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Ch. 9 Fitzpatrick: Magnetic Reconnection

C H A P T E R 9

Magnetic Reconnection

9.1 INTRODUCTION
Magnetic reconnection is a phenomenon that is of particular importance in solar
system plasmas. In the solar corona, it results in the rapid release to the plasma of
energy stored in the large-scale structure of the coronal magnetic field, an e↵ect that
is thought to give rise to solar flares (Priest 1984). Small-scale reconnection may play
a role in heating the corona, and, thereby, driving the outflow of the solar wind (Priest
1984). In the Earth’s magnetosphere, magnetic reconnection in the magnetotail is
thought to be the precursor for auroral sub-storms (Ratcli↵e 1972).

The evolution of the magnetic field in a resistive-MHD plasma is governed by
the following well-known equation [see Equation (8.102)]:

@B
@t
= r ⇥ (V ⇥ B) +

⌘

µ0
r

2B. (9.1)

The first term on the right-hand side of this equation describes the convection of the
magnetic field by the plasma flow. The second term describes the resistive di↵usion
of the field through the plasma. If the first term dominates then magnetic flux is
frozen into the plasma, and the topology of the magnetic field cannot change. (See
Section 8.3.) On the other hand, if the second term dominates then there is little
coupling between the field and the plasma flow, and the topology of the magnetic
field is free to change.

The relative magnitude of the two terms on the right-hand side of Equation (9.1)
is conventionally measured in terms of magnetic Reynolds number or Lundquist num-
ber:

S =
µ0 V L
⌘
'
|r ⇥ (V ⇥ B)|
|(⌘/µ0)r2B|

, (9.2)

where V is the characteristic flow speed, and L the characteristic lengthscale, of the
plasma. If S is much larger than unity then convection dominates, and the frozen flux
constraint prevails, whereas if S is much less than unity then di↵usion dominates, and
the coupling between the plasma flow and the magnetic field is relatively weak.

It turns out that very large S -values are virtually guaranteed to occur in the solar
system because of the extremely large lengthscales of solar system plasmas. For
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compressibility, but incorporates plasma resistivity [cf. Equations (8.1)–(8.3)]:

r · V = 0, (9.3)

⇢

"
@V
@t
+ (V · r)V

#
+ rp � j ⇥ B = 0, (9.4)

E + V ⇥ B = ⌘ j. (9.5)

Here, the plasma mass density, ⇢, and resistivity, ⌘, are both assumed to be spatially
uniform, for the sake of simplicity. Compressibility is neglected (i.e., r·V is assumed
to be zero) in order to decouple the fast and slow magnetosonic waves from the
problem. (See Section 8.4.) It turns out that the instabilities that lead to magnetic
reconnection in current sheets (so-called “tearing modes”) are modified forms of
the shear-Alfvén wave (Hazeltine and Meiss 1985), and are not related to either of
the magnetosonic waves. Indeed, current sheets that exhibit magnetic reconnection
resonate with the shear-Alfvén wave, whose dispersion relation is ! = k · B/pµ0 ⇢
(see Section 8.4), where k is the wavevector. A shear-Alfvén resonance occurs when
! = 0 (i.e., when the wave frequency is reduced to zero), which implies that k ·B = 0
at the resonance.

The three simplified MHD equations, (9.3)–(9.5), form a complete set when com-
bined with Maxwell’s equations:

r · B = 0, (9.6)

r ⇥ E = �@B
@t
, (9.7)

r ⇥ B = µ0 j. (9.8)

Note that we are justified in neglecting the displacement current because we are
dealing with waves whose phase velocities are small compared to the velocity of
light in vacuum.

Consider a simplified scenario in which the Cartesian coordinate z is ignorable. In
other words, there is no variation in the z-direction (i.e., @/@z = 0), and no component
of the magnetic field or the plasma flow velocity in the z-direction (i.e., Bz = Vz = 0.)
We can automatically satisfy Equations (9.3) and (9.6) by writing

V = r� ⇥ ez, (9.9)

B = r ⇥ ez, (9.10)

where ez is a unit vector parallel to the z-axis. Note that V · r� = B · r = 0.
Thus, �(x, y) and  (x, y) map out the flow stream-lines and the magnetic field-lines,
respectively, in the x-y plane.  (x, y) is usually referred to as magnetic flux, because
the net magnetic flux (per unit length in the z-direction) that passes through a surface
(whose normal lies in the x-y plane) that links points (x1, y1) and (x2, y2) is  (x1, y1)�
 (x2, y2).
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It is helpful to define the hydromagnetic timescale,

⌧H =
k�1

(B2
0/µ0 ⇢)1/2

, (9.24)

which is the typical time required for a shear-Alfvén wave to propagate a wavelength
parallel to the y-axis, as well as the resistive di↵usion timescale,

⌧R =
µ0 a2

⌘
, (9.25)

which is the typical time required for magnetic flux to di↵use across the current sheet
in the x-direction. The e↵ective Lundquist number for the problem is

S =
⌧R

⌧H
. (9.26)

Let x = a x̂, k = k̂/a, � = �̂/⌧H ,  1 = �a B0  ̂, and �1 = i (� a/k) �̂. The
dimensionless, normalized versions of the linearized reduced-MHD equations, (9.22)
and (9.23), become

S �̂
⇣
 ̂ � F �̂

⌘
=

 
d2

dx̂2 � k̂2
!
 ̂, (9.27)

�̂ 2
 

d2

dx̂2 � k̂2
!
�̂ = �F

 
d2

dx̂2 � k̂2
�

F00

F

!
 ̂, (9.28)

where F(x̂) = tanh(x̂) and 0 ⌘ d/dx̂. Our normalization scheme is designed such
that, throughout the bulk of the plasma,  ̂ ⇠ �̂, and the only other quantities in the
previous two equations whose magnitudes di↵er substantially from unity are S �̂ and
�̂ 2. The term on the right-hand side of Equation (9.27) represents plasma resistivity,
whereas the term on the left-hand side of Equation (9.28) represents plasma inertia.
The shear-Alfvén resonance condition, k · B0 ⌘ k B0 F = 0, reduces to F = 0.

