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The UCLA Particle-in-Cell (PIC) and Kinetic Simulation Software 
Center (PICKSC) uses and develops simulation and data science 
tools to make fundamental discoveries in plasma based 
acceleration, plasma based light sources, plasma astrophysics, 
intense laser and plasma interactions, the nonlinear optics of 
plasmas, and high fidelity simulation. The Center is also 
committed to making its software available to others to 
accelerate the rate of scientific discovery and to provide unique 
educational tools. We are users and developers of OSIRIS, 
UPIC, QuickPIC, and QPAD and a set of Jupyter notebooks 
aimed at education. If you would like more information on this 
software please look at the software page.
PICKSC is housed within the UCLA Departments of Physics and 
Astronomy and of Electrical and Computer Engineering. It is co-
led by Professors W.B. Mori and E. Paulo Alves. We are closely 
connected with thc UCLA Laser-Plasma Group led by Professor 
C. Joshi.
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The interaction of intense laser pulses with plasma mirrors has demonstrated the ability to generate high-
order harmonics, producing a bright source of extreme ultraviolet (XUV) radiation and attosecond pulses.
Here, we report an unexpected transition in this process. We show that the loss of spatiotemporal coherence
in the reflected high harmonics can lead to a new regime of highly efficient coherent XUV generation, with
an extraordinary property where the radiation is directionally anomalous, propagating parallel to the mirror
surface. With analytical calculations and numerical particle-in-cell simulations, we discover that the
radiation emission is due to laser-driven oscillations of relativistic electron nanobunches that originate from
a plasma surface instability.

DOI: 10.1103/PhysRevLett.131.205001

Generation of attosecond pulses and extreme ultraviolet
radiation (XUV) originating from the interaction of a
relativistically intense laser with a plasma mirror has
now been investigated for almost three decades [1–5].
With experimental results supporting its potential for
applications in fundamental science, ultrafast science,
attosecond interferometry or imaging [2,6–12], this mecha-
nism presents a competitive alternative to the contemporary
workhorse of attosecond science, which is high-harmonic
generation (HHG) from noble gases originating from
nonlinear laser-atom interactions [11,13–15]. The potential
of relativistic high-harmonic generation reveals itself in the
lack of ionization thresholds, which pose a hard limit on
intensity of conventional gas or solid HHG sources. With
the growing availability of commercial high-repetition rate
laser systems with peak powers in the terawatt range,
relativistic generation of broadband, bright, and ultrashort
radiation will be attractive even at small university-scale
laboratories. The emission of relativistic high harmonics
originates from plasma surface electrons performing non-
linear oscillations within the laser field, with velocity close
to the speed of light. This occurs when the amplitude of the
incident laser exceeds the threshold amplitude of relativistic
optics [16], which is characterized in terms of the normal-
ized laser amplitude as a0 ¼ eE0=meω0c ≥ 1, where e is
the elementary charge, me the electron mass, c the speed of
light, ω0 is the angular frequency of the laser, and E0 the
amplitude of the laser electric field. The coherent reflection
from the plasma surface can be additionally affected for
very high laser intensities such that the ions can accelerate
to a fraction of the speed of light in a single laser cycle,

a0 ≥ ðmi=ZmeÞ1=2 [17,18], where mi is the ion mass and Z
is the ion charge number.
In this Letter, we report the discovery of a new regime of

XUV light generation, which we call relativistic instability-
modulated emission (RIME), originating from the inter-
action of an intense laser pulse with a plasma mirror, which
is self-modulating due to unstable return current induced by
the collisionless absorption of the laser. RIME generates
broadband XUV radiation with high-efficiency and an
anomalous propagation characteristic, where the radiation
is emitted parallel to the plasma mirror surface. The
mechanism of RIME is illustrated in Fig. 1. An intense
P-polarized laser pulse is obliquely incident on the sur-
face of a relativistically overdense plasma mirror,
1 ≤ a0 < ne=nc, where ne is the electron plasma density,
nc ¼ meϵ0ω2

