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Calculate and Repeat

9.4 Plasma Simulation with Particle Codes 249

The particle position is advanced by a discrete representation of Newton’s equation
in terms of a leap-frog scheme
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in which the superscript labels the number of the time step. The advancement of
the velocity is made at half timesteps. A full cycle of the PIC time step is shown in
Fig. 9.20.

Fig. 9.20 Time step of the
particle-in-cell technique

9.4.2 Phase-Space Representation

Before discussing the interaction of electrons with wave fields, let us shortly recall
the description of a dynamical system in phase space. A simple one-dimensional
system, the pendulum, is described by the potential energy

Wpot = −W0 cos(ϕ) . (9.84)

For small excitation energies, the pendulum performs harmonic oscillations about
the equilibrium position at ϕ = 0. The potential well and the phase space ϕ–(dϕ/dt)
of this pendulum are shown in Fig. 9.21. The phase space contours in Fig. 9.21b
correspond to various values of total energy
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I being the moment of inertia for this pendulum.
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9.1 The Vlasov Model 221

In analogy, we now subdivide velocity space into small bins, !vx!vy!vz , and
consider the number of particles !N (α) of species α inside an element of a six-
dimensional phase space that is spanned by three spatial coordinates and three
velocity coordinates

!N (α) = f (α)(r, v, t)!x!y!z!vx!vy!vz . (9.3)

Taking the limit of infinitesimal size, d3r d3v, needs a short discussion. When phase
space is subdivided into ever finer bins, the problem arises that, in the end, we will
find one or no plasma particle inside such a bin. The distribution function f (α)

would then become a sum of δ-functions

f (α)(r.v, t) =
∑

k

δ(r − rk(t))δ(v − vk(t)) , (9.4)

which represents the exact particle positions and velocities. However, then we had
recovered the problem of solving the equations of motion for a many-particle sys-
tem, of say 1020 particles; instead, we are searching for a mathematically simpler
description by statistical methods.

For this purpose, we start with finite bins, !x!y!z!vx!vy!vz , of macro-
scopic size, which contain a sufficient number of particles to justify statistical tech-
niques. Then we define a continuous distribution f ( j) on this intermediate scale and
require that f (α) remains continuous in taking the limit. One could imagine that this
is equivalent to grind the real particles into a much finer “Vlasov sand”, where each
grain of sand has the same value of q/m (which is the only property of the particle
in the equation of motion) as the real plasma particles, and is distributed such as
to preserve the continuity of f (α). This approach is called the Vlasov picture. This
subdivision comes at a price, because we loose the information of the arrangement
of neighboring particles, i.e., correlated motion or collisions. Hence, the Vlasov
model does only apply to weakly coupled plasmas with $ ≪ 1.

A different way to give a kinetic description will be introduced below in Sect. 9.4
by combining the particles inside a mesoscopic bin into a superparticle of the same
q/m. Then we may end up with only 104–105 superparticles for which the equations
of motion can be solved on a computer. However, forming superparticles enhances
the grainyness of the system and the particles inside a superparticle are artificially
correlated.

The function f (α) has the following normalisation,

N (α) =
∫∫

f (α)(r, v, t) d3r d3v , (9.5)

where N (α) is the total number of particles of species α. The particle density in real
space, the mass density, and the charge density then become

n(α)(r, t) =
∫

f (α)(r, v, t)d3v (9.6)

,
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9.1 The Vlasov Model 223

as collisions that kick particles from one phase-space cell to another cell at far
distance. Noting that the phase-space coordinate vx is independent of x and that the
x-component of the Lorentz force is independent of vx , we have

∂ f
∂t

+ vx
∂ f
∂x

+ a
∂ f
∂vx

= 0 . (9.10)

Generalizing to three space coordinates and three velocities, we obtain

∂ f
∂t

+ v · ∇r f + a · ∇v f = 0 . (9.11)

Here, we have introduced the short-hand notations ∇r = (∂/∂x, ∂/∂y, ∂/∂z) and
∇v = (∂/∂vx , ∂/∂vy, ∂/∂vz). The particle acceleration a is determined by the elec-
tric and magnetic fields, which are the sum of external fields and internal fields from
the particle currents

a = q
m

(E + v × B) . (9.12)

It must be emphasized here that the internal electric and magnetic fields result from
average quantities like the space charge distribution ρ = ∑

α qα
∫

fαd3v and the
current distribution j = ∑

α qα
∫

vα fαd3v, which are both defined as integrals over
the distribution function. In this sense, the fields are average quantities of the Vlasov
system and any memory of the pair interaction of individual particles is lost. This is
equivalent to assuming weak coupling between the plasma particles and neglecting
collisions.