9.4 ASYMPTOTIC MATCHING
Suppose that the perturbation grows on a timescale that is much less than ⌧R, but
much greater than ⌧H . It follows that

�̂ ⌧ 1 ⌧ S �̂. (9.29)

Thus, throughout much of the plasma, we can neglect the right-hand side of Equa-
tion (9.27), and the left-hand side of Equation (9.28), which is equivalent to the ne-
glect of plasma resistivity and inertia. In this case, Equations (9.27) and (9.28) reduce
to

�̂ =
 ̂

F
, (9.30)

d2 ̂

dx̂2 � k̂2  ̂ �
F00

F
 ̂ = 0. (9.31)
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Summary of Reduced MHD

3

μ0 Jz = ∇2⊥ψ



Linearized Reduced (“Ideal”) MHD

4

determine the equilibrium toroidal current and poloidal field. The famous “Wesson Diagram”
[5] is a plot of plasma evolution in current (either Ip or 1/qa) and current peekness (either li
or qa/q0). When the current is not very peaked, qa/q0 < 2, or when the current is too large,
qa < 1, then tokamak plasmas are always unstable to external kink modes. When the central
current density is too high, q0 < 1, the internal m = 1 mode is always unstable. Finally, if the
current gradient is too high (Wesson calculated q0 < 3), then m > 1 tearing modes are unstable.
(Actually, the stability of tearing modes must take into account toroidal, diamagnetic e↵ects,
and neoclassical currents, and Wesson’s early bounds on linear tearing stability turned out to
be pessimistic.)

Since plasma current gradients exist within the plasma, the approach taken in Sec. 3 to find
the global kink eigenmodes is modified. The linearized equations for plasma acceleration and
induction are

�⇢!r2
?� = �m

r

@Jz,0

@r
 ̃ +

Bp

µ0r
(m� nq)r2

? ̃ (25)

�! ̃ =
Bp

r
(m� nq)� . (26)

If we continue to assume that ⇢ is constant except for a sharp discontinuity at the edge, then
the jump condition is

!⇢
@�

@r

����
a�

=
Bp(a)
µoa

(m� nqa) ̃a�0(a) , (27)

since Jz,0(a) = 0 at the edge.
The usual approach to the eigensystem analysis of Eqs. 25, 26, and 27 in cylindrical MHD is

very interesting. In Eq. 25, the inertial term is ignored. Inside the plasma, the kink response is
assumed to be a sequence of “quasi-equilibria”. This makes good sense because the external kink
growth rate is always about ten times slower than a typical Alfvén frequency. The perturbed
poloidal field is always described by (linear) ideal (helical) MHD force-balance:

0 ⇡ �m

r

@Jz,0

@r
 ̃ +

Bp

µ0r
(m� nq)r2

? ̃ . (28)

The kink growth rate is determined solely by a thin “inertial layer” at the edge (i.e. Eq. 27),

!2 = �!2
A(m� nqa)2 �0(a)

�a

(@�/@r)|a�
. (29)

Eq. 26 is used to determine �(r) from  ̃(r). Eq. 26 also implies

1
�a

@�

@r

����
a�

=
1
 ̃a

@ ̃

@r

�����
a�

+
2m/a

m� nqa

since the magnetic shear is sq(a) ⌘ (a/qa) (dq/dr)|a = 2 when Jz,0(a) = 0. Just as in the
Shafranov equilibrium, the inertial response, �K, diverges at resonance, qa = m/n, and this
causes the kink growth rate to vanish.

The procedure described above for calculating external kink growth rate for an arbitrary
plasma current profile was followed by Cates and co-workers [11] in order to estimate the time-
evolution of the instability growth rates in HBT-EP as Jz,0(r, t) evolved due to classical plasma
resistivity.

8

Shafranov “Constant J” Case (dJ0/dr = 0) 
Wesson “Model J0(r)” Case (dJ0/dr ≠ 0)



Wesson’s Cylindrical Equilibrium (dJ0/dr ≠ 0)
J.A. Wesson 1978 Nucl. Fusion 18 87; http://doi.org/10.1088/0029-5515/18/1/010

5

John Weston 
1932 - 2020



Wesson’s Kink Modes
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Wesson’s Kink Modes
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Kink Mode Plasma.nb
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Kink Mode Plasma.nb
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Kink Mode Plasma.nb
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Energetics of Kink Modes

Sec. 7.3: Introduction to plasma physics by Donald Gurnett and Amitava Bhattacharjee (2nd Ed. 2017; Cambridge) 
Sec 3.1: Magnetohydrodynamic Stability of Tokamaks by Hartmut Zohm (Wiley 2014)

3.1 Linear MHD Stability as an Initial Value Problem 45

• The remaining set of equations can be reduced, for example using Gauss’ algo-
rithm, to yield a linear partial differential equation that takes on the form of an
Eigenvalue problem for 𝜔1) The Eigenvalues will determine the stability prop-
erties of the system, where a real 𝜔 corresponds to the stable case (oscillatory
solution) and an imaginary 𝜔 to an unstable one (exponential growth).
Starting point of the analysis is the linearization of the ideal MHD equations

derived in Chapter 1. In line with the mechanical analogon presented earlier, we
introduce the displacement vector 𝛏(𝐱) by

𝐯1 =
d𝛏
𝑑𝑡

(3.3)

representing a first-order perturbation of the system. For themost general case, we
assume that the zeroth-order quantities depend on all spatial variables. In order
to write the equations in 𝜉, we have to integrate them in time as in the origi-
nal set of equations, 𝐯 appears and not 𝛏. Without the loss of generality, we can
chose the starting conditions as 𝛏(𝐱, t = 0) = 0,𝐁1(𝐱, t = 0) = 0, 𝜌1(𝐱, t = 0) = 0
and p1(𝐱, t = 0) = 0 but assume that 𝐯1(𝐱, t = 0) = 0.This choice of boundary con-
ditions corresponds to an initial value problem where the system passes through
the equilibrium point at t = 0 with finite velocity 𝐯1 and has the advantage that
when integrating the equations in time, as is done in the following, there is no addi-
tional term that describes the system at t = 0. As in Chapter 2, we will assume that
there is no equilibrium flow, that is 𝐯0 = 0.The linearized and integrated equation
of continuity becomes

