Lecture3:
 Plasma Physics 1

APPH E6101x
Columbia University

Outline

- Motion induced by electric oscillations without a magnetic field
- Motion induced by electric oscillations with a magnetic field
- Charged Particle Drifts in a uniform magnetic field
- Charged Particle Drifts in a slowly varying magnetic field
- Adiabatic Invariants

Nobel Prize in Physics 2018 half jointly to Gérard Mourou and Donna Strickland "for their method of generating high-intensity, ultra-short optical pulses" https://www.nobelprize.org/prizes/physics/2018/summary/

Oscillations without Magnetic Field

$$
\begin{aligned}
& \text { Light intensity }
\end{aligned}
$$

Highest laser intensity in lab is now $1023 \mathrm{~W} / \mathrm{cm}^{2}(!)$

[^0]Oscillations with Static Magnetic Field

$$
\begin{gathered}
\frac{d \bar{V}}{d t}=-\frac{e}{m_{e}} \bar{E}-\frac{e}{m_{0}} \bar{V} \times \bar{B}_{0} \quad \text { LET } \quad \bar{B}_{0}=\hat{\bar{z}} B_{0} \\
\hat{E}=R_{e}\left\{\hat{E} e^{-j \omega t}\right\} \quad \hat{V}=R\left[\tilde{V} e^{-j u t}\right]
\end{gathered}
$$

THEN

$$
\left\{-i w \tilde{U}+w_{c_{0}} \bar{v} \times \hat{z}=-\frac{e}{m_{0}} \tilde{E}\right\}
$$

BUT $\bar{V} \times \hat{z}-j \frac{\omega_{c}}{\omega} \widehat{U}_{L}=-j \frac{e}{m_{0} \omega} E \times \hat{z}$ So TITAT

$$
\left\{\hat{U}-\left(\frac{w_{c}}{w}\right)^{2} \hat{V}_{+}+\frac{e}{m_{0} w} \frac{w_{c}}{w_{v}} \hat{E} \times \hat{t}=-i \frac{e}{m_{0} \varepsilon} E\right\}
$$

Charged particle motion in uniform/inhomogeneous, static and slowly-varying electric and magnetic fields

Part 1: Gyromotion in Uniform Field

$$
\begin{align*}
m \dot{\mathbf{v}} & =q(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \tag{3.1}\\
\dot{v}_{x} & =\frac{q}{m}\left(E_{x}+v_{y} B_{z}\right) \\
\dot{v}_{y} & =\frac{q}{m}\left(-v_{x} B_{z}\right) \\
\dot{v}_{z} & =\frac{q}{m} E_{z} \tag{3.7}\\
\ddot{v}_{x} & =-\omega_{\mathrm{c}}^{2} v_{x} \\
\ddot{v}_{y} & =-\omega_{\mathrm{c}}^{2}\left(v_{y}+E_{x} / B_{z}\right) \tag{3.8}
\end{align*}
$$

What drifts result from a static force that has the same sign for ions and electrons (like gravity)?

Key Dynamics

- Separate descriptions of perpendicular and parallel motion
- Fast gyration around B
- Slow perpendicular drift of gyro center
- Adiabatic motion with μ conservation

Guiding Center Motion in a Strong Magnetic Field

Part 2: Guiding Center Motion

References:
I.B. Bernstein, "The Motion of a Charged Particle in a Strong Magnetic Field," Advances in Plasma Physics 4, 311 (1971). Theodore G. Northrop and Edward Teller, "Stability of the Adiabatic Motion of Charged Particles in the Earth's Field," Phys. Rev. 117, 215 (1960); https://doi.org/10.1103/PhysRev.117.215

Summary

$$
\begin{aligned}
& \bar{V}=v_{11} \hat{b}+\frac{\hat{b}}{r} \times\left(\frac{\mu}{m} \bar{\nabla}|B|+u_{11}^{2} \bar{k}\right) \\
& \left.\left.\frac{d v_{11}}{d t}=-\frac{\mu}{m} \hat{b} \cdot \bar{\nabla} \right\rvert\, B\right)
\end{aligned}
$$