Combining (9.11) and (9.12) we obtain the Vlasov equation

∂ f
∂t

+ v · ∇r f + q
m

(E + v × B) · ∇v f = 0 . (9.13)

There are individual Vlasov equations for electrons and ions.

9.1.3 Properties of the Vlasov Equation

Before discussing applications of the Vlasov model, we consider general properties
of the Vlasov equation:

1. The Vlasov equation conserves the total number of particles N of a species,
which can be proven, for the one-dimensional case, as follows:

∂N
∂t

= ∂

∂t

∫∫
f dxdv = −

∫∫
v
∂ f
∂x

dxdv −
∫∫

a
∂ f
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dxdv
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Properties of Vlasov Equation
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Here we have used that the expressions in square brackets vanish, because f
decays faster than x−2 for x → ±∞, otherwise the total number of particles
would be infinite. Similarly, f decays faster as v−2 for v → ±∞, otherwise the
total kinetic energy would become infinite. Further, dv/ dx = 0, because v and
x are independent variables, and da/ dv = 0 because the x component of the
Lorentz force does not depend on vx .

2. Any function, g[ 1
2 mv2 + qΦ(x)], which can be written in terms of the total

energy of the particle, is a solution of the Vlasov equation (cf. Problem 9.1).
3. The Vlasov equation has the property that the phase-space density f is constant

along the trajectory of a test particle that moves in the electromagnetic fields E
and B. Let [x(t), v(t)] be the trajectory that follows from the equation of motion
mv̇ = q(E + v × B) and ẋ = v, then

d f (x(t), v(t), t)
dt

= ∂ f
∂t

+ ∂ f
∂x

· dx
dt

+ ∂ f
∂v

· dv
dt

= ∂ f
∂t

+ ∂ f
∂x

· v + ∂ f
∂v

· q
m

(E + v × B) = 0 . (9.15)

4. The Vlasov equation is invariant under time reversal, (t → −t), (v → −v). This
means that there is no change in entropy for a Vlasov system.

9.1.4 Relation Between the Vlasov Equation and Fluid Models

Obviously, the Vlasov model is more sophisticated than the fluid models in that now
arbitrary distribution functions can be treated correctly. The fluid models did only
catch the first three moments of the distribution function: density, drift velocity and
effective temperature. Does this mean that the Vlasov model is just another model
that competes with the fluid models in accuracy?

The answer is that the collisionless fluid model is a special case of the Vlasov
model. The fluid equations can be exactly derived from the Vlasov equation by
taking the appropriate velocity moments for the terms of the Vlasov equation. We
give here two examples for this procedure and restrict the discussion to the simple
1-dimensional case.
Integrating the individual terms of the Vlasov equation over all velocities gives

0 = ∂

∂t

∫
f dv + ∂

∂x

∫
v f dv + a

[
f
]∞
−∞ = ∂n

∂t
+ ∂

∂x
(nu) , (9.16)
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which can be proven, for the one-dimensional case, as follows:

∂N
∂t

= ∂

∂t

∫∫
f dxdv = −

∫∫
v
∂ f
∂x

dxdv −
∫∫

a
∂ f
∂v

dxdv
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⎬

⎭ = 0 . (9.14)

Here we have used that the expressions in square brackets vanish, because f
decays faster than x−2 for x → ±∞, otherwise the total number of particles
would be infinite. Similarly, f decays faster as v−2 for v → ±∞, otherwise the
total kinetic energy would become infinite. Further, dv/ dx = 0, because v and
x are independent variables, and da/ dv = 0 because the x component of the
Lorentz force does not depend on vx .

2. Any function, g[ 1
2 mv2 + qΦ(x)], which can be written in terms of the total

energy of the particle, is a solution of the Vlasov equation (cf. Problem 9.1).
3. The Vlasov equation has the property that the phase-space density f is constant

along the trajectory of a test particle that moves in the electromagnetic fields E
and B. Let [x(t), v(t)] be the trajectory that follows from the equation of motion
mv̇ = q(E + v × B) and ẋ = v, then

d f (x(t), v(t), t)
dt

= ∂ f
∂t

+ ∂ f
∂x

· dx
dt

+ ∂ f
∂v

· dv
dt

= ∂ f
∂t

+ ∂ f
∂x

· v + ∂ f
∂v

· q
m

(E + v × B) = 0 . (9.15)

4. The Vlasov equation is invariant under time reversal, (t → −t), (v → −v). This
means that there is no change in entropy for a Vlasov system.

9.1.4 Relation Between the Vlasov Equation and Fluid Models

Obviously, the Vlasov model is more sophisticated than the fluid models in that now
arbitrary distribution functions can be treated correctly. The fluid models did only
catch the first three moments of the distribution function: density, drift velocity and
effective temperature. Does this mean that the Vlasov model is just another model
that competes with the fluid models in accuracy?

