\left[\hat{e}_{1} \cos (\lambda t+\phi)-\hat{e}_{2} \sin (\eta t+\phi)\right] \hat{e}_{t} \text { gyrophase } \\
r=\hat{\phi} \cdot \bar{r}
\end{gathered}
$$

(Separately)
LET

$$
\begin{aligned}
& \frac{d \bar{r}_{+}}{d t}=\bar{V}_{\perp} \\
& \frac{d \bar{v}_{\perp}}{d t}=\bar{a}_{\perp}-\bar{n} \times \bar{V}_{+}
\end{aligned}
$$

multiply by $\bar{r} \times(\cdots)$

$$
\begin{aligned}
& \bar{r}_{\times} \frac{d \bar{v}_{1}}{d t}=\bar{r} \times \bar{a}_{+}+r^{2} \bar{v}_{\perp} \\
\text { on } & \bar{u}_{\perp}=\frac{\bar{a}_{+} \times \bar{r}}{r^{2}}+\frac{\bar{r} \times \frac{d \overline{v_{1}}}{d t}}{r^{2}}
\end{aligned}
$$

a(t) slowly...

- gryomotion \Rightarrow EXACTLY THE SAME.
- Drift/guvaing center motion

$$
\bar{V}_{+}=\frac{\bar{a}+\bar{r}}{r^{2}}+\frac{\bar{r} \times \frac{d y}{d t}}{r^{2}}
$$

Now if $\frac{1}{\Omega} \frac{d y_{t}}{d t} \ll 1$ Trien $\frac{\bar{a} \text { is showly }}{\text { UANYiAq... }}$

SO LET'S UNAKE AN EXPAOUSion

$$
\begin{array}{ll}
\left.\bar{V}_{1}\right|_{0}=\frac{\bar{a}_{1} \times r}{r^{2}} & V_{1}(t)=\left.V_{1}\right|_{0}+\left.V_{1}\right|_{1}+\left.V_{1}\right|_{2}+\cdots \\
\left.\bar{V}_{1}\right|_{1}=\frac{r \times \frac{d}{a t}\left(\left.V_{1}\right|_{0}\right)}{r^{2} 9} & 0^{\pi i n} \cdots \frac{1}{r} \frac{d V_{1}}{d t} \cdots\left(\frac{1}{r} \frac{d y}{r}\right)^{\top}
\end{array}
$$

a(t) slowly...
SO LET'S UNAKE AN EXPAOLSion

$$
\begin{array}{ll}
\left.\bar{v}_{1}\right|_{0}=\frac{\bar{a}_{1} \times r}{r^{2}} & v_{1}(t)=\left.V_{1}\right|_{0}+\left.v_{1}\right|_{1}+\left.v_{1}\right|_{2}+ \\
\left.\bar{v}_{1}\right|_{1}=\frac{r \times \frac{d}{d t}\left(\left.V_{1}\right|_{0}\right)}{r^{2}} & 0 \quad 1
\end{array}
$$

ETC...

$$
\begin{aligned}
& \bar{V}_{\perp}(t) \approx \frac{\bar{a}(t) \times \bar{r}}{\Omega^{2}}+\frac{1}{\Lambda^{2}} \bar{\pi} \times \frac{d}{d t}\left(\frac{\bar{a}(\sigma) \times \bar{n}}{\Omega^{2}}+\cdots\right) \\
& =\frac{\bar{a}(t) \times \bar{r}}{\Omega_{\uparrow \in X B}^{2}}+\underbrace{\frac{1}{\Omega^{2}} \frac{d}{d x} \bar{a}(t)+\cdots .} \\
& \text { with } \bar{a}=\frac{e}{m} \bar{E} \xrightarrow{\text { THAF }} 10 \text { POLARIzADIIO~ }
\end{aligned}
$$

Polarization Drift: Plasma Capacitor

$$
\begin{aligned}
& J_{p o l}=\sum_{s} q_{s} \mathrm{~V}_{\mathrm{s}} \text { mo } \\
& V_{0}=\frac{m^{2}}{b^{2} D^{2}} \frac{6}{m} \frac{d b}{d} q m \\
& \nabla \cdot J=-\frac{2 \theta}{2 t} \\
& (d / d t)\left[\nabla \cdot\left(\frac{m /}{B^{2}}\right) \bar{E}=-\rho\right] \\
& \epsilon E=D \\
& \epsilon=\frac{m m}{B^{2}} \sim\left(\frac{e^{2} n}{m \epsilon_{0}}\right) \epsilon_{0} \frac{m^{2}}{e^{2} B^{2}} \\
& \sim \epsilon_{0}\left(\frac{w_{p_{c}}^{2}}{w_{e_{e}}^{2}}\right) \gg 1
\end{aligned}
$$

Fig. 1. Geometry of the plasma capacitor. The density variation is shown on the figure.

