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Ch 2

42 2 Definition of the Plasma State

Hence, a larger number of particles in the Debye sphere ensures that the coupling
strength is small. In other words, the electric field is the average field of many
particles, whereas in a strongly coupled system the field of the nearest neighbor
dominates. Weakly coupled plasmas are found at high temperature and low electron
density. On the border line, NDi = 1, we have Γ = 1/3.

2.3.2 Quantum Effects

Quantum effects come into play when the interparticle distance of the electrons
becomes comparable with their thermal de Broglie wavelength

λB = h
mevTe

. (2.36)

Here, vTe = (2kBTe/me)
1/2 is the most probable speed of a Maxwell distribution

(see Sect. 4.1). In this limiting case, the Pauli exclusion principle becomes impor-
tant and we must use Fermi-Dirac statistics. Such a plasma is called degenerate
and the conditions of a cold dense plasma are typically found in dead stars, like
White Dwarfs. It is worth mentioning that the exclusion principle prevents the final
collapse of such a burnt-out star.

The second border line for degeneracy of the electron gas, λB = n−1/3
e is also

shown as dashed line in Fig. 2.5. Here, the slope is 3/2 in the log n–log T diagram.
Note that the electrons in a metal form a strongly coupled degenerate system. Rel-
ativistic effects for the electrons become important for T > 109 K as marked by
the dot-dashed line in Fig. 2.5. The marked regions of typical plasmas can all be
treated by non-relativistic models. This simplifies the plasma models in the subse-
quent chapters.

The Basics in a Nutshell

• Plasmas are quasineutral: ne = ∑
k Zknk .

• Quasineutrality can be violated within a Debye length λD

λD = λDeλDi

(λ2
De + λ2

Di)
1/2

, λDe,Di =
(
ε0kBTe,i

n2
e,i

)1/2

.

• Quasineutrality can be established by the electrons within τ = ω−1
pe , with

the plasma frequency

ωpe =
(

nee2

ε0me

)1/2

.
Problems 43

• The coupling parameter Γ determines the state of each plasma component
(electrons, ions, dust)

Γ = q2

4πε0a2
W S kBT

.

Γ may be different for the components, depending on the individual tem-
peratures and densities. A gaseous phase is found for Γ ≪ 1, the liquid
state for 1 < Γ < 180 and the solid phase for Γ > 180.

Problems

2.1 Prove that the electron Debye length can be written as

λDe = 69 m
[

T (K)

ne(m−3)

]1/2

2.2 Calculate the electron and ion Debye length
(a) for the ionospheric plasma (Te = Ti = 3000 K, n = 1012 m−3).
(b) for a neon gas discharge (Te = 3 eV, Ti = 300 K, n = 1016 m−3).

2.3 Consider an infinitely large homogeneous plasma with ne = ni = 1016 m−3.
From this plasma, all electrons are removed from a slab of thickness d = 0.01 m
extending from x = −d to x = 0 and redeposited in the neighboring slab from x =
0 to x = d. (a) Calculate the electric potential in this double slab using Poisson’s
equation. What are the boundary conditions at x = ±d? (b) Draw a sketch of space
charge, electric field and potential for this situation. What is the potential difference
between x = −d and x = d?

2.4 Show that the equation for the shielding contribution (2.24) results from (2.21)
and (2.23).

2.5 Derive the relationship between the coupling parameter for ion-ion interaction
Γ Eqs. (2.15) and ND (2.33) under the assumption that Te = Ti.

2.6 Show that the second Lagrange multiplier in Eq. (2.6) is λ = (kBT )−1.
Hint: Start from

1
T

= ∂S
∂λ

∂λ

∂U

and use
∑

ni = 1.



Ch 3
Problems 69

The Basics in a Nutshell

• The complex trajectory of a charged particle in a magnetic field has been
decomposed into a hierarchy of (periodic) motions

1. gyration about the field line at the cyclotron frequency,
2. periodic bouncing between mirror points,
3. curvature and gradient drift, which can lead to a very slow periodic

motion about the axis of the magnetic mirror.

• Each of these periodic motions is associated with an adiabatic invariant,
which has a decreasing degree of conservation: the magnetic moment, the
longitudinal invariant, and the flux invariant. Therefore, in the guiding cen-
ter model, the real particle is replaced by a small ring current with an asso-
ciated magnetic moment.