The answer is that the collisionless fluid model is a special case of the Vlasov
model. The fluid equations can be exactly derived from the Vlasov equation by
taking the appropriate velocity moments for the terms of the Vlasov equation. We
give here two examples for this procedure and restrict the discussion to the simple
1-dimensional case.
Integrating the individual terms of the Vlasov equation over all velocities gives

0 = ∂

∂t

∫
f dv + ∂

∂x

∫
v f dv + a

[
f
]∞
−∞ = ∂n

∂t
+ ∂

∂x
(nu) , (9.16)
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as collisions that kick particles from one phase-space cell to another cell at far
distance. Noting that the phase-space coordinate vx is independent of x and that the
x-component of the Lorentz force is independent of vx , we have

∂ f
∂t

+ vx
∂ f
∂x

+ a
∂ f
∂vx

= 0 . (9.10)

Generalizing to three space coordinates and three velocities, we obtain

∂ f
∂t

+ v · ∇r f + a · ∇v f = 0 . (9.11)

Here, we have introduced the short-hand notations ∇r = (∂/∂x, ∂/∂y, ∂/∂z) and
∇v = (∂/∂vx , ∂/∂vy, ∂/∂vz). The particle acceleration a is determined by the elec-
tric and magnetic fields, which are the sum of external fields and internal fields from
the particle currents

a = q
m

(E + v × B) . (9.12)

It must be emphasized here that the internal electric and magnetic fields result from
average quantities like the space charge distribution ρ = ∑

α qα
∫

fαd3v and the
current distribution j = ∑

α qα
∫

vα fαd3v, which are both defined as integrals over
the distribution function. In this sense, the fields are average quantities of the Vlasov
system and any memory of the pair interaction of individual particles is lost. This is
equivalent to assuming weak coupling between the plasma particles and neglecting
collisions.

Combining (9.11) and (9.12) we obtain the Vlasov equation

∂ f
∂t

+ v · ∇r f + q
m

(E + v × B) · ∇v f = 0 . (9.13)

There are individual Vlasov equations for electrons and ions.
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which is just the continuity equation (5.8). Here, u = (1/n)
∫

v f dv is again the
fluid velocity. Likewise, we can multiply all terms by mv and perform the integration
to obtain

0 = ∂

∂t

∫
mv f dv + ∂

∂x

∫
v2 f dv + a

∫
v
∂ f
∂v

dv

= ∂

∂t

∫
mv f dv + ∂

∂x

[∫
m(v − u)2 f dv + nmu2

]

+ a
([

v f
]∞
−∞ −

∫
f

dv

dv
dv

)

= ∂

∂t
(nmu) + ∂p

∂x
+ u

∂

∂t
(nmu) + (nmu)

∂u
∂x

− nma

= nm
(
∂u
∂t

+ u
∂u
∂x

)
+ ∂p
∂x

− nma , (9.17)

which is the momentum transport equation (5.28). In the second line, we have used
Steiner’s theorem for second moments of a distribution, and in the last line, we have
used the continuity equation, which cancels two terms. p =

∫
m(v − u)2 f dv is the

kinetic pressure.
By multiplying with vn and integrating the terms in the Vlasov equation, we

can define an infinite hierarchy of moment equations. Note that each of these equa-
tions is linked to the next higher member in the hierarchy: The continuity equation
links the change in density to the divergence of the particle flux. The momentum
equation describing the particle flux invokes the pressure gradient, which is defined
in the equation for the third moments, and so on. Hence, the fluid model must be
terminated by truncation. Instead of using a third moment equation that describes
the heat transport, one is often content with using an equation of state, p = nkBT ,
to truncate the momentum equation.

9.2 Application to Current Flow in Diodes

As a first example, we use the Vlasov equation to study the steady-state current
flow in electron diodes under the influence of space charge. The difference from the
treatment of the Child-Langmuir law in Sect. 7.2 is that we now allow for a thermal
velocity distribution of the electrons at the entrance point of a vacuum diode.

Before starting with the calculation, we summarize our expectations. The elec-
trons are in thermal contact with a heated cathode at x = 0, and only electrons
with a positive velocity leave the cathode. An anode with a positive bias voltage
is assumed at some distance x = L . Close to the cathode, the velocity distribution
function will be a half-Maxwellian with a temperature determined by the cathode
temperature. The limiting current from the Child-Langmuir law corresponds to the
situation that the electric field at the cathode vanishes. When the emitted current is
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lower than the limiting current, the electric field force on an electron is positive and
all electrons can flow to the anode. However, when the emitted current is higher than
the limiting current, the electric field at the cathode is reversed because a significant
amount of negative space charge is formed in front of the cathode. Such a situation
with a potential minimum is shown in Fig. 9.3.