See: A. L. Peratt, H. H. Kuehl; Plasma Capacitor in a Magnetic Field. Phys. Fluids (1972); 15 (6): 1117-1127; https://doi.org/10.1063/1.1694037

Motion with a slowly varying B... Now, BOTH GYROMOTO.N AWB DRIFT WiLL CHarge (since ir change) BuT To ANALYZE THIS REQUIRES CAREFUL ALGEBRA... WELL DO THAT IN THE NEXT STEP.

Use Bernstein's notation...
$B(x)$ changing slowly...
Now, BOTH GYROMOTRON ANS DRIFT Wile
C Carege (siace \bar{r} crinage) Bu To
AMALYZE THIS REQUINES CANEFUL
ALqEBRA... WE'LL DO THUT IN THE
NEXT STEP.
HERE, WE STDART WIM...

$$
\frac{d \dot{1}}{d t}=\dot{\overline{1}} \times(\underbrace{\bar{\Omega}+(\bar{\rho} \cdot \bar{\nabla}) \overline{2}+\cdots)}
$$

TAYLer Expmod ABONT 9400 CEN HER

$$
\begin{aligned}
\bar{r}(\bar{n}) & =\bar{r}(\bar{R}+\bar{\rho}) \\
& \approx \bar{r}(\bar{n})+(\bar{\rho} \cdot \bar{\nabla}) \bar{r}+\cdots
\end{aligned}
$$

$$
\frac{d \dot{r}}{d t} \approx \dot{\pi} \times \sqrt{r}+\frac{\pi}{\pi} \times(\bar{\varphi} \cdot \bar{\nabla}) \bar{r}+\cdots
$$

(1)
(2)
(3)

Drifts (separately)

NJE that themis ans oscillating (qucationg) Ans now-oscrccating Teams.

SO LETS LOOK ONLY AT THE DRIFTS. SO WE LOOK ATT THE GYRO-AVERAGES DRIFT MUTTON

Drifts (separately)

LAST IS THE PDONUCT OF TWO OSCMIATING

TERMS

Drifts (separately)
Treen using

$$
\begin{aligned}
& \bar{\omega}=w\left[\hat{e}_{1} \cos \theta-\hat{e}_{2} \operatorname{sen} \theta\right] \\
& \bar{\rho}=\frac{\omega}{r}\left[\hat{e}_{1} \sin \theta+\hat{e}_{2} \cos \theta\right]
\end{aligned}
$$

$$
\begin{aligned}
\langle\bar{\omega} \bar{\rho}\rangle_{\theta} & =\frac{\omega^{2}}{\pi} \frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta\left[\hat{e}_{1} \cos \theta-\hat{e}_{2} \sin \theta\right]\left[\hat{e}_{1} \sin \theta+\hat{e}_{2} \cos \theta\right] \\
& =\frac{\omega^{2}}{n} \frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta\left[\hat{e}_{1} \hat{e}_{2} \cos ^{2} \theta-\hat{e}_{2} \hat{e}_{1} \sin \theta\right]
\end{aligned}
$$

on

$$
\langle\omega \bar{\rho}\rangle_{\theta}=\frac{\omega^{2}}{2 \pi}\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \langle\dot{\lambda} \times(\bar{\rho} \cdot \bar{\nabla}) \bar{\lambda}\rangle_{\theta}=\frac{\omega^{2}}{2 \Omega}\left[\hat{e}_{1} \hat{e}_{2}-\hat{e}_{2} \hat{l}_{1}\right] \cdot \bar{\nabla} \times \bar{r} \\
& =-\frac{\omega^{2}}{2 \Omega}(\hat{\theta} \times \overline{\bar{D}}) \times \hat{\Omega} \\
& \hat{b} \times \bar{\nabla}=\left(\hat{e}_{1} \times \hat{l}_{2}\right) \times \bar{\nabla} \\
& =\hat{e}_{2} \hat{l}_{1} \cdot \bar{\nabla}-\hat{e}_{1} \hat{e}_{2} \cdot \bar{\nabla} \\
& \frac{d \bar{V}}{d t}=\bar{V} \times \bar{\pi}-\frac{\omega^{2}}{2 \Omega}(\hat{b} \times \bar{\nabla}) \times \bar{\Omega} \\
& =\bar{v} \times \bar{r}-\frac{\omega^{2}}{2 r}[\bar{\nabla}(\bar{r} \cdot \hat{b})-\hat{b} \cdot \underbrace{\bar{\nabla} \cdot \bar{r}}_{\omega 0}] \\
& \text { Now DEFing } \mu \equiv \frac{\frac{1}{2} m w^{2}}{B} \\
& \nabla \cdot \bar{B}=0 \\
& \frac{d \bar{V}}{d t}=\bar{V} \times \bar{r}-\frac{\mu}{m} \overline{\bar{V}}|B|
\end{aligned}
$$