0=e
2 is the critical plasma density and ϵ0 is the

vacuum permittivity. At the beginning of interaction, the
intense incident laser coherently reflects from and accel-
erates the surface electrons into the plasma bulk [Fig. 1(b)]
by the Brunel effect [19,20]. These bulk-penetrating Brunel
electrons induce neutrality-restoring return currents flow-
ing along the mirror periphery, consisting of counter-
streaming electrons and ions which generate intense
quasistatic magnetic field on the mirror surface [21].
The electron-ion two-stream grows unstable with a growth
rate Γ ∝ ωpeðZme=miÞ1=3 [22], which is of the order of the
laser frequency for solid high-Z targets with electron
plasma densities ne=nc ≥ ðmi=ZmeÞ2=3. Therefore, after
laser-plasma interaction time of ≈1=Γ, the plasma mirror
self-modulates with wavelength of the order of the plasma
wavelength λp ¼ 2πc=ωpe, where ωpe ¼ ðe2ne=meϵ0Þ1=2
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is the electron plasma frequency. As the plasma wave
grows, the oscillating electrons are bunched and the
individual bunch emissions are coherently enhanced while
the reflected wave loses its spatiotemporal coherence
[Fig. 1(c)]. As the laser amplitude ramps up in the
interaction region, the unstable plasma wave grows non-
linear and breaks [23], releasing electron nanobunches to
be accelerated by the laser across the magnetized plasma
surface to velocities close to the speed of light, resulting in
surface-parallel relativistic beaming of individual bunch
emissions [Fig. 1(d)].
The coherent intensity spectrum of RIME generated over

a half-oscillation period by an electron bunch containing
Ne electrons can be obtained as (see Supplemental Material
[24] for derivation details)

IðωÞ ¼ N2
e

ffiffiffi
3

p
e2γ

4πϵ0c
ω=ωc

ð1þ ðω=ωbÞ2Þ2

Z
∞

ω=ωc

K5=3ðξÞdξ; ð1Þ

where K5=3ðxÞ is the modified Bessel function, ωc ¼
3cγ3=2λ0 is the critical frequency indicating an exponential
cutoff in the spectrum, λ0 is the laser wavelength, and γ is
the electron Lorentz factor. The electron bunch modulation
frequency is given as ωb ¼ c=Lb, where Lb is the electron
bunch length. Bunch modulation frequency indicates a
transition in the radiation spectrum, from the coherent
regime of radiation emission, where I ∝ N2

e for frequencies
smaller than or of the same order ω≲ ωb, into the regime of
incoherent emission, where I ∝ Ne for ω ≫ ωb.

To describe the modulation frequency of the electron
bunch, we must consider the origin of the bunch modu-
lating instability. Fast Brunel electrons penetrate into the
plasma mirror and induce a return current composed of
counter-streaming electrons and ions flowing along the
surface. Assuming that the drift velocity of the return
electrons is much larger than ions vde ≫ vdi, the ion
velocity may be neglected and, following the usual treat-
ment of two-stream instability, we obtain the well-known
Buneman instability (BI) dispersion relation for a small
perturbation [22],

ω2
pe

ðω − kvdeÞ2
þ
ω2
pi

ω2
¼ 1; ð2Þ

where ωpi ¼ ðZ2e2ni=miϵ0Þ1=2 is the ion plasma fre-
quency. For an unstable growing mode, the mirror surface,
and therefore the Brunel electrons, will be modulated
according to the instability wavelength as illustrated in
Fig. 1(c). Solving Eq. (2) for the complex frequency
ω → ωþ iΓ, we obtain from the imaginary part the
maximum growth rate of the Buneman instability as

Γm ¼ ωpe

ffiffiffi
3

p

2

"
Z2me

2mi

#
1=3

; ð3Þ

which is approximately valid for all modes in the band
jkvde − ωpj≲ ð3=2Þðωpeω2

piÞ1=3 [22]. The condition for
RIME to occur therefore requires laser pulse duration to
be larger than ≈1=Γm. This straightforward result allows us
to see that the plasma surface instability e-folding time can
be of the order of a single laser cycle, since Γm ≈ ω0 for
solid density plasma, ne ≈ 103nc, which means that the
plasma surface instability can fully manifest already within
a few laser cycles.
To study the process in detail, we have performed