Now, only those electrons can overcome the potential barrier that have a suffi-
ciently high initial velocity. Electrons with lower starting velocity will be reflected
back to the cathode. Some sample trajectories in (x − v) phase space are shown
for transmitted and reflected populations. The velocity distribution can be consid-
ered as being partitioned into intervalls of equal velocity, which propagate through
the system like the test particles. The separatrix (dotted line in Fig. 9.3) between
the populations of free and trapped electrons is defined by v = 0 at the potential
minimum.

Fig. 9.3 A combination of the half-Maxwellian of the electrons at the cathode of a vacuum diode
with the trajectories in phase space (x ,v). The potential distribution Φ(x) is shown as an overlay
to the phase space. Only part of the electrons can overcome the potential minimum, the others are
reflected back to the cathode

9.2.1 Construction of the Distribution Function

With these prerequisites, we can now state the problem of a stationary flow in terms
of the Vlasov and Poisson equations, which we write down for a one-dimensional
system

v
∂ f (x, v)

∂x
+ e

me

∂Φ

∂x
∂ f (x, v)

∂v
= 0 (9.18)

∂2Φ

∂x2 = e
ε0

∞∫

−∞
f (x, v) dv . (9.19)
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The phase space trajectories of test particles form the characteristic curves of the
Vlasov equation and result from integrating the equation of motion for

dx
dτ

= v and
dv

dτ
= e

m
dΦ
dx

. (9.20)

Here we have introduced the transit time τ , which must be distinguished from the
absolute time. The considered problem of a stationary flow is independent of abso-
lute time. However, for each electron an individual time τ elapses after injection
at the cathode. This time τ can be considered as a series of tick marks along the
characteristic curve. The trajectory v(x) follows by eliminating the parameter τ
from the solution of (9.20).

Our initial remarks on the properties of the Vlasov equation are now very helpful.
Since the value of the distribution function is constant along a phase-space trajec-
tory, the construction of the distribution function at any place x inside the diode is
reduced to a mapping problem. This mapping is accomplished by the conservation
of total energy for a test electron

1
2

mev
2 − eΦ = 1

2
mev

2
0 − eΦ0 , (9.21)

with v0 the initial velocity at the cathode and Φ0 the cathode potential. We can set
Φ0 = 0 for convenience. Then the mapping of velocities reads

v(Φ, v0) = ±
(

v2
0 + 2eΦ

me

)1/2

. (9.22)

This means, that for a given electric potential Φ(x), we can immediately give the
starting velocity v0 and read the corresponding value of the Maxwellian distribution
that we have postulated for a position immediately before the cathode. The two
signs of the velocity in (9.22) represent the forward (+) and backward (−) flows of
electrons.

We define the velocity distribution at the cathode as the half-Maxwellian

f (0, v0) = A exp

(

− mev
2
0

2kBTe

)

. (9.23)

The normalization A = nem1/2
e (2πkBTe)

−1/2 is that of a full Maxwellian. This
choice ensures that ne approximately represents the density of trapped electrons,
when the potential minimum is very deep and most of the emitted electrons are
reflected.

Those electrons that have a nearly-vanishing positive velocity at the potential
minimum, will gain energy from the electric field. This group of electrons repre-
sents the lowest velocity in the transmitted electron distribution and defines a cut-off
velocity vc for the distribution
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The phase space representation has the following properties:

• For small total energy, the energy contour is an ellipse.
• There are bound oscillating states for Wtot < 2W0 and free rotating states for

Wtot > 2W0, separated by a separatrix, which is shown dashed line in Fig. 9.21b.
• The motion of a phase space point is always clockwise, as indicated by the arrows

in Fig. 9.21b.
• The oscillation period becomes longer when the oscillation amplitudes is increased.

It becomes infinite at the separatrix.

We will use this phase space picture to study the motion of nearly resonant elec-
trons in a wave field. The resonance condition v≈vϕ ensures that the electron “sees”
a nearly constant potential well of the wave. Therefore, in a first approximation, its
motion is described by energy conservation in the moving frame of reference:

Wtot = 1
2

me(v − vϕ)
2 + eΦ̂ cos(kx) = const . (9.86)

Therefore, we can expect free electron streaming w.r.t. the wave when Wtot > 2eΦ̂.
This defines the trapping potentialΦ t = m(v−vϕ)

2/(4e). Electrons with an energy
less than this critical value are trapped by the wave and perform bouncing oscil-
latiuons in the wave potential.