Gradient-B Drift
$1+\infty \quad \bar{r}(\sqrt{k})$
IF $\bar{\nabla}|B|, \mu$ Ane constant, frem
A~D $\quad \hat{G} \cdot \vec{\nabla}|B|=\frac{0}{V} \Omega^{2}=+\frac{\mu}{m} \tilde{\Omega} \times \bar{D}|B|$
$\bar{V}=+\frac{\mu}{m} \frac{\bar{r} \times \bar{\nabla}(B)}{r^{2}} \Omega!!$

(Parallel to B) Mirroring...

$$
\begin{aligned}
& \left.\left.\tilde{\Omega} \times \frac{d \bar{V}}{d t}=r^{2} \bar{V}_{+}-\frac{\mu}{n} \tilde{\Omega} \times \overline{\bar{V}} \right\rvert\, \mathbb{B}\right)
\end{aligned}
$$

now let's solve tais by intention...

$$
\begin{aligned}
& \text { (Perpendicular to B) } \\
& \text { Curvature Drift }
\end{aligned}
$$

$$
\begin{aligned}
& \bar{V} \simeq v_{1,} \hat{b} \\
& \left.V_{1} \approx \frac{\mu}{m} \frac{1}{s} \hat{b} \times \vec{\nabla} \right\rvert\, d+\frac{\hat{b} \times \frac{d}{d t}\left(U_{11} \hat{b}\right)}{\Omega}
\end{aligned}
$$

Curvature Drift

$$
\begin{aligned}
& \bar{V} \simeq v_{i}, \hat{b} \\
& V_{1}=\frac{\mu}{m} \frac{1}{s} \hat{f} \times \vec{\nabla} \left\lvert\, \vec{d}+\frac{\hat{b} \times \frac{d}{d t}\left(U_{11} \hat{t}\right)}{\Omega}\right. \\
& \frac{d}{d t}\left(u_{11} \hat{b}\right)=\hat{b} \frac{d v_{11}}{d t}+v_{11} \frac{d}{d t} \hat{b} \\
& =\underbrace{\hat{b} \frac{d v_{11}}{d t}}+v_{11}^{2} \underbrace{\hat{\sigma} \cdot \bar{v} \hat{f}} \frac{d}{d t} \hat{\sigma} v_{11} \hat{\sigma} \cdot \nabla \\
& F=\text { curvature!! } \\
& \bar{K}=\frac{1}{R_{c}}
\end{aligned}
$$

Adiabatic Invariants (Part 1)

(μ, J, ψ)

See Fitzpatrick Sec. 2.8

Harmonic Oscillator $\frac{d^{2} x}{d d^{2}}+\infty^{2} x=0$

- Separate descriptions of perpendicular and parallel motion ${ }_{1} \mathcal{F}$
$\omega=$ constant

$$
\begin{aligned}
& x(t)=x_{0} \sin (\omega t+\phi) \\
& \frac{d x}{d t}=\omega x_{0} \cos (\omega t+\phi)
\end{aligned}
$$

- Fast gyration around B
- Slow perpendicular drift of gyro center

$$
\begin{aligned}
& \text { Kinetic Energy pen unit mas }=\frac{1}{2}\left(\frac{d x}{d t}\right)^{2} \\
& \text { once PEer UNIT mass }=-\nabla V=-\frac{2 V}{2 x} \\
& V=\text { POTENTIAL PER UNIT bOAS } \\
& \text { So } \quad U(x)=\frac{1}{2} \omega^{2} x^{2} \\
& \text { TOTAR ENERgY PEA UNIT mASS } \\
& W=\frac{1}{2}\left(\frac{a x}{d t}\right)^{2}+v(x) \\
& =\frac{1}{2} \omega^{2} x_{0}^{2}
\end{aligned}
$$

Hamiltonian for an Oscillator

CanNoncat TRAMS Forematlon

Pendulum

We use a "gemenatira function" well-known in CLASTICA, HOMILTONIAN MECMANIC,

$$
\begin{aligned}
H_{o w} & =P_{\theta} \dot{\theta}-L=\frac{P_{\theta}^{2}}{2 m}+V(\theta) \\
P_{\theta} & =m \dot{\theta} \\
V(\theta) & =-\frac{m g}{l} \cos \theta
\end{aligned}
$$

Hamiltonian for an Oscillator

During the cannomical Transformation, we REQuire

$$
\delta \oint L d t=\delta \oint\left(P_{\theta} \dot{\theta}-H_{u c \Delta}\right) d t=\delta \oint\left(P_{J} \dot{\varphi}-H_{\sim \pi \omega}\right) d t
$$