𝜕𝜌1
𝜕t = −∇ ⋅ (𝜌0𝐯1) → 𝜌1 = −∇ ⋅ (𝜌0𝛏) (3.4)

that is a change in density is due to a compression of the volume element. Using
this equation, the linearized adiabatic equation becomes

𝜕p1
𝜕t = −p0𝛾∇ ⋅ 𝐯1 − 𝐯1 ⋅ ∇p0 → p1 = −p0𝛾∇ ⋅ 𝛏 − 𝛏 ⋅ ∇p0 (3.5)

that is a change of pressure is due to either an adiabatic compression or moving
the volume element into a region of different pressure.
Combining Faraday’s law and Ohm’s law yields

𝜕𝐁1
𝜕t = ∇ × (𝐯1 × 𝐁0) → 𝐁1 = ∇ × (𝛏 × 𝐁0) (3.6)

According to this equation, displacing the plasma across the equilibriummagnetic
fieldwill induce an electric field that in turn gives rise to a change inmagnetic field.
We know from Chapter 1 that this will lead to the conservation of the magnetic
flux in a flux tube.
The linearized equation of motion becomes

𝜌0
𝜕𝐯1
𝜕t = 𝐣0 × 𝐁1 + 𝐣1 × 𝐁0 − ∇p1 (3.7)

1) in the absence of dissipation, as is the case here, the Eigenvalue problem will at least be quadratic
in 𝜔.
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ditions corresponds to an initial value problem where the system passes through
the equilibrium point at t = 0 with finite velocity 𝐯1 and has the advantage that
when integrating the equations in time, as is done in the following, there is no addi-
tional term that describes the system at t = 0. As in Chapter 2, we will assume that
there is no equilibrium flow, that is 𝐯0 = 0.The linearized and integrated equation
of continuity becomes

𝜕𝜌1
𝜕t = −∇ ⋅ (𝜌0𝐯1) → 𝜌1 = −∇ ⋅ (𝜌0𝛏) (3.4)

that is a change in density is due to a compression of the volume element. Using
this equation, the linearized adiabatic equation becomes

𝜕p1
𝜕t = −p0𝛾∇ ⋅ 𝐯1 − 𝐯1 ⋅ ∇p0 → p1 = −p0𝛾∇ ⋅ 𝛏 − 𝛏 ⋅ ∇p0 (3.5)

that is a change of pressure is due to either an adiabatic compression or moving
the volume element into a region of different pressure.
Combining Faraday’s law and Ohm’s law yields

𝜕𝐁1
𝜕t = ∇ × (𝐯1 × 𝐁0) → 𝐁1 = ∇ × (𝛏 × 𝐁0) (3.6)

According to this equation, displacing the plasma across the equilibriummagnetic
fieldwill induce an electric field that in turn gives rise to a change inmagnetic field.
We know from Chapter 1 that this will lead to the conservation of the magnetic
flux in a flux tube.
The linearized equation of motion becomes

𝜌0
𝜕𝐯1
𝜕t = 𝐣0 × 𝐁1 + 𝐣1 × 𝐁0 − ∇p1 (3.7)

1) in the absence of dissipation, as is the case here, the Eigenvalue problem will at least be quadratic
in 𝜔.
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46 3 Linear Ideal MHD Stability Analysis

Now, we can express p1 through Eq. (3.5) by 𝛏 and 𝐣1 using Ampère’s law 𝜇0𝐣1 =
∇ × 𝐁1 and arrive at the MHD force equation

𝜌0
𝜕2𝛏
𝜕t2 = 1

𝜇0
(∇ × 𝐁0) × 𝐁1 +

1
𝜇0

(∇ × 𝐁1) × 𝐁0 + ∇(p0𝛾∇ ⋅ 𝛏 + 𝛏 ⋅ ∇p0) (3.8)

We note that the perturbed magnetic field 𝐁1 still appears in the equation, but
it can be related to 𝛏 using Eq. (3.6). This means that Eq. (3.8) is a linear partial
differential equation for 𝛏, which, in symbolic form, can be written as

𝜌0
𝜕2𝛏
𝜕t2 = 𝐅(𝛏) (3.9)

where we have introduced the MHD force operator 𝐅(𝛏). Applying the Fourier
decomposition in time as outlined earlier leads to the generalized Eigenvalue
problem

−𝜔2𝜌0𝛏 = 𝐅(𝛏) (3.10)

where 𝜌0(𝐱) plays the role of a weight function for the inner product of the Eigen-
functions 𝜉. An important property of the force operator is that it is self-adjoint ,
that is

∫ 𝛈∗𝐅(𝛏)𝑑𝑉 = ∫ 𝛏∗𝐅(𝛈)𝑑𝑉 (3.11)

where the asterisk denotes the complex conjugate. It is straightforward but tedious
to prove this property term by term, and the interested reader is referred to the
literature [1]. As an important consequence of this property, the Eigenvalues 𝜔2

are real and the Eigenfunctions represent a complete set of orthogonal functions,
that is they have the property

∫ 𝜌0𝜉∗𝐧𝜉𝐦𝑑𝑉 = 𝛿𝑚𝑛 (3.12)

As the Eigenvalues are real, the stability properties are given by
• 𝜔2 > 0: then,𝜔 is real and according to Eq. (3.2), the system is oscillating around
the equilibrium point, that is it is stable.

• 𝜔2 < 0: then, 𝜔 is purely imaginary and according to Eq. (3.2), both an expo-
nentially growing and an exponentially decaying solution exist. Owing to the
existence of the exponentially growing solution, the system is unstable.