Fig. 9.21 (a) Potential energy of a pendulum. (b) Phase space contours of the pendulum for various
values of total energy. The dashed line separates bound oscillating states inside from free rotating
states
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fe(x, v, t) = fe0(v) + fe1(x, v, t) (9.35)

fe0(v) = ne0

(
me

2πkBTe

)1/2

exp
{
− mev

2

2kBTe

}
(9.36)

fe1 = f̂e1 exp[i(kx − ωt)] . (9.37)

Linearizing the Vlasov equation, and using the wave representation (9.36), we
obtain

∂ fe1

∂t
+ v

∂ fe1

∂x
− e

me
E1
∂ fe0

∂v
= 0 (9.38)

−iω f̂e1 + ikv f̂e1 − e
me

Ê1
∂ fe0

∂v
= 0 , (9.39)

which yields the perturbed electron distribution function as

f̂e1 = i
e

me

∂ fe0/∂v

ω − kv
Ê1 . (9.40)

The vanishing of the denominator (ω − kv) causes a singularity in the perturbed
distribution function, which we will have to address carefully. The electrons with
v ≈ ω/k will be called resonant particles. In Sect. 8.1.2 we had already seen the
particular role of resonant particles for beam-plasma interaction.

The perturbed electron distribution function represents a space charge

ρ = e

⎛

⎝ni −
∞∫

−∞
fe dv

⎞

⎠ = −e

+∞∫

−∞
fe1 dv , (9.41)

in which the unperturbed Maxwellian of the electrons is just neutralized by the ion
background. Only the fluctuating part of the electron distribution contributes to the
space charge. The relationship between the wave electric field and the perturbed
distribution function is established by Poisson’s equation, which takes the form

ik Ê1 = ρ

ε0
= 1

ik
Ê1
ω2

pe

ne0

+∞∫

−∞

∂ fe0/∂v

ω/k − v
dv . (9.42)

This equation can be rewritten in terms of the dielectric function ε(ω, k) with the
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ik Ê1 = ρ

ε0
= 1

ik
Ê1
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Ê1
ω2

pe

ne0

+∞∫

−∞

∂ fe0/∂v

ω/k − v
dv . (9.42)

This equation can be rewritten in terms of the dielectric function ε(ω, k) with the
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9.3.2 The Meaning of Cold, Warm and Hot Plasma

When the mean thermal speed of the electrons is sufficiently small compared to the
phase velocity of the wave (see Fig. 9.7), the contribution from resonant particles
in (9.43) is attenuated by the exponentially small factor in the numerator. Then, the
main contributions to the integral in (9.43) originate from the interval [−vTe, vTe],
where we can expand the function (ω/k − v)−1 into a Taylor series

1
ω/k − v

= k
ω

+ k2

ω2 v + k3

ω3 v2 + k4

ω4 v3 + · · · . (9.45)

The integral (9.43) can be solved analytically using the relations

+∞∫
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x2ne−ax2 = 1 × 3 × · · · × (2n − 1)

(2a)n

(π
a

)1/2
(9.46)

+∞∫

−∞
x2n+1e−ax2 = 0 . (9.47)

Fig. 9.7 Relation between
phase velocity and width of
the electron distribution
function for a (a) cold
plasma, (b) warm plasma,
and (c) hot plasma
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Ê1
ω2

pe

ne0

+∞∫

−∞

∂ fe0/∂v

ω/k − v
dv . (9.42)

This equation can be rewritten in terms of the dielectric function ε(ω, k) with the
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Ê1
ω2

pe

ne0

+∞∫

−∞

∂ fe0/∂v

ω/k − v
dv . (9.42)

This equation can be rewritten in terms of the dielectric function ε(ω, k) with the
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Using terms up to fourth order in the phase velocity, we obtain

ε(ω, k) = 1 −
ω2

pe

ω2 − 3
2

ω2
pe

ω4 k2v2
Te = 0 . (9.48)

The first two terms represent the cold-plasma result (6.45), which we had obtained
from the single-particle model. The third term gives a thermal correction that leads
to the dispersion relation of Bohm-Gross waves (6.68)

ω2 = ω2
pe + γek2 kBTe

me
. (9.49)

Note that we did not have to specify the coefficient γe = 3 for a one-dimensional
adiabatic compression. Rather, the adiabaticity of the process followed from the
limit vT,e ≪ ω/k and was obtained from the coefficient for the lowest-order thermal
correction in (9.46).

Summarizing, the cold-plasma approximation uses the lowest (non-vanishing,
i.e., second) order in the expansion of the dielectric function ε(ω, k) in powers of
kvTe/ω. A warm plasma description retains the next-higher non-vanishing terms,
which are fourth order. Our Taylor expansion breaks down for hot plasmas, which
are characerized by ω/k ≤ ve. Then, contributions from resonant particles will play
a significant role. For the Bohm-Gross modes in Fig. 9.8, the resonant particles lead
to wave damping, which we will discuss in the next paragraph.