multidimensional particle-in-cell (PIC) simulations
(See Supplemental Material [24] for simulation details).
A P-polarized laser pulse defined with pulse duration
τFWHM ¼ 30 fs, laser wavelength λ0 ¼ 1 μm, and peak
intensity I0 ¼ 1022 W=cm2 corresponding to a normalized
laser amplitude a0 ¼ 85.5, was focused with an incidence
angle θ ¼ 45° to a spot size with waist radius w0 ¼ 2 μm
upon a plasma mirror composed of uniformly overlapping
electrons and ions with matching density ni=nc ¼ ne=nc ¼
1000 and temperature kBT ¼ 100 eV. Figure 2 shows the
analysis of plasma surface instability observed in the PIC
simulation. Figure 2(a) shows the temporal evolution of the
surface-parallel ion current, revealing an unstable plasma
wave propagating in the direction of electron return flow
with phase velocity vp=c ≈ 0.01. This corresponds to the
drift velocity of the electron return current, since from the
current neutrality condition vde=c ≈ a0nc=ne ≈ 0.01 at t ≈
45 fs when the amplitude of the incident laser is a0 ≈ 10.

FIG. 1. Principle of RIME. (a) Schematic of radiation emission
geometry. (b) Radiation emitted by electrons composing a mirror
surface forms a reflected wave. (c) Surface modulation leads to a
loss of spatiotemporal coherence in the reflected wave and
enhancement of individual bunch emissions. (d) Oscillating
electrons move along the surface in the field of a relativistically
intense laser, leading to relativistic beaming of individual bunch
emissions towards the surface.
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Figure 2(b) presents the time evolution of the instability,
showing the instability saturation and clear separation
between the linear and nonlinear phases occurring at
t ≈ 55 fs. We note that the maximum instantaneous growth
rate matches the prediction given by Eq. (3). Figure 2(c)
shows the numerical dispersion of the instability overlaid
with the real part of the solution of Eq. (2), showing a
match between the PIC and Buneman unstable modes.
Figure 3 presents a detailed view of the RIME origin. In

Fig. 3(a), Brunel electrons can be seen penetrating into the
bulk in the direction of laser propagation at twice the laser
frequency, which is due to the relativistic j ×B Lorentz
force term. This leads to the growth of unstable return
current flowing along the periphery seen in Fig. 3(b). As the
unstable plasma wave breaks, oscillating electron nano-
bunches are accelerated by the laser across the surface
within the focal region to relativistic velocities. This is
shown with the electron current components in Figs. 3(c)
and 3(d). The transverse component highlights the trans-
verse oscillatory turning points of the individual nano-
bunches occurring at j⊥;e ¼ 0. On the other hand, it is at
these points where longitudinal velocity is largest, vk ≈ c,
which leads to relativistic beaming of radiation along the
surface. (See Supplemental Material [24] for a movie of the
process.) This results in the loss of reflected wave coher-
ence and the emergence of RIME XUV bursts seen in the
perpendicular component of the magnetic field Bz shown in
Fig. 3(f). Additionally, the magnetic field reveals that the

instability region is extremely magnetized due to the return
current, with amplitude of the order of the incident laser.
This leads to enhanced confinement of relativistic electrons
towards the plasma surface [21]. The electric field compo-
nent Ey in Fig. 3(e) shows the incident P-polarized laser
interfering with the intense RIME bursts.
Radiation characteristics of RIME are presented in