Finding the solutions to the Eigenvalue problem will hence give us complete
knowledge about the stability properties of the system. However, as one can imag-
ine when looking at Eq. (3.8), there are only few cases where an analytical solution
is possible, and in general, the Eigenvalue problem has to be solved numerically.
While this is possible and commonly being done in linear MHD stability analy-
sis of real systems, there exists a method that allows more physical insight into
the stability properties of magnetically confined fusion plasmas, although usu-
ally at the expense of a loss of detailed information about the Eigenfunctions and
Eigenvalues.This method, the so-called energy principle , is treated in Section 3.2.
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3.2 The Energy Principle of Ideal MHD 47

3.2
The Energy Principle of Ideal MHD

In this section, we derive the energy principle, which is a variational formalism
for determining MHD stability. It is based on Ritz’ variational principle for self-
adjoint systems that was originally developed for fluid mechanics and has also
been applied for example in quantum mechanics to estimate Eigenvalues for sys-
tems that are no longer analytically tractable.
The basic idea of this formalism is to transform the partial differential equation

representing the Eigenvalue problem into an integral expression by multiplying it
by 𝛏∗ and integrating over the volume:

𝜔2

2 ∫ 𝜌0|𝜉|2 𝑑𝑉 = −1
2 ∫ 𝛏∗ ⋅ 𝐅(𝛏) 𝑑𝑉 = 𝛿W (𝛏∗, 𝛏) (3.13)

The integral on the left-hand side, usually referred to as K(𝛏∗, 𝛏), is the kinetic
energy of the perturbed system. The right-hand side, 𝛿W , corresponds to the
potential energy, that is the work done by displacing the system against the force
𝐅. Formally, this can be seen as an equation for 𝜔2 by writing

𝜔2(𝛏, 𝛏∗) = 𝛿W (𝛏, 𝛏∗)
K(𝛏, 𝛏∗) (3.14)

but as the relation is valid for arbitrary 𝛏, in general, 𝜔2 is no longer an Eigenvalue
of Eq. (3.10). Such an Eigenvalue can of course be obtained by setting the varia-
tion 𝛿𝜔(𝛏, 𝛏∗)2 = 0, where the corresponding Euler Lagrange equation is just the
Eigenvalue equation (Eq. (3.10)).There is, however, a relation between the general
𝜔2(𝛏, 𝛏∗) and the Eigenvalues that can be seen by decomposing 𝛏 into the Eigen-
functions according to

𝛏 =
∑
n

an𝛏n (3.15)

and evaluating Eq. (3.14):

𝜔2 = −

∑
n

∑
m
a∗man ∫ 𝛏∗m ⋅ 𝐅(𝛏n)𝑑𝑉

∑
n

∑
m
a∗man ∫ 𝜌n𝛏∗m𝛏n𝑑𝑉

=

∑
n
|an|2𝜔2

n
∑
n
|an|2

(3.16)

where in the last step, we have used the Eigenvalue equation and the orthogonal-
ity relation of the Eigenfunctions. This means that 𝜔2 is a weighted sum of the
Eigenvalues of the system. Hence, the stability criterion can be reformulated for
𝜔2 obtained using an arbitrary test function 𝜉:
• 𝜔2 < 0: According to Eq. (3.16), at least one of the Eigenvalues 𝜔2

n must be neg-
ative and hence the system is unstable.

• 𝜔2 > 0: In this case, a general statement cannot be made, unless it is possible to
prove that 𝜔2 > 0 for all test functions.Then, the system is stable.
We note that asK is always positive, thismeans that the sign of𝜔2 is determined

by 𝛿W , that is
𝛿W < 0 the system is unstable (3.17)
𝛿W > 0 the system is stable (3.18)
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3.2 The Energy Principle of Ideal MHD 47

3.2
The Energy Principle of Ideal MHD

In this section, we derive the energy principle, which is a variational formalism
for determining MHD stability. It is based on Ritz’ variational principle for self-
adjoint systems that was originally developed for fluid mechanics and has also
been applied for example in quantum mechanics to estimate Eigenvalues for sys-
tems that are no longer analytically tractable.
The basic idea of this formalism is to transform the partial differential equation

representing the Eigenvalue problem into an integral expression by multiplying it
by 𝛏∗ and integrating over the volume:

𝜔2

2 ∫ 𝜌0|𝜉|2 𝑑𝑉 = −1
2 ∫ 𝛏∗ ⋅ 𝐅(𝛏) 𝑑𝑉 = 𝛿W (𝛏∗, 𝛏) (3.13)

The integral on the left-hand side, usually referred to as K(𝛏∗, 𝛏), is the kinetic
energy of the perturbed system. The right-hand side, 𝛿W , corresponds to the
potential energy, that is the work done by displacing the system against the force
𝐅. Formally, this can be seen as an equation for 𝜔2 by writing

𝜔2(𝛏, 𝛏∗) = 𝛿W (𝛏, 𝛏∗)
K(𝛏, 𝛏∗) (3.14)

but as the relation is valid for arbitrary 𝛏, in general, 𝜔2 is no longer an Eigenvalue
of Eq. (3.10). Such an Eigenvalue can of course be obtained by setting the varia-
tion 𝛿𝜔(𝛏, 𝛏∗)2 = 0, where the corresponding Euler Lagrange equation is just the
Eigenvalue equation (Eq. (3.10)).There is, however, a relation between the general
𝜔2(𝛏, 𝛏∗) and the Eigenvalues that can be seen by decomposing 𝛏 into the Eigen-
functions according to

𝛏 =
∑
n

an𝛏n (3.15)

and evaluating Eq. (3.14):

𝜔2 = −

∑
n

∑
m
a∗man ∫ 𝛏∗m ⋅ 𝐅(𝛏n)𝑑𝑉

∑
n

∑
m
a∗man ∫ 𝜌n𝛏∗m𝛏n𝑑𝑉

=

∑
n
|an|2𝜔2

n
∑
n
|an|2

(3.16)

where in the last step, we have used the Eigenvalue equation and the orthogonal-
ity relation of the Eigenfunctions. This means that 𝜔2 is a weighted sum of the
Eigenvalues of the system. Hence, the stability criterion can be reformulated for
𝜔2 obtained using an arbitrary test function 𝜉:
• 𝜔2 < 0: According to Eq. (3.16), at least one of the Eigenvalues 𝜔2

n must be neg-
ative and hence the system is unstable.