Fig. 9.8 Real and Imaginary
part of the wave frequency
for the Bohm-Gross modes.
The imaginary part describes
the kinetic damping
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9.3.3 Landau Damping

Let us now allow for phase velocities in the vicinity of the thermal velocity and have
a closer look at resonant particles. Up to now, we have only considered the Cauchy
principal value of the integral (denoted by the symbol P)

ω2
pe

k2 P

+∞∫

−∞

∂ fe0/∂v

ω/k − v
dv ≈

ω2
pe

ω2 + 3
2

ω2
pe

ω4 k2v2
Te + · · · (9.50)

Integrals of the type

∞∫

−∞

F(u)

v − u
dv (9.51)

require a treatment in the complex v-plane. In our case, u = ω/k, will become a
complex phase velocity and ω a complex frequency. The Soviet physicist Lev Davi-
dovich Landau (1908–1968) has shown [194] that the proper analytic continuation
of the integral (9.51) is found by deforming the integration path in such a way that
it passes under the singularity at v = u. This integration path is called the Landau-
contour and is shown in Fig. 9.9 for the cases of a growing wave (Im(u) > 0), an
undamped wave (Im(u) = 0) and a damped wave (Im(u) < 0).

In the following, we assume that the imaginary part of u is small compared to the
real part. Therefore, in evaluating the integral in (9.43) we have to use the Cauchy
principal value but can use the contribution from the semi-circle in the Landau con-
tour, as shown in Fig. 9.9b. The latter is one half of the residue at the pole. We then
obtain

0 = 1 −
ω2

pe

k2

⎛

⎝P

∞∫

−∞

1
ne0

∂ fe0/∂v

v − ω/k
dv + iπ

1
ne0

∂ fe0

∂v

∣∣∣∣
v=ω/k

⎞

⎠ (9.52)

Fig. 9.9 (a) The Landau contour L for Im(u) > 0 follows the Re(v) axis. (b) The Landau contour
passes with a semi-circle below the pole Im(u) = 0. (c) The Landau contour encircles the pole for
Im(u) < 0
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Linearizing the Vlasov equation, and using the wave representation (9.36), we
obtain
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which yields the perturbed electron distribution function as

f̂e1 = i
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Ê1 . (9.40)

The vanishing of the denominator (ω − kv) causes a singularity in the perturbed
distribution function, which we will have to address carefully. The electrons with
v ≈ ω/k will be called resonant particles. In Sect. 8.1.2 we had already seen the
particular role of resonant particles for beam-plasma interaction.

The perturbed electron distribution function represents a space charge
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in which the unperturbed Maxwellian of the electrons is just neutralized by the ion
background. Only the fluctuating part of the electron distribution contributes to the
space charge. The relationship between the wave electric field and the perturbed
distribution function is established by Poisson’s equation, which takes the form
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This equation can be rewritten in terms of the dielectric function ε(ω, k) with the
result ik Ê1 ε(ω, k) = 0, which requires that ε(ω, k) = 0 for non-vanishing wave
fields. This is the dispersion relation for electrostatic electron waves. It now contains
the dielectric function from kinetic theory

232 9 Kinetic Description of Plasmas

fe(x, v, t) = fe0(v) + fe1(x, v, t) (9.35)

fe0(v) = ne0

(
me

2πkBTe

)1/2

exp
{
− mev

2

2kBTe

}
(9.36)

fe1 = f̂e1 exp[i(kx − ωt)] . (9.37)

Linearizing the Vlasov equation, and using the wave representation (9.36), we
obtain

∂ fe1

∂t
+ v

∂ fe1

∂x
− e

me
E1
∂ fe0

∂v
= 0 (9.38)

−iω f̂e1 + ikv f̂e1 − e
me

Ê1
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f̂e1 = i
e

me

∂ fe0/∂v

ω − kv
Ê1 . (9.40)

The vanishing of the denominator (ω − kv) causes a singularity in the perturbed
distribution function, which we will have to address carefully. The electrons with
v ≈ ω/k will be called resonant particles. In Sect. 8.1.2 we had already seen the
particular role of resonant particles for beam-plasma interaction.

The perturbed electron distribution function represents a space charge

ρ = e

⎛

⎝ni −
∞∫

−∞
fe dv

⎞

⎠ = −e

+∞∫

−∞
fe1 dv , (9.41)

in which the unperturbed Maxwellian of the electrons is just neutralized by the ion
background. Only the fluctuating part of the electron distribution contributes to the
space charge. The relationship between the wave electric field and the perturbed
distribution function is established by Poisson’s equation, which takes the form

ik Ê1 = ρ

ε0
= 1

ik
Ê1
ω2

pe

ne0

+∞∫

−∞

∂ fe0/∂v

ω/k − v
dv . (9.42)