$\rho=$ SAme AS BEFORB (but Ω changes...)
$w=$

Some Definitions \& Cases

$$
m \dot{\mathbf{v}}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

- 3 equations, 2nd order, 6 initial conditions
- Constant E and B
- Slowly varying E (with uniform B)
- Let $\mathbf{E} \rightarrow 0$, with \mathbf{B} slowly varying in space

Use Bernstein's notation...
(See "handout": http://sites.apam.columbia.edu/courses/apph6101x/Plasma1-Adiabatic-Handout.pdf)

Just Mechanics

Simple Note 1

$$
\begin{aligned}
\frac{d \bar{v}}{d t} & =\bar{a}-\bar{r} \times \bar{v} \\
\bar{v} \cdot \frac{d \bar{v}}{d t} & =\bar{v} \cdot(\bar{a}-\bar{r} \times \bar{v}) \\
\text { so } \frac{d}{d t}\left(\frac{1}{2} v^{2}\right) & =\bar{v} \cdot \bar{a}
\end{aligned}
$$

Simple Note 2

$$
\begin{aligned}
& \hat{b} \cdot \frac{d \overline{\bar{r}}}{d t}=\hat{b} \cdot \bar{a} \\
& \bar{v}_{L}=\hat{b} \times(\bar{v} \times \hat{b})
\end{aligned}
$$

so we can decouple parallel and perpendicular motion

Initial Value Case 1

$$
\begin{aligned}
& \bar{v}=N_{r 1} \hat{b} t=0 \quad E=E_{r} \hat{b} \\
& \bar{v}(t)=N_{0} \hat{t}+\frac{1}{2} E_{i t} \\
& \bar{T}(t)=\bar{R}(0)+\hat{i}\left(N_{1} t+\frac{1}{2} \frac{8}{2} t^{2}\right) \\
& \text { B. } E=\text { coorstant }
\end{aligned}
$$

Initial Value Case 2

$$
\begin{aligned}
& \bar{N}=W \hat{l}_{1} \text { AT } t=0 \quad \vec{E}=0 \quad \vec{B}=\text { constant } \\
& \text { 10~s } \\
& \xrightarrow{F_{v}(0)} \underset{\sim}{E v E c t r o 0-s} \hat{b} \quad \frac{d}{d t}=-\bar{r} \times \bar{v} \\
& \rho=\frac{w}{n \mid} \\
& \bar{v} \cdot \frac{d}{d t} \bar{v}=\frac{1}{2} \frac{d}{d t}\left|w^{2}\right|=0 \ll \text { honk } \mid \\
& \frac{d \bar{T}}{d t}=-r \times \bar{T}=\bar{N}
\end{aligned}
$$

Initial Value Case 3

TOTAL $=$ SUPERPOSITION OF DRIfT pLUS ROTATIOn

Initial Value Case 4
$\bar{v}(0) \sim \omega \hat{e}_{1} \quad \bar{B} \sim \operatorname{constant}, \bar{E} \sim$ constant
WITHE E

Defining Gyro-Averaging

This e call $\theta=$ gino AngLe
See: Sec. 3.2 Peel and
Secs. 2.3 and 2.4 in Fitzpatrick
THEN $\quad<\cdots\rangle_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta(\cdots)$

$$
\begin{aligned}
& \langle\bar{T}\rangle_{\theta}=\bar{R} \\
& \langle\bar{A}\rangle_{\theta}=\overline{V_{1}}+w_{11} \hat{\theta}
\end{aligned}
$$

A physical solution to the E.O.M. in terms of gyration and drift

Separating the Vector E.O.M.