Ans these two
TERMS MUST DIFFER DNLT iN A TOTAL DERINATLUE OF THE GENERATING FUMTION, F

SincE $\quad \frac{d F}{d t}=\dot{\theta} \frac{2 F}{2 \theta}+\dot{\varphi} \frac{2 F}{2 \varphi}+\frac{2 F}{2 t}, w \in$ must
have

$$
H_{N E W}=H_{O L D}+\dot{\varphi}\left(P_{J}+\frac{2 F}{2 \varphi}\right)-\dot{\theta}\left(P_{N}-\frac{\partial F}{2 \theta}\right)+\frac{\partial F}{2 t}
$$

We are free to choose $F(0, \varphi, t)$ as we WISH PROVIDES THAT IT SATISFIES OUR REQUIREMENT.

Hamiltonian for an Oscillator

$$
\begin{aligned}
& \text { we croore } \\
& \begin{array}{l}
P_{\theta}=\frac{2 F}{2 \theta} \\
P_{J}=-\frac{2 F}{2 \varphi}
\end{array} \\
& \text { (7)TEN, } H_{\sim E W}=H_{0.0}+\frac{2 F}{2 t} \\
& \text { (VERE MCE) } \\
& \text { For a penoulum, if } F(\theta, \varphi, t)=\frac{1}{2} m \omega_{g}(t) \theta^{2} \frac{\cos \varphi}{\sin \varphi} \\
& \text { then } \\
& \begin{aligned}
P_{\theta}=m \dot{\theta}=\frac{2 F}{2 \theta} & =m \omega_{Q} \theta \frac{\cos \varphi}{\sin \varphi} \text { BuT } \theta=\theta_{m} \sin \varphi \\
& =m \omega_{B} \theta_{m} \cos \varphi<\text { So }
\end{aligned} \\
& P_{J}=-\frac{2 F}{2 \varphi}=\frac{1}{2} n \omega_{B} \theta_{m}^{2}=J \\
& \text { THUS } \underbrace{\underbrace{}_{\text {SRALC }}}_{H_{N E W}=\omega_{B} J+\frac{1}{2} J \underbrace{\sin 2 \varphi}_{\text {SNALC }} \underbrace{\omega_{B}}_{\text {TERM }} \frac{1}{\omega_{B}} \frac{2 \omega_{B}}{2 t}} \\
& \text { HARmonvic } \\
& \text { OF OSciclation } \\
& \text { Frequenct }
\end{aligned}
$$

Adiabatic Invariants (Part 1)

(μ, J, ψ)

See Fitzpatrick Sec. 2.8

What happens when $\omega(t)$ changes slowly with time?

AND LE DEMAND
LETS SAY
$x(\theta)$ To re periodic

- Separate descriptions of perpendicular and parallel motion
- Fast gyration around B
- Slow perpendicular drift of gyro center

$$
\begin{aligned}
x(t)=x(t, \theta) \quad & \frac{d \theta}{d t}=\gamma(t) \\
\frac{d x}{d t} & =\frac{2 x}{2 t}+\frac{d \theta}{d t} \frac{2 x}{2 \theta}=\frac{\partial x}{\partial t}+\gamma \frac{\partial x}{2 \theta} \\
\frac{d^{2} x}{d t^{2}}= & \frac{\partial^{2} x}{2 t^{2}}+v \frac{\partial^{2} x}{2 \theta \cdot 2 t}+ \\
& +\frac{\partial}{2 t}\left(v \frac{\partial x}{\partial \theta}\right)+V \frac{2}{\partial \theta}\left(v \frac{\partial x}{2 \theta}\right) \\
& =\frac{\partial^{2} x}{\partial t^{2}}+2 \nu \frac{2^{2} x}{2 \theta \cdot 2 t}+\frac{\partial v}{d t} \frac{\partial x}{\partial \theta}+v^{2} \frac{2^{2} x}{2 \theta^{2}}
\end{aligned}
$$

Order by Order with

Now, LEARE going To SOLUE Tris AS LF

$$
\begin{array}{ll}
\frac{d V}{d \theta} \text { is vedr scow } & \left\lvert\, \frac{\dot{V} \mid}{V} \ll V^{0}\right. \\
\frac{\partial x}{\partial t} \text { is unar scow } & \left\lvert\, \frac{\dot{x} \mid}{|x|}<V\right.
\end{array}
$$ most RApios enarian is in TrE OScIClATON.