• The guiding center of this ring current performs various types of drift
motion

E×B drift vE = (E × B)/B2

Gravitational drift vg = (m/q)(g × B)/B2

Gradient drift v∇ B = (m/q)( 1
2v2

⊥/R2
c )(Rc × B)/B2

Curvature drift vR = (m/q)(v2
z /R2

c )(Rc × B)/B2

Polarization drift vp = (m/q)(∂E/∂t)/B2

• In a tokamak, the twist of the confining magnetic field is effected by the
toroidal current, which is induced by a big transformer with the plasma
torus as secondary winding. The rotational transform of the field lines
counteracts the losses arising from plasma drifts.

• In a stellarator, the rotational transform is effected by external helical cur-
rents. Modern stellarators use modular coils which produce both the con-
fining magnetic field and the rotational transform.

Problems

3.1 Consider a cylindrical straight wire of radius a with a homogeneous distribution
of current density inside. Use Ampere’s law to derive the azimuthal magnetic field
Hϕ(r) for r < a and r ≥ a.



Ch 4

Problems 105

The Basics in a Nutshell

• The various definitions of a Maxwell distribution are

1-dimensional f (1)
M (vx ) = n

(
m

2πkBT

)1/2
exp

(
− mv2

x
2kBT

)

3-dimensional f (3)
M (v) = n

(
m

2πkBT

)3/2
exp

(
−m(v2

x +v2
y+v2

z )

2kBT

)

distribution of speed fM(v) = 4πv2n
(

m
2πkBT

)3/2
exp

(
− mv2

2kBT

)

distribution of energy FM(W ) = n 2√
π

1
(kBT )3/2 W 1/2 exp

(
− W

kBT

)

• The various definitions of “thermal velocity” are:

mean thermal velocity vth =
(

8kBT
πm

)1/2

most probable velocity vT =
(

2kBT
m

)1/2

• The mean free path is λmfp = (nσ )−1 and the collision frequency νc =
v/λmfp.

• The number of collision events in a hot gas per volume and second is given
by the rate coefficient ⟨σv⟩, in which the angle brackets denote averaging
over the distribution function.

• The Coulomb collision frequency decreases for rising temperature as νei ∝
T −3/2 and is independent of plasma density.

• Transport of plasma particles is accomplished by electric fields or density
gradients. The individual transport coefficients are the mobilities µe,i =
e/(me,iνe,i) and the diffusion coefficients De,i = µe,ikBTe,i/e.

• The global transport coefficients are the electrical conductivity σ =
ne(µe + µi) and the ambipolar diffusion coefficient Da = (Diµe +
Deµi)/(µe + µi).

• In the presence of a magnetic field, the transport coefficients become ten-
sors that link the velocity to the force. This applies to mobility, conductivity
and diffusivity. The Pedersen conductivity is the diagonal element and the
Hall conductivity the off-diagonal element of the conductivity tensor.

Problems

4.1 Show that the maximum of the Maxwell distribution function fM (|v|) is found
at vT .

4.2 Prove that the mean thermal velocity in Eq. (4.7) is vth = [(8kBT )/(πm)]1/2.



Ch 5
130 5 Fluid Models

The Basics in a Nutshell

• The fluid models treat the electrons and ions as fluids and seek self-
consistency of the problems by combining the fluid equations with the set
of Maxwell’s equations:

Faraday’s induction law ∇ × E = −∂B/∂t

Ampere’s law ∇ × B = µ0 (j + ε0∂E/∂t)

Poisson’s law ∇ · E = ρ/ε0

no magnetic monopoles ∇ · B = 0

• The two-fluid model is based on separate equations for electrons and ions
and describes the continuity and momentum flow of the fluids:

continuity ∂n/∂t + ∇ · (nu) = 0

momentum tansport nm
(
∂u
∂t + (u · ∇)u

)
= nq(E + u × B) − ∇ p

• The MHD-equations describe the mass transport and the electric current in
a single fluid:

momentum transport ρm
∂vm
∂t = j × B − ∇ p + ρmg

generalized Ohm’s law E + vm × B = ηj + 1
ne (j × B − ∇ pe)

• The diamagnetic drift is a net effect in an inhomogeneous distribution of
guiding centers. A net electric current is established without motion of the
guiding centers.
The diamagnetic drift velocity is vD = −[∇ p × B](qnB2)−1.