Parallel:
$\hat{b} \cdot\left[\frac{d^{2} \bar{i}}{d t^{2}}=\bar{a}-\bar{r} \times \frac{d \lambda}{d t}\right]$

$$
\begin{aligned}
& \frac{d v_{11}}{d t}=\hat{\sigma} \cdot \bar{a} \\
& V_{11}(t)=\hat{t} \cdot \bar{a} t+U_{11}(0)
\end{aligned}
$$

PERT: $\hat{f} \times(\cdots \times \hat{b})=$ PERPENDICULAM COMpONENT

$$
\hat{B} \times(\bar{A} \times \hat{A})=\bar{A}-\hat{C}(\hat{B} \cdot \bar{A})=\bar{A}_{\perp}
$$

THEA

$$
\frac{d^{2} \bar{R}_{1}}{d t^{2}}+\frac{d^{2} \bar{\rho}}{d t^{2}}=\bar{a}_{1}-\sqrt{r} \times \bar{w}-\bar{R} \times \bar{V}
$$

Fast Gyromotion
(Separately)

$$
\begin{aligned}
& \frac{d^{2} \bar{\rho}}{d t^{2}}=\frac{d \bar{\omega}}{d t}=-\bar{r} \times \bar{\omega} \\
& \bar{\omega}=-\bar{r} \times \bar{\rho}=\frac{d \bar{\rho}}{d t} \\
& \frac{d^{2} \bar{\rho}}{d t^{2}}=+\bar{r} \times(\bar{r} \times \bar{\rho})=-|r|^{2} \rho^{-} \\
& \bar{\rho}=\frac{\omega}{r}\left[\hat{e}_{1} \sin (r t+\phi)+\hat{e}_{2} \cos (\Omega t+\phi)\right] \\
& \bar{\omega}=\omega\left[\hat{e}_{1} \cos (\lambda t+\phi)-\hat{e}_{2} \sin (1 t+\phi)\right] \hat{e}_{t} \\
& r=\boldsymbol{r} \cdot \bar{r} \\
& \text { gyrophase } \\
& \hat{e}_{t}>\hat{b} \quad \phi=0 \\
& \begin{array}{l}
\text { Siqn nigut } \\
\text { Fon lows }
\end{array}
\end{aligned}
$$

(Separately)
LET

$$
\begin{aligned}
& \frac{d \bar{r}_{+}}{d t}=\bar{V}_{\perp} \\
& \frac{d \bar{v}_{\perp}}{d t}=\bar{a}_{\perp}-\bar{n} \times \bar{V}_{+}
\end{aligned}
$$

multiply by $\bar{r} \times(\cdots)$

$$
\begin{aligned}
& \bar{r} \times \frac{d \bar{v}_{1}}{d t}=\bar{r} \times \bar{a}_{+}+r^{2} \bar{v}_{\perp} \\
\text { on } & \bar{v}_{1}=\frac{\bar{a}_{+} \times \bar{r}}{r^{2}}+\frac{\bar{r} \times \frac{d \overline{v_{1}}}{d t}}{r^{2}}
\end{aligned}
$$

a(t) slowly...

- gRYomotion \Rightarrow ExACTLY THE SAME.
- Drift/guioing center motton

$$
\bar{V}_{1}=\frac{\bar{a}+\times \bar{n}}{n^{2}}+\frac{\bar{n} \times \frac{d y}{d t}}{\Omega^{2}}
$$

Now if $\frac{1}{\lambda} \frac{d y_{1}}{d t} \ll 1$ THEN $\frac{\text { a }}{d}$ UARYifq...