Order by Order with $\quad \dot{\nu} / \nu \ll 1$

$$
\begin{aligned}
& \text { THEN, To LEADing OndEaC... } \\
& \qquad \begin{aligned}
& V^{2} \frac{2^{2} x}{2 \theta^{2}}+\omega^{2} x=0 \text { or } \frac{d \theta}{d t}=V=\omega \\
& x=x_{0}(t) \sin (\theta(t)) ; \quad \theta(t)=\int_{0}^{t} d t^{\prime} \omega\left(t^{\prime}\right)+\phi \\
& V
\end{aligned}
\end{aligned}
$$

but, how does energy and amplitude change with frequency?

Understanding the Energy/Amplitude

LEt's multiple by $\frac{\partial x}{2 \theta}$

$$
\begin{gathered}
\frac{\partial}{\partial \theta}\left(\frac{1}{2} y^{2}\left(\frac{\partial x}{2 \theta}\right)^{2}\right)+\frac{2}{2 \theta}\left(\frac{1}{2} w^{2} x^{2}\right) \\
\left.=-\frac{2 x}{2 \theta} \frac{\partial^{2} x}{2 t^{2}}-\sqrt{2 t}\left(\frac{2 x}{2 \theta}\right)^{2}\right)-\frac{d v}{d t}\left(\frac{2 x}{2 \theta}\right)^{2} \\
\frac{\partial}{2 \theta}\left(\frac{1}{2} v^{2}\left(\frac{\partial x}{2 \theta}\right)^{2}+\frac{1}{2} w^{2} x^{2}\right)=-\frac{2 x}{2 \theta} \frac{2^{2} x}{\partial t^{2}}-\frac{2}{2 t}\left(\gamma\left(\frac{2 x}{\partial \theta}\right)^{2}\right)
\end{gathered}
$$

Now, THE TERM $\frac{2 x}{2 \theta} \frac{2^{2} x}{2 t^{2}}$ is UKARY VEAT SMALL.

Understanding the Energy/Amplitude

Now, THE TERM $\frac{2 x}{2 \theta} \frac{2^{2} x}{2 t^{2}}$ is UFRYT VEAT SMALL.

So in ter spirit of oun pienturebotion Analysis, welke going to cinons TH IS nERM.

THE

$$
\frac{2}{2 t}\left(v\left(\frac{2 x}{2 \theta}\right)^{2}\right)=-\frac{2}{2 \theta}\left(\frac{1}{2} r^{2}\left(\frac{2 x}{2 \theta}\right)^{2}+\frac{1}{2} \psi^{2} x^{2}\right)
$$

DUT $x(\theta)$ must DE PEDIDOic.
So wo con mtagnt ove θ $\quad \frac{1}{2} r^{2}\left(\frac{2 x}{2 \theta}\right)^{2}+\frac{1}{2} \omega^{2} x^{2}=$ PEiniodic

$$
\text { THUS! } \quad\left\langle V\left(\frac{2 x}{2 \theta}\right)^{2}\right\rangle_{\theta} \cong \text { coustant } \quad \mathrm{d} / \mathrm{dt}(\ldots)=0
$$

Understanding the Energy/Amplitude

$$
\begin{aligned}
\left\langle V\left(\frac{\partial x}{\partial \theta}\right)^{2}\right\rangle_{\theta} & =\frac{V}{2 \pi} \int_{0}^{2 \pi} d \theta x_{0}^{2} \cos ^{2} \theta \\
& =\frac{1}{2} V x_{0}^{2}=\frac{\frac{1}{2} \omega x_{0}^{2}}{=} \\
\oint V \frac{\partial x}{\partial \theta} \frac{\partial x}{\partial \theta} \frac{d \theta}{2 \pi} & P=\frac{d x}{d t} \sim V \frac{\partial x}{2 \theta} \\
d q & =\frac{2 x}{\partial \theta} d \theta \\
\text { AcTiON } & =\oint P d q=\frac{\text { EnEngy }}{\text { Fiquag. }} \\
& =0 \leq \theta \leq 2 \pi
\end{aligned}
$$

How Good are Adiabatic Invariants?

$$
\underset{\substack{\text { EXACT } \\
\text { ORATIONS } \\
\text { MOTION }}}{\operatorname{moN}}\left\{\begin{array}{l}
\dot{J}=-\frac{\partial H_{N E W}}{2 \varphi}=-J \cos 2 \varphi \frac{1}{\omega_{B}} \frac{\partial \omega_{B}}{\partial t} \\
\dot{\varphi}=\omega_{B}+\frac{1}{2} \sin 2 \varphi \frac{1}{\omega_{B}} \frac{2 \omega_{B}}{2 t}
\end{array}\right.
$$

From Mechanics, Mandate + LiFShitz...