• 𝜔2 > 0: In this case, a general statement cannot be made, unless it is possible to
prove that 𝜔2 > 0 for all test functions.Then, the system is stable.
We note that asK is always positive, thismeans that the sign of𝜔2 is determined

by 𝛿W , that is
𝛿W < 0 the system is unstable (3.17)
𝛿W > 0 the system is stable (3.18)
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Sec. 7.3: Introduction to plasma physics by Donald Gurnett and Amitava Bhattacharjee (2nd Ed. 2017; Cambridge) 
Sec 3.1: Magnetohydrodynamic Stability of Tokamaks by Hartmut Zohm (Wiley 2014)

3.1 Linear MHD Stability as an Initial Value Problem 45

• The remaining set of equations can be reduced, for example using Gauss’ algo-
rithm, to yield a linear partial differential equation that takes on the form of an
Eigenvalue problem for 𝜔1) The Eigenvalues will determine the stability prop-
erties of the system, where a real 𝜔 corresponds to the stable case (oscillatory
solution) and an imaginary 𝜔 to an unstable one (exponential growth).
Starting point of the analysis is the linearization of the ideal MHD equations

derived in Chapter 1. In line with the mechanical analogon presented earlier, we
introduce the displacement vector 𝛏(𝐱) by

𝐯1 =
d𝛏
𝑑𝑡

(3.3)

representing a first-order perturbation of the system. For themost general case, we
assume that the zeroth-order quantities depend on all spatial variables. In order
to write the equations in 𝜉, we have to integrate them in time as in the origi-
nal set of equations, 𝐯 appears and not 𝛏. Without the loss of generality, we can
chose the starting conditions as 𝛏(𝐱, t = 0) = 0,𝐁1(𝐱, t = 0) = 0, 𝜌1(𝐱, t = 0) = 0
and p1(𝐱, t = 0) = 0 but assume that 𝐯1(𝐱, t = 0) = 0.This choice of boundary con-
ditions corresponds to an initial value problem where the system passes through
the equilibrium point at t = 0 with finite velocity 𝐯1 and has the advantage that
when integrating the equations in time, as is done in the following, there is no addi-
tional term that describes the system at t = 0. As in Chapter 2, we will assume that
there is no equilibrium flow, that is 𝐯0 = 0.The linearized and integrated equation
of continuity becomes

𝜕𝜌1
𝜕t = −∇ ⋅ (𝜌0𝐯1) → 𝜌1 = −∇ ⋅ (𝜌0𝛏) (3.4)

that is a change in density is due to a compression of the volume element. Using
this equation, the linearized adiabatic equation becomes

𝜕p1
𝜕t = −p0𝛾∇ ⋅ 𝐯1 − 𝐯1 ⋅ ∇p0 → p1 = −p0𝛾∇ ⋅ 𝛏 − 𝛏 ⋅ ∇p0 (3.5)

that is a change of pressure is due to either an adiabatic compression or moving
the volume element into a region of different pressure.
Combining Faraday’s law and Ohm’s law yields

𝜕𝐁1
𝜕t = ∇ × (𝐯1 × 𝐁0) → 𝐁1 = ∇ × (𝛏 × 𝐁0) (3.6)

According to this equation, displacing the plasma across the equilibriummagnetic
fieldwill induce an electric field that in turn gives rise to a change inmagnetic field.
We know from Chapter 1 that this will lead to the conservation of the magnetic
flux in a flux tube.
The linearized equation of motion becomes

𝜌0
𝜕𝐯1
𝜕t = 𝐣0 × 𝐁1 + 𝐣1 × 𝐁0 − ∇p1 (3.7)

1) in the absence of dissipation, as is the case here, the Eigenvalue problem will at least be quadratic
in 𝜔.
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3.2 The Energy Principle of Ideal MHD 47

3.2
The Energy Principle of Ideal MHD

In this section, we derive the energy principle, which is a variational formalism
for determining MHD stability. It is based on Ritz’ variational principle for self-
adjoint systems that was originally developed for fluid mechanics and has also
been applied for example in quantum mechanics to estimate Eigenvalues for sys-
tems that are no longer analytically tractable.
The basic idea of this formalism is to transform the partial differential equation

representing the Eigenvalue problem into an integral expression by multiplying it
by 𝛏∗ and integrating over the volume:

𝜔2

2 ∫ 𝜌0|𝜉|2 𝑑𝑉 = −1
2 ∫ 𝛏∗ ⋅ 𝐅(𝛏) 𝑑𝑉 = 𝛿W (𝛏∗, 𝛏) (3.13)

The integral on the left-hand side, usually referred to as K(𝛏∗, 𝛏), is the kinetic
energy of the perturbed system. The right-hand side, 𝛿W , corresponds to the
potential energy, that is the work done by displacing the system against the force
𝐅. Formally, this can be seen as an equation for 𝜔2 by writing

𝜔2(𝛏, 𝛏∗) = 𝛿W (𝛏, 𝛏∗)
K(𝛏, 𝛏∗) (3.14)

but as the relation is valid for arbitrary 𝛏, in general, 𝜔2 is no longer an Eigenvalue
of Eq. (3.10). Such an Eigenvalue can of course be obtained by setting the varia-
tion 𝛿𝜔(𝛏, 𝛏∗)2 = 0, where the corresponding Euler Lagrange equation is just the
Eigenvalue equation (Eq. (3.10)).There is, however, a relation between the general
𝜔2(𝛏, 𝛏∗) and the Eigenvalues that can be seen by decomposing 𝛏 into the Eigen-
functions according to

𝛏 =
∑
n

an𝛏n (3.15)

and evaluating Eq. (3.14):

𝜔2 = −

∑
n

∑
m
a∗man ∫ 𝛏∗m ⋅ 𝐅(𝛏n)𝑑𝑉

∑
n

∑
m
a∗man ∫ 𝜌n𝛏∗m𝛏n𝑑𝑉

=

∑
n
|an|2𝜔2

n
∑
n
|an|2

(3.16)

where in the last step, we have used the Eigenvalue equation and the orthogonal-
ity relation of the Eigenfunctions. This means that 𝜔2 is a weighted sum of the
Eigenvalues of the system. Hence, the stability criterion can be reformulated for
𝜔2 obtained using an arbitrary test function 𝜉:
• 𝜔2 < 0: According to Eq. (3.16), at least one of the Eigenvalues 𝜔2

n must be neg-
ative and hence the system is unstable.