Fig. 4. Trajectories of two characteristic electron bunches
with γ ≈ a0 are presented in Fig. 4(c). Calculated radiation
power confirms multiple bursts emitted along the bunch
trajectory. The intensity spectra of RIME and the wave
reflected due to the relativistic oscillations of the mirror
(ROM) are shown in Fig. 4(a). The spatiotemporal coher-
ence of the reflected wave is reduced with the onset of
RIME, leading to larger XUV conversion efficiency for the
emission along the mirror surface. To evaluate coherent
enhancement of radiation due to electron bunching, we
have performed another PIC simulation with immobile
ions. The simulation confirmed that in this case BI and
RIME are not present. In this scenario, the coherence of
high harmonics composing the reflected wave is signifi-
cantly improved, as shown in Fig. 4(a). However, compared
to the RIME spectrum, the efficiency significantly drops for
ω=ω0 > 10, which can be explained by the nanobunching
effect occurring in the realistic simulation, since the
individual bunch sizes can be smaller than λpe ¼ λ0=31.6 ≈
31 nm as shown in Figs. 3(c) and 3(d). The continuous
RIME spectrum is explained by the fact that the peak laser-
plasma interaction, and therefore strongest emission,
occurs deep into the nonlinear phase of the instability
evolution at t ¼ 80 fs, as seen in Fig. 2(b). This leads to
nonperiodic trains of electron nanobunches individually
producing broadband XUV bursts that add up to a broad,
continuous spectrum. We point out that the bunching effect
also enhances the low-order harmonics composing the
reflected wave, which can be seen when comparing the
two ROM spectra shown in Fig. 4(a). This is because
the distances between the individual bunches within a single
laser oscillation are smaller than thewavelengths of the low-
order harmonics, which can be seen in Figs. 3(e) and 3(f). To
compare the RIME spectrumwith the analytical result given
by Eq. (1), we proceed to estimate the bunch modulation
frequency. The average value of electron drift velocity inside
the return current observed in the PIC simulation is vde=c ≈
0.18 at the peak interaction time t ¼ 80 fs [Fig. 3(d)]. The
bunch modulation frequency due to BI can be therefore
estimated as ωb ¼ c=Lb ≈ 2c=λB ≈ ðcωp=vdeπÞ ≈ 18ω0,
corresponding to an electron bunch length of Lb ≈ 88 nm
and instability wavelength λB ≈ 0.18 μm, which is in agree-
ment with the features seen in Figs. 3(c) and 3(d).
Considering such modulation frequency, RIME spectrum
as given by Eq. (1), with energy of laser-accelerated
electrons given γ ≈ a0 ¼ 85.5, is presented in Fig. 4(a),
showing an excellent agreement with the PIC result. In
Fig. 4(b) we show the dependence of emitted radiation on

FIG. 2. PIC simulation of the surface instability. (a) Time
evolution of the longitudinal component of the ion current, shown
up to t ¼ 80 fs. Dashed line following linear phase velocity of the
surface wave corresponds to vp=c ¼ 0.01. (b) Time evolution of
jji;kj averaged over rk ∈ ½−1 μm; 1 μm% (black) and corresponding
instantaneous growth rate ΓðtÞ (blue). (c) Fourier transform of the
ion current in the linear phase of the instability, 0 fs < t < 55 fs
(colored, smoothened) and the real part of the solution of Eq. (2)
(black, dashed) calculated for the electron drift velocity
vde=c ¼ 0.01, ωp=ω0 ¼ 31.6.
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FIG. 2. PIC simulation of the surface instability. FIG. 1. Principle of relativistic instability- 
modulated emission (RIME). 
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PIC Algorithm (Charge Assignment)

248 9 Kinetic Description of Plasmas

Fig. 9.19 (a) The particle at xi is represented by a box-like charge cloud of width !x . When it
moves over the calculation grid, charge is assigned to cells p and p + 1 according to the overlap
of the cloud with the cell. (b) This charge assignment is described by the weighting function
W (x − x p) for the cell p

The advantage of such extended charge clouds lies in the smooth variation of the
interaction force between two such clouds. If the particle was represented by a thin
charge sheet, then the interaction force between two such sheets, which is indepen-
dent of the distance between the sheets, would suddenly switch sign when the sheets
penetrate each other.

The electric field results from solving Poisson’s equation on this grid. First the
second derivative is replaced by a second difference

Φp−1 − 2Φp +Φp+1

(∆x)2 = −ρp

ε0
. (9.80)

Then, the electric field results from

E p = φp−1 − φp+1

2∆x
. (9.81)

Poisson’s equation can be readily solved by diagonalization of the matrix, see e.g.,
[214]. For periodic boundary conditions, methods based on fast Fourier transform
may be even superior. The interpolation of the field force at the position of the
particle is made with the same weighting function (9.79) as used for the charge
assignment on the grid

Fi = q Ns

Ng−1∑

p=0

W (xi − x p)E p . (9.82)

9.4 Plasma Simulation with Particle Codes 247

the shielded Coulomb force. We had overcome this difficulty in the previous section
by grinding the particles into ever finer “Vlasov sand” that has the same q/m for
each grain, and therefore preserves the interaction forces between volume elements
of finite size. This concept allowed a statistical treatment in terms of the Vlasov
equation.