• A magnetic field exerts an isotropic magnetic pressure pmag = B2
0 (2µ0)

−1

and has a field line tension T = 2pmag.
• When the plasma is an ideal conductor, the magnetic field is frozen in the

plasma. The combined motion of plasma and magnetic field leads to Alfvén
waves, which propagate at the Alfvén speed vA = B0(µ0ρm)−1/2.

Problems

5.1 (a) Consider the pressure equilibrium in a Z -pinch that has been compressed
by its self-generated magnetic field to a radius of 100 µm. What is the magnetic
pressure at the surface of the pinch, when the total current amounts to 10 kA? How
compares this to atmospheric pressure?
(b) Assume that the plasma inside the pinch is homogeneous and has Te = Ti and
density ne = 1024 m−3. What is the temperature inside this plasma that is necessary
to balance the magnetic pressure by gas kinetic pressure?



Ch 6

166 6 Plasma Waves

Fig. 6.17c for three different values of the rf power that generates the plasma.
Theoretical curves from (6.106), with ωpe as fit-parameter, closely match the mea-
sured resonance angle. From this fit the electron density is obtained.

The resonance cone method was used for diagnostic purposes on sounding rock-
ets in the ionosphere [136–139], for kinetic and non-thermal effects in laboratory
plasmas [140–142], and in dusty plasmas [135].

The Basics in a Nutshell

• In Fourier notation, Maxwell’s equations become:

Induction law ik × Ê = iωB̂

Ampere’s law ik × B̂ = −iωε0µ0Ê + µ0 ĵ0

Poisson’s law ik · Ê = ρ̂/ε0

no longitudinal B̂ ik · B̂ = 0 .

• The wave equation: {kk − k2 I + ω2

c2 εω} · Ê = 0.
• The phase and group velocities are defined as vϕ = ω/k, vg = dω/ dk.
• Transverse electromagnetic waves in an unmagnetized plasma have the

refractive index N = ε(ω) = (1 − ω2
pe/ω

2)1/2. They exist only above
a cut-off frequency, ω > ωpe.

• The transverse mode is used for plasma interferometry to determine the
plasma density. The phase shift of an interferometer is proportional to the
product neLλ.

• The dispersion of an electrostatic wave in an unmagnetized plasma is deter-
mined by ε(ω) = 0.

• Electrostatic waves have k||Ê and are found in two frequency regimes:
Bohm-Gross modes for ω > ωpe and ion-acoustic waves for ω < ωpi. The
ion-acoustic speed is Cs = (kBTe/mi)

1/2.
• In magnetized plasma, the fundamental modes for propagation along the

magnetic field line have circular polarization. The refractive index of the R-
wave and L-wave are different. This leads to Faraday rotation of a linearly
polarized wave. The R-wave (L-wave) has a resonance at the electron (ion)
cyclotron frequency.

• Resonances correspond to N 2 → ∞, cut-offs to N 2 → 0.
• Waves propagating perpendicular to a magnetic field are the O-mode

(E||B0), which is unaffected by the magnetic field, and the X-mode, which
has resonances at the upper hybrid frequency ωuh = (ω2

pe + ω2
ce)

1/2 and
lower hybrid frequency ωlh ≈ (ωceωci)

1/2.



Ch 7

194 7 Plasma Boundaries

Fig. 7.12 Comparison of the
potential shape in a DL and
the electron energy
distribution. The accelerated
population is marked with
arrows, the trapped electrons
are marked with a dashed
line. (Reprinted with
permission from [160]. c⃝
1979, American Institute of
Physics)

The arrows mark a group of free electrons that becomes accelerated when going
from the low-potential side (left) to the high-potential side (right) of the DL. A
second group of trapped electrons is found on the high-potential side. Its position is
marked by the dashed line. Note, how the height of the latter peak decreases when
approaching the repulsive potential of the DL. These experimental results confirm
the general description of strong double layers given in Sect. 7.7.

The Basics in a Nutshell

• The Child-Langmuir Law

j = 4
9

(
2e
m

)1/2 U 3/2

d2

describes the maximum, space-charge limited current in a single-species
system of length d for an applied voltage U .

• Space-charge limited currents appear in plasma sheaths and in grid regions
for ion extraction.

• The Bohm criterion for a sheath, vi = vB = (kBTe/mi)
1/2 states that ions

must enter the sheath with ion-sound speed.
• The current–voltage characteristic of a plane Langmuir probe has the parts:

ion saturation regime, electron retardation regime and electron saturation
regime. The floating potential is defined by I = 0, the plasma potential is
the transition point from electron retardation to electron saturation current.