• 𝜔2 > 0: In this case, a general statement cannot be made, unless it is possible to
prove that 𝜔2 > 0 for all test functions.Then, the system is stable.
We note that asK is always positive, thismeans that the sign of𝜔2 is determined

by 𝛿W , that is
𝛿W < 0 the system is unstable (3.17)
𝛿W > 0 the system is stable (3.18)
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3.2
The Energy Principle of Ideal MHD

In this section, we derive the energy principle, which is a variational formalism
for determining MHD stability. It is based on Ritz’ variational principle for self-
adjoint systems that was originally developed for fluid mechanics and has also
been applied for example in quantum mechanics to estimate Eigenvalues for sys-
tems that are no longer analytically tractable.
The basic idea of this formalism is to transform the partial differential equation

representing the Eigenvalue problem into an integral expression by multiplying it
by 𝛏∗ and integrating over the volume:

𝜔2

2 ∫ 𝜌0|𝜉|2 𝑑𝑉 = −1
2 ∫ 𝛏∗ ⋅ 𝐅(𝛏) 𝑑𝑉 = 𝛿W (𝛏∗, 𝛏) (3.13)

The integral on the left-hand side, usually referred to as K(𝛏∗, 𝛏), is the kinetic
energy of the perturbed system. The right-hand side, 𝛿W , corresponds to the
potential energy, that is the work done by displacing the system against the force
𝐅. Formally, this can be seen as an equation for 𝜔2 by writing

𝜔2(𝛏, 𝛏∗) = 𝛿W (𝛏, 𝛏∗)
K(𝛏, 𝛏∗) (3.14)

but as the relation is valid for arbitrary 𝛏, in general, 𝜔2 is no longer an Eigenvalue
of Eq. (3.10). Such an Eigenvalue can of course be obtained by setting the varia-
tion 𝛿𝜔(𝛏, 𝛏∗)2 = 0, where the corresponding Euler Lagrange equation is just the
Eigenvalue equation (Eq. (3.10)).There is, however, a relation between the general
𝜔2(𝛏, 𝛏∗) and the Eigenvalues that can be seen by decomposing 𝛏 into the Eigen-
functions according to

𝛏 =
∑
n

an𝛏n (3.15)

and evaluating Eq. (3.14):

𝜔2 = −

∑
n

∑
m
a∗man ∫ 𝛏∗m ⋅ 𝐅(𝛏n)𝑑𝑉

∑
n

∑
m
a∗man ∫ 𝜌n𝛏∗m𝛏n𝑑𝑉

=

∑
n
|an|2𝜔2

n
∑
n
|an|2

(3.16)

where in the last step, we have used the Eigenvalue equation and the orthogonal-
ity relation of the Eigenfunctions. This means that 𝜔2 is a weighted sum of the
Eigenvalues of the system. Hence, the stability criterion can be reformulated for
𝜔2 obtained using an arbitrary test function 𝜉:
• 𝜔2 < 0: According to Eq. (3.16), at least one of the Eigenvalues 𝜔2

n must be neg-
ative and hence the system is unstable.

• 𝜔2 > 0: In this case, a general statement cannot be made, unless it is possible to
prove that 𝜔2 > 0 for all test functions.Then, the system is stable.
We note that asK is always positive, thismeans that the sign of𝜔2 is determined

by 𝛿W , that is
𝛿W < 0 the system is unstable (3.17)
𝛿W > 0 the system is stable (3.18)
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frequency for the eigenmode is !2 = (�Wp + �Wv)/�K, where �K is the change in the plasma’s
kinetic energy resulting from the small displacement.

The reduced MHD energy principle for a helical perturbation includes only perpendicular
displacements, ⇠ = iv?/!. The energy integrals are

�Wp =
1
2

Z

r<a

dV

"
|B̃|2

µ0
+

iJz,0

!⇤
ṽ⇤ · (ẑ⇥ B̃)

#

=
1
2

Z

r<a

dV

"
|r? ̃|2

µ0
� iJz,0

!⇤
ẑ · (r?�⇤ ⇥r? ̃)

#

(18)

�Wv,b =
1
2

Z

a<r<b

dV
|B̃|2

µ0
=

1
2

Z

a<r<b

dV
|r? ̃|2

µ0
(19)

�K =
1
2

Z

r<a

dV ⇢
|ṽ|2

|!|2 =
1
2

Z

r<a

dV ⇢
|r?�|2

|!|2 . (20)

For the Shafranov equilibrium, the helical mode structure for the global kink mode is known.
When �(r) and  ̃(r) are substituted into the energy integrals, the change in energy is
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where �Wv,1 is the perturbed vacuum energy without a wall.
The e↵ect of the surface resonance, qa = m/n, is important. When the edge safety factor is

resonant with the helical mode, the perturbed kinetic energy, �K ! 1, and plasma potential
energy, �Wp !1, both diverge for a given perturbed flux. However, the kinetic term (associated
with plasma acceleration of the edge inertial layer) increases more rapidly than the magnitude
of the potential term, and this is the reason that the kink mode growth rate, ⇠

q
��Wp/�K ⇡

!A

p
2(m� nqa), vanishes at resonance.

3.3 Dimensionless Kink Parameters

Wall stabilized kink modes are conveniently parameterized by the so-called dimensionless “Boozer
parameters”: s and c [10]. The stability parameter, s, is proportional to the ratio of the total
perturbed energy with plasma to the energy required to produce the same normal magnetic
field on the plasma surface without plasma. The coupling coe�cient, c, measures the coupling
between the wall and the plasma. For a given helical instability, the coupling coe�cient and the
wall eddy-current decay rate, �w, can be computed with the VALEN code.

The dimensionless Boozer parameters are easily related to the energy integrals. These are

s = ��Wp + �Wv,1
�Wv,1
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m� nqa � 1

m� nqa

c = 1� �Wv,1
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= 1� 1
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1 + (a/b)2m
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frequency for the eigenmode is !2 = (�Wp + �Wv)/�K, where �K is the change in the plasma’s
kinetic energy resulting from the small displacement.