$$
\begin{aligned}
& \Delta J=J\left(t_{2}\right)-J\left(t_{1}\right)=+\int_{t_{1}}^{t_{2}} J \cos 2 \varphi \frac{1}{\omega_{B}} \frac{2 \omega_{3}}{\partial t} d t \\
& \text { But } \\
& \frac{J \cos 2 \varphi}{\omega_{B}}=\sum_{\rho=-\infty}^{\infty} \Lambda_{p} e^{i \rho \varphi}! \\
& \text { must de a periodicfunction db } \varphi \\
& =2 \operatorname{Re}_{34}\left\{\sum_{\rho=1}^{\infty} e^{i \rho \varphi} \Lambda_{p}\right\}
\end{aligned}
$$

How Good are Adiabatic Invariants?

$$
\begin{aligned}
\Delta J & =2 \Pi\left\{\int_{-\infty}^{\infty} d t \Delta_{p} e^{i \rho \varphi} \frac{2 \omega_{\theta}}{2 t}\right\} \\
& =2 \Pi\left\{\int_{-\infty}^{\infty} d \varphi \Delta_{p} e^{i \rho \varphi} \frac{2 \omega_{B}}{2 \varphi}\right\} \quad\left(d t=\frac{d \varphi}{\omega_{s}}\right)
\end{aligned}
$$

$$
\frac{d \omega_{B}}{d t}=\frac{1}{2} \alpha \omega_{B}\left(\frac{a^{2}}{e^{-\alpha t}+a^{2}}-\frac{1}{e^{-\alpha t}+1}\right) \quad D_{m} \omega_{0}=\frac{\pi \omega_{0} a}{\alpha}
$$

Nonadiabaticity in mirror machines

Ronald H. Cohen, George Rowlands, ${ }^{\text {a) }}$ and James H. Foote
Lawrence Livermore Laboratory, University of California, Livermore, California 94550 (Received 14 February 1977; final manuscript received 25 October 1977)

FIG. 1. $\Delta \mu / \mu$ versus v^{-1} for the model field defined by Eqs. (21) and (29) with $L=20.2 \mathrm{~cm}, B_{00}=10 \mathrm{kG}$. Protons are started at $z=0, r_{0}=3 \mathrm{~cm}$ with V_{\perp} radial, $v_{\perp} / v=0.544$.

Drift Hamiltonian

$$
H\left(\rho_{11}, \alpha, \psi, \chi\right)=\frac{1}{2} \rho_{11}^{2} \frac{e B^{2}}{m c}+\frac{\mu c}{e} B+c \Phi
$$

$$
\begin{aligned}
& \mathbf{B}=\nabla \alpha \times \nabla \psi, \\
& \mathbf{B}=\nabla \chi+\beta \nabla \psi+\gamma \nabla \alpha .
\end{aligned}
$$

then

$$
\nabla \chi \cdot(\nabla \alpha \times \nabla \psi)=B^{2}
$$

$$
\frac{d \chi}{d t}=\frac{\partial H}{\partial \rho_{\mathrm{II}}}, \frac{d \rho_{\mathrm{II}}}{d t}=-\frac{\partial H}{\partial \chi}, \frac{d \psi}{d t}=\frac{\partial H}{\partial \alpha}, \frac{d \alpha}{d t}=-\frac{\partial H}{\partial \psi} .
$$

The adiabatic invariance of J,

$$
J=\frac{e}{c} \int \rho_{\|} d \chi=\int m v_{\|} d l
$$

then follows from the standard classical mechanics ${ }^{4}$ treatment. The Hamiltonian is just the energy E times c / e and it is conserved.

Examples of Confined Orbits (Part 2)

gyration :: bounce :: toroidal precession
Poloidal Gyroradius

$$
1:: \rho / R::(\rho / R)^{2}
$$

Fast :: Not so fast :: "Slow"

Toroidal Magnetic Field

$$
\begin{aligned}
\bar{B} & =B_{t} \hat{\varphi}+\overline{B_{p}} \\
B_{t} & =B_{0}\left(\frac{R_{0}}{R}\right)
\end{aligned}
$$

Kauskar - Sheos amnou Erctarzen statios

$$
\frac{1 B_{t}}{R B_{p}}>1
$$

Toroidal Magnetic Field

|B| varies along the magnetic field

$$
\begin{array}{ll}
2 \pi R B_{t}=\mu_{0} I_{\text {roR }} & \text { io } \\
2 \pi n B_{p}=\mu_{0} I_{p} & \frac{1 B_{t}}{R B_{p}}=\frac{\frac{1}{R} I_{\text {ron }}}{\frac{R}{n} I_{p}}=\frac{I_{\text {Tore }}\left(\frac{1}{n}\right)^{2}}{I_{p}}
\end{array}
$$

$$
\text { so } \frac{I_{\text {rot }}}{I_{p}}>\left(\frac{R}{a}\right)^{2} \text { vanc Brg }
$$