• The ion saturation curent of a plane probe is Ii,sat = exp(−1/2)envB. The
electron saturation current is Ie,sat = −(1/4)envth,e. Both currents can be
used to determine the plasma density n, when the electron temperature is
known.

• The electron temperature is obtained from a semi-log plot of the electron
retardation current vs. the probe voltage.

• A current-carrying collisionless plasma can spontaneously form a localized
internal potential drop, called a double layer.



Ch 8218 8 Instabilities

The Basics in a Nutshell

• Plasma instabilities fall into two classes, macroscopic instabilities in real
space, like the Rayleigh-Taylor instability, and microinstabilities in veloc-
ity space, like the beam-plasma instability.

• The directed flow of a group of fast electrons (beam) can excite electrostatic
waves near the electron plasma frequency. This beam-plasma instability
has a tremendous growth rate, which depends on (nb/np)

1/3.
• The instability of the slow wave can be understood from the concept of

negative mass or negative energy waves.
• In a system of finite length (Pierce diode) the maximum electron current is

limited by the onset of purely-growing, non-oscillating disturbances of the
electron beam.

Problems

8.1 For which values of the coefficients a and b has the differential equation

ẍ + aẋ + bx = 0 .

stable and unstable solutions? Draw a stability map b = f (a) and mark regions with
damped oscillatory, overdamped, unstable oscillatory and purely growing modes.

8.2 Discuss the instability of a system with counter-streaming electron and positron
beams of equal density ∝ ω2

b and equal but opposite velocities v and −v. Write
down the dielectric function for this system in analogy to (8.3). Find the four solu-
tions of ε(ω, k) = 0. Show that there is a region k < kcrit with two real and a pair
of conjugate complex solutions. Plot the growth rate of this instability vs. kv/ωb.

8.3 Perform the missing steps that lead to (8.23) and (8.24).
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256 9 Kinetic Description of Plasmas

The Basics in a Nutshell

• The Vlasov equation

∂ f
∂t

+ v · ∇r f + q
m

(E + v × B) · ∇v f = 0

describes the evolution of collisionless plasmas with an arbitrary distribu-
tion function in a 6-dimensional phase space spanned by position x and
velocity v under the action of self-consistent electric and magnetic fields.

• Plasma waves can be treated by the linearized Vlasov model in combina-
tion with Maxwell’s equations. The terminologies “cold plasma” and “hot
plasma” refer to the ratio of thermal speed and phase velocity of the wave.

• Landau damping describes the exponential decay of a macroscopic wave
electric field while the information is retained in the perturbed distribution
function. The information can be partly recovered in echo experiments.

• The rate of Landau damping is determined by the slope of the unper-
turbed distribution function at the wave’s phase velocity. For an unshifted
Maxwellian, this is always negative. Velocity distributions having an addi-
tional shifted Maxwellian can produce a velocity interval, where the slope
becomes positive leading to inverse Landau damping or instability.

• A physical picture of the mechanisms behind Landau damping involves
charge bunching, ballistic response of particles and phase mixing.

• Plasma simulation with particle codes is complementary to the Vlasov
approach. It describes the motion of superparticles that represent clumps
of some thousand real particles. The particle-in-cell technique overcomes
the limitation of N 2 scaling of the computation time for particle-particle
codes.

• Plasma simulations make the nonlinear evolution of plasma processes
accessible. Examples are: the trapping of electrons in beam-plasma interac-
tion or the onset of blocking oscillations in diodes above the critical current.

Problems

9.1 Show that any function g( 1
2 mv2 + qΦ), which only depends on the total energy

of a particle, solves the Vlasov equation

∂ f
∂t

+ v
∂ f
∂x

− q
m
∂Φ

∂x
∂ f
∂v

= 0 .

9.2 Verify that the mean velocity of a one-dimensional half-Maxwellian electron
distribution is given by
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Question 1

What is the plasma frequency for an electron-positron plasma?

Question 2

Consider a proton-electron plasma with Te ⇠ 10⇥ Ti.

Part A

If a conducting sphere is inserted into the plasma, approximately what would be the
electric potential of the sphere relative to the plasma potential?

Part B

A thin boundary between the plasma and the sphere would exist, called the “plasma
sheath”. Write an approximate expression for the thickness of this sheath.