The reduced MHD energy principle for a helical perturbation includes only perpendicular
displacements, ⇠ = iv?/!. The energy integrals are
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where �Wv,1 is the perturbed vacuum energy without a wall.
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resonant with the helical mode, the perturbed kinetic energy, �K ! 1, and plasma potential
energy, �Wp !1, both diverge for a given perturbed flux. However, the kinetic term (associated
with plasma acceleration of the edge inertial layer) increases more rapidly than the magnitude
of the potential term, and this is the reason that the kink mode growth rate, ⇠
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Wall stabilized kink modes are conveniently parameterized by the so-called dimensionless “Boozer
parameters”: s and c [10]. The stability parameter, s, is proportional to the ratio of the total
perturbed energy with plasma to the energy required to produce the same normal magnetic
field on the plasma surface without plasma. The coupling coe�cient, c, measures the coupling
between the wall and the plasma. For a given helical instability, the coupling coe�cient and the
wall eddy-current decay rate, �w, can be computed with the VALEN code.

The dimensionless Boozer parameters are easily related to the energy integrals. These are

s = ��Wp + �Wv,1
�Wv,1

= 2
m� nqa � 1

m� nqa

c = 1� �Wv,1
�Wv,b

= 1� 1
⇤

= 2
(a/b)2m

1 + (a/b)2m

6

(What happens as qa → m/n ?)
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3.2
The Energy Principle of Ideal MHD

In this section, we derive the energy principle, which is a variational formalism
for determining MHD stability. It is based on Ritz’ variational principle for self-
adjoint systems that was originally developed for fluid mechanics and has also
been applied for example in quantum mechanics to estimate Eigenvalues for sys-
tems that are no longer analytically tractable.
The basic idea of this formalism is to transform the partial differential equation

representing the Eigenvalue problem into an integral expression by multiplying it
by 𝛏∗ and integrating over the volume:

𝜔2

2 ∫ 𝜌0|𝜉|2 𝑑𝑉 = −1
2 ∫ 𝛏∗ ⋅ 𝐅(𝛏) 𝑑𝑉 = 𝛿W (𝛏∗, 𝛏) (3.13)

The integral on the left-hand side, usually referred to as K(𝛏∗, 𝛏), is the kinetic
energy of the perturbed system. The right-hand side, 𝛿W , corresponds to the
potential energy, that is the work done by displacing the system against the force
𝐅. Formally, this can be seen as an equation for 𝜔2 by writing

𝜔2(𝛏, 𝛏∗) = 𝛿W (𝛏, 𝛏∗)
K(𝛏, 𝛏∗) (3.14)

but as the relation is valid for arbitrary 𝛏, in general, 𝜔2 is no longer an Eigenvalue
of Eq. (3.10). Such an Eigenvalue can of course be obtained by setting the varia-
tion 𝛿𝜔(𝛏, 𝛏∗)2 = 0, where the corresponding Euler Lagrange equation is just the
Eigenvalue equation (Eq. (3.10)).There is, however, a relation between the general
𝜔2(𝛏, 𝛏∗) and the Eigenvalues that can be seen by decomposing 𝛏 into the Eigen-
functions according to

𝛏 =
∑
n

an𝛏n (3.15)

and evaluating Eq. (3.14):

𝜔2 = −

∑
n

∑
m
a∗man ∫ 𝛏∗m ⋅ 𝐅(𝛏n)𝑑𝑉

∑
n

∑
m
a∗man ∫ 𝜌n𝛏∗m𝛏n𝑑𝑉

=

∑
n
|an|2𝜔2

n
∑
n
|an|2

(3.16)

where in the last step, we have used the Eigenvalue equation and the orthogonal-
ity relation of the Eigenfunctions. This means that 𝜔2 is a weighted sum of the
Eigenvalues of the system. Hence, the stability criterion can be reformulated for
𝜔2 obtained using an arbitrary test function 𝜉:
• 𝜔2 < 0: According to Eq. (3.16), at least one of the Eigenvalues 𝜔2

n must be neg-
ative and hence the system is unstable.

• 𝜔2 > 0: In this case, a general statement cannot be made, unless it is possible to
prove that 𝜔2 > 0 for all test functions.Then, the system is stable.
We note that asK is always positive, thismeans that the sign of𝜔2 is determined

by 𝛿W , that is
𝛿W < 0 the system is unstable (3.17)
𝛿W > 0 the system is stable (3.18)
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(What happens as qa → m/n ?)
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Figure 1: Growth rate of n = 1 external kink modes for Shafranov’s constant-current equilibrium
for m = 1, 2, 3, 4. Dimensional parameters are B0 = 0.35 T, R = 2⇡ m, ⇢ = 2mH ⇥ 0.8⇥ 1019

m�3, and !A(qa = 3) = 7.4⇥105. Two wall positions are shown: b/a = 1.1 (black) and b/a = 1.8
(red).

The two kink eigenmodes associated with the roots of Eq. 17 is given by the ratio �a/ ̃a,
given by

�a

 ̃a

= � !qaR

B0(m� nqa)

= ⌥
s

2
µ0⇢

s
(m� nqa)(⇤ + 1)/2� 1

m� nqa

The perturbed plasma flow vanishes near marginal stability, !2 ⇡ 0, and becomes very large
(i.e. singular) at resonance, when qa = m/n.

The major failing of the cylindrical model is its treatment of these singularities. In a cylinder,
the linear dynamics of a poloidal mode is isolated from the mode’s nearby sidebands, m0 2
{. . . , m � 2,m � 1,m + 1,m + 2, . . .}. In a real torus (and especially in a shaped torus), an
external kink mode couples poloidal modes, and large plasma flows occur inside the plasma at
the resonances with the poloidal sidebands, �(r)/ ̃(r) / (m0 � nq(r))�1.