This equation can be rewritten in terms of the dielectric function ε(ω, k) with the
result ik Ê1 ε(ω, k) = 0, which requires that ε(ω, k) = 0 for non-vanishing wave
fields. This is the dispersion relation for electrostatic electron waves. It now contains
the dielectric function from kinetic theory
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becomes exponentially small compared with the contributions from the poles 
as 1--+ 00. If all the poles pik) lie to theleft of the axis [i.e., if Re(p) < 0], then 
all contributions to <Pk(l) are damped at I O. If some of the poles lie to the 
right [Re (p) > 0], they give rise to growing electric fields (instability). In either 
case, the time-asymptotic solution to the linearized Vlasov equation in the 
electrostatic approximation is 

<P.(t --+ 00) I R j e" i(k)' 
j 

Writing this result in terms of frequency by defining 

m=ip 

gives the customary form for the potential a long time after an initial 
perturbation, 

where Wj is in general complex, i.e., 

and satisfies 

<Pk(t) I R j e- fw}, 
j 

D(k, co) 1 _ "wp; f of.o/ou 7 k 2 L U _ w/lk I du 0 

(8.4.7) 

(8.4.8) 

with D evaluated on the Landau contour. InmanycasesRe [w(k)] 1m [w(k)], 
and the plasma response a long time after an initial disturbance consists of 
wavelike oscillations at a few well-defined frequencies. These are the normal 
modes of the plasma for which the dielectric vanishes. In general, these wavelike 
modes have a phase velocity co/k and a group velocity ow/ok. 

From the above treatment it is seen that the problem of determining the 
nontransient response of a plasma to a perturbation centers on locating the 
zeros of the plasma dielectric. The equation for the zeros of the dielectric 

D[k, w(k)] 0 

is called a dispersion relation. It gives the frequency w of a plasma waVe as a 
function of the wave number k, or vice Versa. Note that such a dispersion 
relation exists only in the time-asymptotic limit. 

THE VLASOV THEORY OF PLASMA WAVES 3: 

8.5 SIMPLIFIED DERIVATION FOR ELECTROSTATIC 
WAVES IN A PLASMA 

One possible method of solving the Vlasov-Maxwell equations 

(8.5. 

V2<p, -4" I n.q. f-t:., dv 
« 

(8.5. 

for electrostatic perturbations (E, - V<p,) is to assume that the solution f 
has the form 

Then, from (8.5.1), 

la, (x, v, t) lak(v)exp(ik . x)exp( - icot) 
<p, (x, t) <Pk exp(ik . x)exp( - icot) 

and inserting (8.5.4) into (8.5.2), 

k2<Pk(1 + I cop.' Ik ' Vv/.o dV) 0 
ex k2 w-k·v 

The nontrivial solution of (8.5.5) requires that 

1 + I wp / Ik . Vvi.o dv 0 
ex k2 w-k·v 

(8.5.: 

(8.5., 

(8.5.: 

(8.5.( 

This dispersion relation gives w(k) or k(w). The fluctuating potential is given t 

<p, <Pk exp(ik' x - icot) 

The dispersion relation (8.5.6) cannot be used without specifying the cont01 
of the v integration, since for real coCk) the denominator vanishes on the ref 
v axis. This simplified derivation of the dispersion relation gives no indicatio 
of the proper choice of the contour. However, if the problem of interest is tb 
evolution of the plasma after an initial perturbation, the solution (8.5.6) rna: 
agree with the correct solution of the initial-value problem (8.4.8). The tw 
solutions are identical if, in (8.5.6), 

Ik • Vvi.o dv '" I k· Vvi.o dv 
w - k· V L W - k· v 

where L is the Landau contour shown in Fig. 8.4.1, with ip replaced by co. 
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Problem 8.5.1 Show that the Landau prescription (8.5.7) is equivalent 
to including in the calculation the effect of weak collisions. Use as a colli-
sion model 

of +V'Vf-'J...V¢'Vvf=Of.1 '" -v(1-fo) at m at collision 

taking the limit v -> 0+. (((( 

Problem 8.5.2 The Landau prescription is correct for the solution of an 
initial-value problem. Find a problem for which an anti-Landau contour 
(over the pole) would give the correct result. (((( 

The normal modes of oscillation of a plasma are those wavelike distur-
bances that persist long after the transients associated with an initial disturbance 
have died out. These normal modes are characterized by the zeros of 
D(k, OJ) = 0, for which the eigenfrequency OJ is almost purely real, with only a 
small negative imaginary part. The reason these are the normal modes is that, 
if the imaginary part of OJ for some root were large (and negative, assuming a 
stable plasma) the wave would be damped in a few oscillation periods and would 
not be classed as a normal tnode. This assumption of a nearly real eigen-
frequency simplifies the evaluation of the velocity integral (8.5.6), since it can 
then be expanded in a Taylor series about OJi = 0, by writing OJ = OJ, + iOJ i . Thus 

f
OO ",f-'.(v.:...)_dv_ = lim foo f(v) dv 
_ookov-w & ..... 0+ _ookov-wr-ie 

+lW·- hm + ... . a [. foo f(v) dv ] 
I aWr e ..... O+ -ook 0 v - illr - ie 

(8.5.8) 

Note that, for OJ = OJ" the integral is evaluated along the Landau contour by 
writing co = wr + ie, which moves the pole above the v axis, and then taking the 
limit e -+ 0+. 