Question 3

Consider a plasma “blob” (containing heavy ions and electrons) in a straight, uniform
magnetic field under the influence of a constant gravitational acceleration, g = �ẑg.

The equation for the guiding center motion of the plasma particles is

V =
E⇥B

B

2
+

M

q

g ⇥B

B

2
+

M

qB

2

dE

dt

Part A

What are the names given to the three terms on the right-hand-side of the equation above?

Part B

If the plasma is su�ciently dense, such that !

2
pi/!

2
ci � 1, then dynamics of the plasma

can be described (approximately) with the equation r · J = 0. Using this equation, show
that the plasma blob falls down at the same rate as Newton’s apple.

2
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The equation for the guiding center motion of the plasma particles is

V =
E⇥B

B

2
+

M

q

g ⇥B

B

2
+

M

qB

2

dE

dt

Part A

What are the names given to the three terms on the right-hand-side of the equation above?

Part B

If the plasma is su�ciently dense, such that !

2
pi/!

2
ci � 1, then dynamics of the plasma

can be described (approximately) with the equation r · J = 0. Using this equation, show
that the plasma blob falls down at the same rate as Newton’s apple.

2



Question 1

What is the plasma frequency for an electron-positron plasma?

Question 2

Consider a proton-electron plasma with Te ⇠ 10⇥ Ti.

Part A

If a conducting sphere is inserted into the plasma, approximately what would be the
electric potential of the sphere relative to the plasma potential?

Part B

A thin boundary between the plasma and the sphere would exist, called the “plasma
sheath”. Write an approximate expression for the thickness of this sheath.

Question 3

Consider a plasma “blob” (containing heavy ions and electrons) in a straight, uniform
magnetic field under the influence of a constant gravitational acceleration, g = �ẑg.
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Question 4

Consider a plasma “blob” (containing heavy ions and electrons) located initially in a
purely toroidal magnetic field. In cylindrical coordinates, the magnetic field is B =
�̂B0 (r0/r), where r0 is the initial radial location of the center of the blob and B0 is the
magnetic field strength at r = r0.

The equation for the guiding center motion of the plasma particles is

V =
E⇥B

B

2
+

(T? + 2T||)

q

b̂⇥rB

B

2
+

M

qB

2

dE

dt

where the low-beta assumption, b̂ ·rb̂ = r log B, was used for the magnetic drifts.

Part A

In which direction does the plasma blob move? What is the direction of the electric field?

Part B

If the plasma is su�ciently dense, such that !

2
pi/!

2
ci � 1, then dynamics of the plasma

can be described (approximately) with the equation r · J = 0. Using this equation, give
an expression for the motion of the plasma blob.

Part C

If the plasma motion occurs adiabatically, what happens to the plasma temperature as a
result of the blob’s motion?

3



Question 5

The whistler wave propagates along the magnetic field with a frequency range, !ci ⌧ ! <

!ce. An approximate dispersion relation for the whistler wave is

k

2
c

2

!

2
=

!

2
pe

!(!ce � !)

where the sign of all frequencies are positive in the expression above.
Consider the propagation of whistler’s in the magnetospheres of planets caused by

atmospheric lightning. At the moment of the lightning strike, a broad band of electro-
magnetic frequencies are excited in a single pulse. Some of this wave energy couples
to whistler waves that propagate from one pole to the other. Because the waves have
di↵erent group velocities, waves at di↵erent frequencies arrive at di↵erent times.

Part A

Since the group velocity is vg = @!/@k, given an expression for the time of arrival of
whistler pulse as a function of the wave frequency.

Part B

A “cut-o↵” frequency is a frequency beyond (or below) which the wave can not propagate.
Is there a “cut-o↵” for whistler waves propagating through a magnetospheric plasma? If
so, what information is obtained from measurement of the “cut-o↵” frequency?

4



Question 6

Consider a uniform plasma with Te � Ti.

Part A

Derive the dispersion relation for an ion acoustic wave by linearizing the following fluid
equations:

@n

@t

+r · nV = 0

@V

@t

+ V ·rV = �rP

nM

+
q

M

(E + V ⇥B)

r · E = �r2� =
X

i,e

qsns

✏0

Pi ⇡ 0

�

✓
Pe

n

�
e

◆
= 0

Part B

The wave energy density for the ion acoustic wave is proportional to

Wk =
✏0

2

���Ẽ
���
2
+

1

2
niMi

���Ṽi

���
2

.