SO LET'S UnAKE AN EXPARLSION

$$
\begin{array}{rl}
\left.\bar{V}_{1}\right|_{0}=\frac{\bar{a}_{1} \times \Gamma}{\Lambda^{2}} & V_{1}(t)=\left.V_{1}\right|_{0}+\left.V_{1}\right|_{1}+\left.V_{1}\right|_{2}+ \\
1 & 0 \frac{1}{r} \frac{1}{2 t} \cdots\left(\frac{d}{r} \frac{d y}{1}\right)^{1}
\end{array}
$$

a(t) slowly...
SO LET'S UNAKE AN EXPAOLSion

$$
\begin{array}{ll}
\left.\bar{v}_{1}\right|_{0}=\frac{\bar{a}_{1} \times r}{r^{2}} & V_{1}(t)=\left.V_{1}\right|_{0}+\left.V_{1}\right|_{1}+\left.V_{1}\right|_{2}+ \\
\left.\bar{v}_{1}\right|_{1}=\frac{1}{r^{2}} & 0 \times \frac{d}{d t}\left(\left.V_{1}\right|_{0}\right) \\
0 \frac{1}{r} \frac{d v_{1}}{d t} \cdots\left(\frac{1}{1} \frac{d y}{d}\right)^{\top}
\end{array}
$$

ETC...

$$
\begin{aligned}
& \bar{V}_{\perp}(t) \approx \frac{\bar{a}(t) \times \bar{r}}{\Omega^{2}}+\frac{1}{\Lambda^{2}} \bar{\pi} \times \frac{d}{d t}\left(\frac{\bar{a}(\sigma) \times \bar{n}}{\Omega^{2}}+\cdots\right) \\
& =\frac{\bar{a}(t) \times \bar{r}}{\Omega_{\uparrow \in X B}^{2}}+\underbrace{\frac{1}{\Omega^{2}} \frac{d}{d x} \bar{a}(t)+\cdots .} \\
& \text { with } \bar{a}=\frac{e}{m} \bar{\epsilon} \xrightarrow{\text { THAW }} 22 \quad \text { POLARIZAATIOA }
\end{aligned}
$$

Polarization Drift: Plasma Capacitor

$$
\begin{aligned}
& \text { Tpol }^{\sum_{s} q_{s} m_{s} V_{\text {po }}} \\
& V_{D}=\frac{m^{2}}{D^{2} D^{2}} \frac{d}{m} \frac{d b}{d m} \\
& V \cdot J=-\frac{20}{2 t} \\
& \nabla \cdot\left(\frac{n M}{B^{2}}\right) \bar{E}=-\rho \\
& \epsilon E=D \quad \epsilon=\frac{n m}{B^{2}} \sim\left(\frac{e^{2} n}{m \epsilon_{0}}\right) \epsilon_{0} \frac{m^{2}}{e^{2} B^{2}} \\
& n_{0}\left(\frac{\omega_{c}^{2}}{a_{c}^{2}}\right) \gg 1
\end{aligned}
$$

Fig. 1. Geometry of the plasma capacitor. The density variation is shown on the figure.

See: A. L. Peratt, H. H. Kuehl; Plasma Capacitor in a Magnetic Field. Phys. Fluids (1972); 15 (6): 1117-1127; https://doi.org/10.1063/1.1694037

Motion with a slowly varying B...
Now, BOTH GYROMOTON ANS DRIFT wile
ANALYZE THIS REQUIRES CAREFUL
ALGEBRA... WELL DO THAAT IN THE NEXT STEP.

$B(x)$ changing slowly...
Now, BOTH GYROMOTRON ANS DRIFT Wile
C Carege (siace \bar{r} crinage) Bu To
AMALYZE THIS REQUINES CANEFUL
ALgEBRA... WE'LL DO JHAT IN THE
NEXT STEP.
HERE, WE STDART WIM...

$$
\frac{d \dot{1}}{d t}=\dot{\grave{1}} \times(\underbrace{\bar{\Omega}+(\bar{\rho} \cdot \bar{\nabla}) \overline{2}+\cdots)}
$$

TAYLer Expmod ABONT 9400 CEN HER

$$
\begin{aligned}
\bar{r}(\bar{n}) & =\bar{r}(\bar{R}+\bar{\rho}) \\
& \approx \bar{r}(\bar{n})+(\bar{\rho} \cdot \bar{\nabla}) \bar{\Omega}+\cdots
\end{aligned}
$$

$$
\frac{d \dot{\lambda}}{d t} \approx \dot{\pi} \times \sqrt{r}+\frac{\hbar}{\pi} \times(\bar{\varphi} \cdot \overline{\bar{V}}) \bar{r}+\cdots
$$

(1)
(2)
(3)

Drifts (separately)

NJE THAT THENE ARE OSCILLATING (qunationg) Ans non-oscrucating Terms.