The integrals in (8.5.8) can be simplified by reducing them to a one-
dimensional form by defining 

( 
k· V) F.o(u) = ff.o (v) b u - TkT dv 

Using the relation' 

hm = +nt U=-. foo G(u) du G(u) du 'G( OJ, ) 

-oou-OJ,(lkl-ie u-w'/Ikl Ikl 

1 J. Mathews and R. L. Walker, "Mathematical Methods of Physics," 2d ed., p. 481, 
W. A. Benjamin, New York, 1970. 

I 
! 
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then gives for the dispersion equation for weakly damped electrostatic waves 
in a field-free plasma 

1 -2: OJp;2 (1 + [OF.o(U)(OU du 
• k OOJ, U - OJ,(I k I 

+ m -. [OF.o(U)] ] ° au u=w,./Ikl 
(8.5.9) 

The dielectric [Eqs. (8.5.5) and (8.5.9)J is correct only for a plasma in which 
there are no magnetic or electric fields in the equilibrium state 1.0' More 
complicated equilibrium states bave other dielectric properties, and the proce-
dure outlined here, appropriately extended, is sufficient to solve most of the 
linear plasma waVe problems. That procedure is first to derive the plasma 
dielectric, then locate the zeros of the dielectric, and finally to solve the dispersion 
relations and identify these zeros with plasma waves. In the material that 
follows, the plasma dielectric function is derived for a variety of plasma equi-
libria, and the properties of plasma waves associated with these equilibria are 
investigated. 

8.6 THE VLASOV THEORY OF LANGMUIR WAVES, 
ION-SOUND WAVES, AND LANDAU DAMPING 
(Eo = Bo = 0) 

Two examples for which the solution of the dispersion relation (8.5.9) is easy 
and which illustrate the Vlasov theory of small-amplitude waVes in plasmas are 
Langmuir oscillations and ion-sound waves in a field-free plasma. In Chap. 5 
these waVes were discussed using the fluid model of a plasma. The additional 
properties of these waVes revealed by the use of the Vlasov theory is instructive 
and demonstrates how it provides a better insight into basic plasma properties. 

8.6.1 High-frequency Electrostatic Waves; Langmuir Oscillations 

Waves in a field-free plasma occur with wave number k and frequency w, as 
given by the dispersion relation D(k, w) = ° [Eqs. (8.5.6) and (8.5.9)J. Approxi-
mate solutions for this dispersion relation can be found for 'plasma waVes with 
phase velocities that lie in specific ranges. For instance, there is a solution of 
(8.5.6) for waVes with phase velocity (w(k) much greater than the thermal speed 
of the plasma particles, as shown in Fig. 8.6.1. With the assumption of w(k 
V the principal-value integral of (8.5.9) may be evaluated by an expansion thermal' 

in u. 



John Malmberg and Chuck Wharton

The first experimental measurement of Landau Damping



John Malmberg 
(obit, Nov 1992)

Prof. Malmberg joined UCSD from General Atomics in 1969 as a professor of physics. Much of his work

revolved around theoretical and experimental investigations of fully ionized gases or plasmas. The field could offer

insights into how stars work and how to ignite and control thermonuclear reactions to produce fusion energy--the

power that drives the sun.


A plasma is the fourth state of matter, with solids, liquids and gases making up the other three. Most of the

matter in the Universe is in the plasma state; for example, the matter of stars is composed of plasmas.


In recent years, Prof. Malmberg had been experimenting with pure electron plasmas that were trapped in

a magnetic bottle. By contrast with electrically neutral plasmas that contain an equal number of positive and

negative electrons, pure electron plasmas are rare in nature.


Before joining UCSD, Prof. Malmberg was director of the Plasma Turbulence group at General Atomics, where

he carried out some of the first and most important experiments to test the basic principals of plasma physics.

Perhaps his most important experiment involved the confirmation of the phenomenon called "Landau damping,"

where electrons surf on a plasma wave, stealing energy from the wave and causing it to damp (decrease in

amplitude).


For his pioneering work in testing the basic principals of plasma, and for his more recent work with electron

plasmas, Prof. Malmberg was named the recipient of the American Physical Society's James Clerk Maxwell Prize

in Plasma Physics in 1985.



Chuck Wharton 
(emeritus, Cornell)
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Landau Damping: 
The Measurement
Important key observation…
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