What is the ratio of the electric field energy density to the kinetic energy density for
an acoustic wave?

Part C

Show the relationship between the wave energy density and the expression below for the
ion acoustic wave.

Wk / !R
dDR

d!

✏0

2

���Ẽ
���
2

where DR(!, k) is the real part of the dispersion relation and !R is the real part of the
wave frequency. [Hint: You should be able to show that Dr ⇡ 1� !

2
pi/!

2 + 1/�k

2
�

2
e.]

5



Insulating Plates

Uniform B

Inner Rod with

Radial Current

Figure 1: A cylindrical plasma column with a strong uniform magnetic field with two
perfectly insulating end plates.

Question 7

Consider a uniform, magnetized plasma cylinder terminated at each end with a perfectly
insulating end plate. Let the magnetic field be strong such that the plasma conductivity
is given by the tensor J = ⌃ · E, where

⌃ =

0

B@
�? �H 0
��H �? 0

0 0 �||

1

CA

where �? ⇡ q

2
n⌫i/Mi!

2
ci, �H ⇡

P
e,i q

2
sn/ms!cs, and �|| ⇡ q

2
n/me⌫e.

If there exists a wire (with radius a) along the axis of the plasma column, and if this
wire is biased with respect to the outer surface of the plasma (at radius b), then a radial
current causes the plasma to spin.

What must be the ion collision rate, ⌫i(r), as a function of radius, if the plasma density
and plasma rotation are constant, independent of the radius? [Hint: Work in cylindrical
coordinates and use the condition r · J = 0, with J being the radial current from the rod
to the outer plasma surface.]
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Question 8

Consider a plasma with a strong magnetic field, B = x̂B0, under the influence of a
vertical gravitational acceleration, g = �ẑg. Furthermore, assume that the plasma density
exponentially increases with height such that d log n/dz = 1/h, or n(z) / e

z/h. This
plasma is unstable to the Rayleigh-Taylor instability.

Assuming that the plasma is incompressible, i.e. r · V = 0, and the instability to
propagate perpendicular to B, what is the growth rate of the instability?

The ideal MHD equations are:

nM

dV

dt

= nMg + J⇥B

@n

@t

+r · nV = 0

E + V ⇥B = 0

r⇥B = µ0J

r⇥ E = �@B

@t

7



Question 9

A ✓-pinch is a class of cylindrical plasma equilibria with azimuthal (✓-directed) currents
and axial magnetic fields.

Part A

Derive the MHD equilibrium condition for a ✓-pinch.

Part B

If the plasma pressure is constant from 0 < r < a and zero outside r > a, what must
characterize the profile of the magnetic field?

Part C

Can the direction of the magnetic field inside the pinch be opposite of the direction of
the magnetic field outside the pinch?

Question 10

The dispersion relation for electrostatic plasma waves in a collisionless plasma is

D(!, k) = 1�
!

2
pe

k

2

Z Z Z
d

3
v

k · df0/dv

k · v � !

where f0(v) is the unperturbed velocity distribution function.
Imagine that the velocity-space distribution was a “cube”. In other words, let f0(v) =

n/8c3 when |vx| < c, |vy| < c, and |vz| < c and f0 = 0 when {vx, vy, vz} is outside of the
velocity-space cube.

Now, when the plasma waves are propagating along either the x̂, ŷ, or ẑ directions,
then the velocity-space integrals in the dispersion relation are relatively easy to evaluate.
For this special case of propagation along an axis, what is the frequency of long-wavelength
plasma waves? Also, under what conditions are the plasma waves undamped?
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APPH 6101 Plasma Physics I
Final Examination: December, 2015.

This is a closed book exam. If you have any questions about the exam, please clearly state
these in your answer booklet and make your best answer.

You have at most 3 hours to answer all questions. All five questions have equal “weight”.
(Therefore, please read all questions first, and answer the easiest questions before the
more di�cult ones.) When possible and appropriate, please show your work and write
neatly.

Please write your name on your exam and exam booklet.

Final Score:

Question 1 (Particle motion)

Question 2 (Plasma equilibrium)

Question 3 (Plasma Waves)

Question 4 (Plasma Stability)

Question 5 (Vlasov Equation)

Total Score
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Figure 1: The magnetic field strength along a field line increases rapidly at the two
“magnetic mirrors” separated by a length L. After some time, the length of the field line
decreases to L/2.