3.2 Energy Principle

The MHD energy principle [9] is probably the most significant early theoretical accomplishment
of magnetic fusion research. The energy principles describes how to calculate the change in the
plasma’s overall potential energy, �Wp, due to an arbitrary displacement, ⇠. The “extended”
energy principle [6] includes the change in the surrounding “vacuum” energy, �Wv, and must
be used to describe external kink modes. Instability is found by finding the displacement that
leads to the greatest reduction in total energy, i.e. minimizes �Wp + �Wv. The characteristic

5
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Resistive MHD
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There is no “equilibrium” in resistive MHD
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“Simple” Resistive Equilibrium ⇒ Transport
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“Simple” Resistive Equilibrium ⇒ Transport
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Tearing Modes: Internal Resonances (B⋅∇ = 0)
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Figure 9.5 Equally-spaced contours of the magnetic flux-function,  ̂(x̂, ⇠), in the
vicinity of a constant- magnetic island chain. The magnetic separatrix is shown as
a dashed line.

“tear”) and then reconnect to form new field-lines that do not extend over all values
of ⇠. The magnetic field-line that forms the boundary between the unreconnected
and reconnected regions is known as the magnetic separatrix, and corresponds to
the contour  ̂(x̂, ⇠) =  ̂ . The reconnected regions within the magnetic separatrix
are termed magnetic islands. The full width (in x̂) of the magnetic separatrix, which
is known as the magnetic island width, is Ŵ. It can be seen from Equation (9.84)
that the magnetic island width is proportional to the square-root of the quantity  ̂ ,
which is termed the (normalized) reconnected magnetic flux. (In fact, the magnetic
flux, per unit length in the z-direction, that passes through a surface (whose nor-
mal lies in the x-y plane) linking the center of a magnetic island to the separatrix is
2 a B0  ̂ .)

Consider the term [�, ], appearing in the reduced-MHD Ohm’s law, (9.11). With
 ̂ specified by Equation (9.83), the term in question reduces to

[�, ] = B0 k x̂
@�

@⇠
+ B0 k

@�

@x̂
 ̂ sin ⇠. (9.86)

The first term on the right-hand side of the previous equation is linear (i.e., it is first
order in the perturbed quantities � and  ̂ ), whereas the second is nonlinear (i.e., it is
second order in perturbed quantities). Thus, linear layer theory is only valid when the
second term is negligible with respect to the first. Estimating both (@�/@⇠)/(@�/@x̂)

Sec. 9.7 Fitzpatrick
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Paul Rutherford 
1938  -  2023

“Nonlinear growth of the tearing mode” 
Phys. Fluids 16, 1903–1908 (1973)  
https://doi.org/10.1063/1.1694232
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Figure 9.6 Contours of the normalized perturbed current density distribution,
hcos ⇠i/h1i, in the vicinity of a constant- magnetic island chain. Positive/negative
values are indicated by solid/dashed contours.

the island width evolution equation, (9.107), yields the Rutherford island width evo-
lution equation (Rutherford 1973),

I1 ⌧R
d(W/a)

dt
= �0, (9.110)

where W = a Ŵ is the island width in x. According to the Rutherford equation, the
growth of a constant- tearing mode slows down as it enters the nonlinear regime
(i.e., as the island width exceeds the linear layer width). Indeed, the tearing mode
transitions from growing exponentially in time on the hybrid timescale ⌧2/5

H ⌧3/5
R to

growing algebraically in time on the much longer timescale ⌧R.
The current density in the island region that is specified in Equation (9.103) can

be written in the form
Ĵ(x̂, ⇠) =

X

m=1,1

Jm(x̂) cos(m ⇠), (9.111)

where the Jm(x̂) are even functions of x̂ that are similar in magnitude to one another.
(Note that there is no m = 0 harmonic.) This is clear from Figure 9.6, which shows
contours of the normalized perturbed current density distribution, hcos ⇠i/h1i. [See
Equation (9.103).] It can be seen that the current density is mostly confined to the in-
terior of the magnetic separatrix, and becomes particularly large on the separatrix it-
self. (In fact, the current density blows up logarithmically on the separatrix.) Clearly,
such a current distribution cannot be represented as J1(x̂) cos ⇠. In other words, the
current density distribution is multi-harmonic (i.e., it is not dominated by the m = 1

Sec. 9.8 Fitzpatrick

a < r < b (where b may approach 1 for the “no-wall” tearing limit.) For m > 1,  ̃ vanishes at
r = 0 and at r = b.  ̃ is continuous at r = rs, and, provided Jz,0 is continuous at r = a, @ ̃/@r
must also be continuous (Eq. 25). With the vacuum solution is given by Eq. 10, the condition
at r = a is

@ ̃

@r

�����
a�

= �m

a
 ̃(a)⇤ . (31)

The tearing growth rate is proportional to the perturbed current localized to a thin layer
at the rational surface, µ0K̃z = rs�0(rs) ̃(rs). This current generates an ohmic electric field
leading to evolution of the perturbed helical flux. While Eq. 2 describes the dynamics of the
magnetic field “frozen” to the plasma, when E = ⌘J � v? ⇥B within the singular layer, then
Eq. 2 becomes

d ̃

dt
=
@ ̃

@t
+ (v? ·r) ̃ =

⌘

µ0
r2

? ̃ (32)

@ ̃

@t
⇡ ⌘

µ0
(�0/w) ̃ , (33)

where w is the width of the magnetic island and ⌘ is assumed a constant. As will be discussed
later, w ⇠

q
 ̃. Together with Eq. 33, this implies that w grows linearly with time as was

described by Rutherford [15].
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Δ’ determines structure of surface 
current, K, at resonant surface.
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How to calculate Δ’?
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How to calculate Δ’?
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• Kinetic theory, Vlasov equation, wave-particle interactions, quasilinear theory, particle trapping, … 

• Gyrokinetics, drift waves, drift-wave transport, … 

• Nonlinear topics, like shocks, wave-echoes, reconnection, energy-momentum transfer, turbulence, … 

• Computational plasma physics, modeling, validation and verification, … 

• Relativistic physics, intense laser-plasma, astrophysical objects, particle acceleration, … 

• Plasma applications, like surface processing, chemistry, medicine, lighting, electric propulsion. … 

• Fusion energy challenges, like plasma-wall interactions, fueling, heating, control, … 

• Instrumentation, diagnostics, plasma reactors, …
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