SO LET'S LOOK ONLY AT THE DRIFTS. SO WE LOOK AT THE GYRO-AVERAGES DRIFT MUTTON

Drifts (separately)

LAST IS THE PDONUCT OF TWO OSCMIATING

TERMS

Drifts (separately)
Treen using

$$
\begin{aligned}
& \bar{\omega}=w\left[\hat{e}_{1} \cos \theta-\hat{e}_{2} \operatorname{sen} \theta\right] \\
& \bar{\rho}=\frac{\omega}{r}\left[\hat{e}_{1} \sin \theta+\hat{e}_{2} \cos \theta\right]
\end{aligned}
$$

$$
\begin{aligned}
\langle\bar{\omega} \bar{\rho}\rangle_{\theta} & =\frac{\omega^{2}}{\pi} \frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta\left[\hat{e}_{1} \cos \theta-\hat{e}_{2} \sin \theta\right]\left[\hat{e}_{1} \sin \theta+\hat{e}_{2} \cos \theta\right] \\
& =\frac{\omega^{2}}{n} \frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta\left[\hat{e}_{1} \hat{e}_{2} \cos ^{2} \theta-\hat{e}_{2} \hat{e}_{1} \sin \theta\right]
\end{aligned}
$$

on

$$
\langle\omega \bar{\rho}\rangle_{\theta}=\frac{\omega^{2}}{2 \pi}\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

$$
\begin{aligned}
& \langle\dot{\lambda} \times(\bar{\rho} \cdot \bar{\nabla}) \bar{\lambda}\rangle_{\theta}=\frac{\omega^{2}}{2 \Omega}\left[\hat{l}_{1} \hat{e}_{2}-\hat{l}_{2} \hat{l}_{1}\right] \cdot \bar{\nabla} \times \bar{r} \\
& =-\frac{\omega^{2}}{2 \Omega}(\hat{\theta} \times \overline{\bar{D}}) \times \hat{\Omega} \\
& \hat{b} \times \bar{\nabla}=\left(\hat{e}_{1} \times \hat{l}_{2}\right) \times \bar{\nabla} \\
& =\hat{e}_{2} \hat{l}_{1} \cdot \bar{\nabla}-\hat{e}_{1} \hat{e}_{2} \cdot \bar{\nabla} \\
& \frac{d \bar{V}}{d t}=\bar{V} \times \bar{\pi}-\frac{\omega^{2}}{2 \Omega}(\hat{b} \times \bar{\nabla}) \times \bar{\Omega} \\
& =\bar{v} \times \bar{r}-\frac{\omega^{2}}{2 r}[\bar{\nabla}(\bar{r} \cdot \hat{b})-\hat{b} \cdot \underbrace{\bar{\nabla} \cdot \bar{r}}_{\omega 0}] \\
& \text { Now DEFins } \mu \equiv \frac{\frac{1}{2} m w^{2}}{B} \\
& \nabla \cdot \bar{B}=0 \\
& \frac{d \bar{V}}{d t}=\bar{V} \times \bar{\Omega}-\frac{\mu}{m} \overline{\bar{V}}|B|
\end{aligned}
$$