Question 1

A charged particle is confined along a strong magnetic field and trapped between two
“magnetic mirrors” separated by a distance L. See Fig. 1 above.

At the minimum of the magnetic field strength, |B| = B0, and the magnitude of
the particle’s velocity perpendicular and parallel to the magnetic field are equal when
|B| = B0.

During some time, the length between the magnetic mirrors is reduced from L to L/2
while keeping B0 constant.

Part A

What are the conditions for the first and second adiabatic invariants to be constant during
this process?

Part B

Assuming the first and second adiabatic invariants to be constant as the length decreases,
what is the ratio of the particle’s kinetic energy before, when the magnetic mirrors are
separated by L, and after, when they are separated by L/2?
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Figure 2: A cylindrical plasma column with a strong uniform magnetic field with two
perfectly insulating end plates.

Question 2

Consider a uniform, magnetized plasma cylinder terminated at each end with a perfectly
insulating end plate. Let the magnetic field be strong such that the plasma conductivity
is given by the tensor J = ⌃ · E, where

⌃ =

0

B@
�? �H 0
��H �? 0
0 0 �||

1

CA

where �? ⇡ q

2
n⌫i/Mi!

2
ci, �H ⇡ P

e,i q
2
sn/ms!cs, and �|| ⇡ q

2
n/me⌫e.

If there exists a wire (with radius a) along the axis of the plasma column, and if this
wire is biased with respect to the outer surface of the plasma (at radius b), then a radial
current causes the plasma to spin.

Part A

What must be the ion collision rate, ⌫i(r), as a function of radius, if the plasma density
and plasma rotation are constant, independent of the radius? [Hint: Work in cylindrical
coordinates and use the condition r ·J = 0, with J being the radial current from the rod
to the outer plasma surface.]

Part B

Compute the torque (supplied by the current to the plasma) required to maintain constant
plasma rotation as a function of radius.

At constant rotation, the torque from the plasma current is balanced by an opposing
torque. What is this opposing torque?
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Question 3

Consider the e↵ect of electron collisions on plasma waves in a uniform cold plasma. The
equation for electron motion is

me
dve

dt

= �eE� eve ⇥B�me⌫ve

where E and B are the electric and magnetic field of the electromagnetic wave. (There is
no equilibrium magnetic field in this problem.)

Part A

Show that the e↵ect of collisions can be represented by the substitution

me ! me

✓
1 +

i⌫

!

◆

where ! is the wave frequency.

Part B

Find the linear dispersion relation for longitudinal electron plasma oscillations including
the e↵ects of collisions. Briefly discuss the dissipation of these oscillations when ⌫ ⌧ !pe.

Part C

For electromagnetic waves in a cold plasma, find approximate expressions for the real and
imaginary parts of the wave number (k = kr + iki) when ⌫ ⌧ ! and !pe ⌧ !.
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Question 4

Consider a cold plasma with a strong magnetic field, B = x̂B0, under the influence of
a vertical gravitational acceleration, g = �ẑg. Furthermore, assume that the plasma
density exponentially increases with height such that d log n/dz = 1/h, or n(z) / e

z/h.
This plasma is unstable to the Rayleigh-Taylor instability.

Assuming that the plasma is incompressible, i.e. r · V = 0, and the instability to
propagate perpendicular to B, what is the growth rate of the instability?

The ideal MHD equations are:

nM

dV

dt

= nMg + J⇥B

@n

@t

+r · nV = 0

E+V ⇥B = 0

r⇥B = µ0J

r⇥ E = �@B

@t
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Question 5

When the electrostatic potential, �(r), is a constant in time, one solution to the Vlasov
equation is

F (r,v, t) = n

✓
m

2⇡kT

◆3/2

exp
h
�(mv

2
/2 + q�(r))/kT

i

Part A

Show that this distribution function satisfies the Vlasov equation:

@F

@t

+ v ·rrF +
q

m

E ·rvF = 0

where E = �r�.

Part B

For a plasma with positrons and electrons described by the same distribution above,
integrate over velocity space and show that the electrostatic potential must satisfy

r2� = �en

✏0
[exp(�e�/kT )� exp(e�/kT )]

Part C

Assuming that e�/kT ⌧ 1, show that the potential around a charge Q located at r = 0
is given by

�(r) =
1

4⇡✏0

Q

r

e

�r/�D

What is �D?
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