$$
\text { Brcouse of } I_{p} \text {, }
$$

Ther Finces cinks tora

$$
\text { usuatect } \frac{R}{a}>3
$$

Toroidal Magnetic Field
Trapped and Passing Particles
Bécause $\mu=$ constami

(a) oursins equatronite misple

Boundant biun Trapaped / dassciac

$$
\begin{aligned}
& \frac{1}{2} U_{10}^{2}+\mu B_{\sigma S T}=\mu B_{C N} \\
& \frac{1}{2} v_{10}^{2}+\frac{1}{2} v_{0}^{2}=\frac{1}{2} y_{0}^{2} \frac{B, \Delta}{B_{0, \pi}} \\
& R=\text { minnor ratio } \\
& =\frac{B_{, ~}}{B_{0, \pi}} \cong 1+2 \epsilon \\
& \therefore \quad v_{u_{0}}^{2}=v_{L_{0}}^{2}(l-1) \\
& =y_{0}^{2} \quad 2 \epsilon \quad 41
\end{aligned}
$$

Toroidal Magnetic Field
How Many Trapped Particles?
How many trappios Pantide?

$$
\begin{aligned}
& \text { Tho dF PASsinq pontls }=\frac{\int_{0}^{\theta} 2 \pi \nu^{2} s, v \theta d \theta d v f}{\int_{0}^{\pi / 2} 2 \pi v^{2} \sin \theta d d v f} \\
& \widehat{=} \frac{\int_{0}^{\theta} \sin \theta d \theta}{\int_{0}^{2 \pi} s+\theta d \theta}=1-\cos \theta \\
& \% \text { Trapas dates }=\cos \theta_{0}=\frac{v_{1}}{v}=\frac{v_{+} \sqrt{2 \epsilon}}{\sqrt{v_{1}^{2}+v_{4}^{2} 2 \epsilon}} \sim \frac{\sqrt{2} \epsilon}{\text { Qurar AFEN! }}
\end{aligned}
$$

Toroidal Magnetic Field

Bounce Motion

$$
\begin{aligned}
d \theta & =q d \varphi \\
(d s)^{2} & =(\operatorname{Rd\theta })^{2}+(R d \varphi)^{2} \\
& =(d d \theta)^{2}+\left(\frac{R}{q} d \theta\right)^{2} \\
& =\left(\frac{R}{q}\right)^{2}\left(1+\left(\frac{R}{R} \delta\right)^{2}\right) d \theta \\
d s & \cong \frac{R}{q} d \theta
\end{aligned}
$$

$$
0 \int \quad \int d=\frac{R}{6} \pi=\frac{\pi \pi}{q}
$$

$$
\text { Bane Fogey } \sim \frac{U_{0}}{L} \sim \frac{V 2 q}{\pi R}
$$

$$
\frac{\omega_{B}}{\omega_{c}} \sim \frac{2}{\bar{\pi}} q\left(\frac{p}{R}\right) \ll 1
$$

Toroidal Magnetic Field

$$
\begin{aligned}
& \bar{u}_{D}=\frac{\hat{\delta} x}{r}\left(\frac{\mu \nabla B}{m}+u_{u}^{2} \bar{k}\right) \quad \text { Drift Motion } \\
& \bar{B} \cdot \bar{B}=B_{t}^{2}+B_{p}^{2} \quad \text { et } q(n) \equiv \frac{n B_{t}}{\Gamma B_{p}} \\
& =B_{t}^{2}\left(1+\left(\frac{A}{R}\right)^{2} \frac{1}{q^{2}}\right) \\
& \nabla B \sim \nabla B_{t} \sim-\frac{\hat{i}}{R} B_{t} \\
& \text { let } \overline{\beta_{p}} \sim B_{p} \hat{\theta} \\
& \bar{K}=(\hat{f} \cdot \nabla) \hat{\sigma} \sim \frac{-\hat{\lambda}}{R}+\left(\frac{\left.P_{B}\right)^{2}}{B}(\hat{\theta} \cdot \nabla) \hat{\theta} \quad \hat{b}=\frac{B_{e} \hat{\varphi}+r_{p} \hat{\theta}}{3}\right. \\
& =-\frac{\hat{\pi}}{R}-\left(\frac{B_{\rho}}{3}\right)^{2} \frac{n^{\prime}}{1} \quad \approx \hat{\varphi}+\frac{B_{R}}{B_{t}} \hat{\theta}
\end{aligned}
$$

So onager effect is TDromel cursing '

Toroidal Magnetic Field
Drift Motion

$$
\begin{aligned}
\bar{V}_{D} & \sim-\frac{\hat{\varphi} \times \hat{i}}{\Omega R}\left(\mu B+v_{u}^{2}\right) \\
& \sim \frac{\hat{z}}{\Omega R}\left(\mu B+v_{u}^{2}\right) \\
& \sim \frac{\hat{z}}{R} V^{*} \rho \sim \hat{z} v\left(\frac{\rho}{R}\right)
\end{aligned}
$$