Gradient-B Drift
$1+\infty \quad \bar{r}(\sqrt{k})$
IF $\bar{\nabla}|B|, \mu$ Ane constant, frem
A~D $\hat{\sigma} \cdot \vec{\nabla}|B|=\frac{0}{V} \Omega^{2}=+\frac{\mu}{m} \tilde{\Omega} \times \bar{D}|B|$
$\bar{V}=+\frac{\mu}{m} \frac{\pi \times \bar{\nabla}(B)}{r^{2}} \Omega!!$

(Parallel to B) Mirroring...

$$
\begin{aligned}
& \left.\left.\tilde{\Omega} \times \frac{d \bar{V}}{d t}=r^{2} \bar{V}_{+}-\frac{\mu}{n} \tilde{\Omega} \times \overline{\bar{V}} \right\rvert\, \mathbb{B}\right)
\end{aligned}
$$

now let's solve tais by intention...

$$
\begin{aligned}
& \text { (Perpendicular to B) } \\
& \text { Curvature Drift }
\end{aligned}
$$

$$
\begin{aligned}
& \bar{V} \simeq v_{1,} \hat{b} \\
& V_{1} \approx \frac{\mu}{m} \frac{1}{s} \hat{f} \times \vec{\nabla} \left\lvert\, \vec{d}+\frac{\hat{b} \times \frac{d}{d t}\left(U_{11} \hat{b}\right)}{\Omega}\right.
\end{aligned}
$$

Curvature Drift

$$
\begin{aligned}
& \bar{V} \simeq v_{i}, \hat{b} \\
& V_{1}=\frac{\mu}{m} \frac{1}{r} \hat{f} \times \vec{\nabla} \left\lvert\, \vec{B}+\frac{\hat{b} \times \frac{d}{d t}\left(U_{11} \hat{t}\right)}{\Omega}\right. \\
& \frac{d}{d t}\left(u_{11} \hat{b}\right)=\hat{b} \frac{d v_{11}}{d t}+v_{11} \frac{d}{d t} \hat{b} \\
& =\underbrace{\hat{f} \frac{d v_{11}}{d t}}+v_{11}^{2} \underbrace{\hat{b} \cdot \bar{v} \hat{f}} \frac{d}{d t} \hat{\sim} v_{11} \hat{b} \cdot \nabla \\
& F=\text { curvature!! } \\
& \bar{K}=\frac{1}{R_{c}}
\end{aligned}
$$

Summarv

$$
\begin{aligned}
& \bar{V}=v_{11} \hat{b}+\frac{\hat{b}}{n} \times\left(\frac{\mu}{m} \bar{\nabla}|B|+v_{11}^{2} \bar{k}\right) \\
& \left.\left.\frac{d v_{11}}{d t}=-\frac{\mu}{m} \hat{b} \cdot \bar{\nabla} \right\rvert\, B\right) \\
& \rho=S \text { AmB AS BEFORB (but } \Omega \text { changes...) } \\
& \omega=
\end{aligned}
$$

$$
\begin{aligned}
& m \frac{d V_{u}}{d t}=-\mu \frac{d B}{d s} \\
& \frac{d}{d t} \frac{1}{2} m V_{U}^{2}=-\mu V_{k} \frac{d B}{d S}
\end{aligned}
$$

Another Simple Proof for Constant Adiabatic Invariant

$$
\text { So } \quad \frac{d}{d t}\left(\frac{1}{2} v_{t}^{2}\right)=\mu v_{11} \frac{d B}{d s}=0
$$

BuT $\quad U_{11} \frac{d B}{d S}=\frac{d B}{d t}$
so $\quad \frac{d}{a t}\left(\frac{1}{2} m r_{y}^{2}\right)-\frac{1}{2} n y_{1}^{2} \frac{1}{B} \frac{d B}{d T}=0$

Next Monday

- Homework \#2
- Guiding Center Hamiltonian (Littlejohn \& Boozer)
- Tokamaks and bananas

[^0]: Hui Chen and Frederico Fiuza, Phys. Plasmas 1 February 2023; 30 (2): 020601. https://doi.org/10.1063/5.0134819