Toroidal Magnetic Field

How gan off a flat suable?

$$
P_{\varphi} \sim c_{0}=e_{\varphi}=R\left[v_{\varphi}+\frac{8}{c} A_{\varphi}\right]
$$

Define $A_{\varphi}=\int_{\text {R }}^{1} B_{p} d n$
so $\quad A_{\varphi}\left(1_{0}\right)=0 \quad A_{\varphi}(1)=A_{\varphi}\left(1_{0}\right)+\Delta B_{\rho}$
so

$$
R_{m} V_{11} \cong-R_{m} V_{11}+\frac{q}{c} R \Delta B_{p}
$$

THUS $\quad V_{11}=\frac{1}{2} \frac{q B R}{C m} \Delta$

But if we cal

$$
\begin{aligned}
& B \cong \tilde{B}_{t_{0}}(1-\epsilon \cos \theta) \\
& \mu B_{t 0}\left(1-\epsilon \cos \theta_{m}\right)=\frac{1}{2} v_{4}^{2}+\mu B_{t}(1-\epsilon \cos \theta)
\end{aligned}
$$

Thin $v_{11}^{2}=2 \mu B_{t} \in\left(\cos \theta-\cos \theta_{n}\right)$ Tramps $u_{n} \rightarrow 0 \quad \cos \theta \theta_{n}$

$$
\frac{\Delta}{2}=\frac{v_{11}}{\omega_{p}}=\frac{\sqrt{2 \mu \beta_{t}}}{\omega_{j}} \sqrt{\epsilon} \sqrt{\cos t-\cos \theta_{n}}
$$

Poloidal Gyroradius

Toroidal Magnetic Field
Passing Orbits

$$
\begin{aligned}
& R_{m} V_{11}^{\circ \sim}=(R-\Lambda+\Delta) m V_{u 1}^{\prime N}+\frac{q}{c} R \Delta B_{p} \\
& n V_{u}=\Delta V_{u}+\frac{88_{0}}{c_{m}} \Omega \Delta \\
& \frac{1}{\Omega} V_{U / u p}=\Delta \quad \omega_{p}=\text { poloidal "cyclotron" frequency } \\
& \quad \sim \text { small } \in \frac{V}{L_{p}} \sim \Delta
\end{aligned}
$$

Toroidal Magnetic Field
Toroidal Precession Frequency

$$
\begin{aligned}
& \hat{\varphi} \cdot \bar{u}_{p}=\frac{\hat{\varphi} \cdot \hat{b} \times}{\Omega}\left(\frac{\mu \vec{a}}{m}+u_{u}^{2} F\right) \\
& =\hat{\varphi} \times \hat{b} \cdot() \\
& =\frac{-B_{B} \hat{i} \cdot}{\Omega}\left(\frac{\mu \bar{\sigma}}{m}+v_{1}^{2} \bar{K}\right) \\
& \overbrace{\text { Deepen }}^{4}
\end{aligned}
$$

$$
\begin{aligned}
A \cdot A \times C & =-A \cdot C \times B \\
& =-A \times C \cdot B
\end{aligned}
$$

$$
\begin{aligned}
\hat{\varphi} \times \hat{\theta} & =\hat{\varphi}+\left(B_{\varphi} \hat{\varphi}+\bar{\beta}_{0}\right) \frac{1}{n} \\
& =\hat{a} \times \bar{n}, 1
\end{aligned}
$$

$$
=\hat{\varphi} \times \overline{3} p \frac{1}{3}
$$

$$
=\frac{\sigma_{p}}{B} \underbrace{\hat{\theta}}_{-\hat{i}}
$$

$$
\omega_{0} \sim \omega_{\varphi} \sim \frac{\hat{q} \cdot v_{D}}{R} \sim \frac{B_{p}}{B R}\left(\frac{M B}{R}+\frac{v_{R}^{2}}{R}\right) \frac{1}{r_{R}}
$$

$$
\sim \frac{B_{p}}{B R^{2}} \omega_{c} \frac{v^{2}}{w_{c}^{2}}=\frac{B_{p}}{B} \omega_{c}\left(\frac{\rho}{R}\right)^{2}
$$

Slighter Slowish $B_{r} \frac{B_{\rho}!}{B!}$

Homework \#3

- Fitzpatrick: Exercise \#1 in Chapter 2
- Piel: All seven problems in Ch. 3 (answers in back of text)

Next Lecture

- Piel / Chapter 4: Stochastic Processes in Plasma
- Distribution function
- Collisions