In this Section, we go into the other direction and merge all particles within a vol-
ume element into a superparticle. Again this superparticle has the same q/m as the
individual particles it consists of. Typical numbers of particles within a superparticle
can be Ns = 104 − 106. A further improvement for the numerical simulations of
electrostatic problems with superparticles is the assignment of the charge distribu-
tion, the resulting electric field and potential to a fixed grid with Ng grid points. This
reduces the calculation effort for a one-dimensional system to N Ng log2 Ng instead
of N 2 steps, which can be a substantial reduction, if N = 105 and Ng = 100,
typically.

Plasma physics by computer simulation is now an established branch of our field.
The fundamental methods are described in textbooks, e.g., [214, 215]. In the follow-
ing, the particle-in-cell (PIC) method will be described, which is implemented in
many codes. Some of these codes are available for free.1 Have fun playing yourself
with the codes. It will give you the impression that you can master the plasma.
The experimental plasma physicists often experience that the plasma masters the
experimenter.

9.4.1 The Particle-in-Cell Algorithm

The discussion of plasma simulation will be restricted to one-dimensional (1-D)
electrostatic problems, which we had studied before by analytical methods. The PIC
method assumes that the particle can be found with the same probability at any place
within a cell of the computational grid. This is equivalent to assigning a box-shaped
profile of width !x for the particle. When the superparticle moves over the grid,
there is a continuous change of its contribution to a cell p and its neighboring cell
p + 1, as shown in Fig. 9.19.

The charge assignment to grid point x p is made by

ρp = q Ns

!x

Np∑

i=1

W (xi − x p) (9.78)

with the linear weighting function

W (x) =
{

1 − |x | : |x | < 1
0 : |x | ≥ 1 .

(9.79)

1 http://ptsg.eecs.berkeley.edu/
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Poisson’s Equation and Electric Force

248 9 Kinetic Description of Plasmas

Fig. 9.19 (a) The particle at xi is represented by a box-like charge cloud of width !x . When it
moves over the calculation grid, charge is assigned to cells p and p + 1 according to the overlap
of the cloud with the cell. (b) This charge assignment is described by the weighting function
W (x − x p) for the cell p

The advantage of such extended charge clouds lies in the smooth variation of the
interaction force between two such clouds. If the particle was represented by a thin
charge sheet, then the interaction force between two such sheets, which is indepen-
dent of the distance between the sheets, would suddenly switch sign when the sheets
penetrate each other.

The electric field results from solving Poisson’s equation on this grid. First the
second derivative is replaced by a second difference

Φp−1 − 2Φp +Φp+1

(∆x)2 = −ρp

ε0
. (9.80)

Then, the electric field results from

E p = φp−1 − φp+1

2∆x
. (9.81)

Poisson’s equation can be readily solved by diagonalization of the matrix, see e.g.,
[214]. For periodic boundary conditions, methods based on fast Fourier transform
may be even superior. The interpolation of the field force at the position of the
particle is made with the same weighting function (9.79) as used for the charge
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“Leap Frog” Time-Stepping

9.4 Plasma Simulation with Particle Codes 249

The particle position is advanced by a discrete representation of Newton’s equation
in terms of a leap-frog scheme

xn+1
i − xn

i

∆t
= v

n+1/2
i

v
n+1/2
i − v

n−1/2
i

∆t
= F(xi )∆t

mi
, (9.83)

in which the superscript labels the number of the time step. The advancement of
the velocity is made at half timesteps. A full cycle of the PIC time step is shown in
Fig. 9.20.

Fig. 9.20 Time step of the
particle-in-cell technique

9.4.2 Phase-Space Representation

Before discussing the interaction of electrons with wave fields, let us shortly recall
the description of a dynamical system in phase space. A simple one-dimensional
system, the pendulum, is described by the potential energy

Wpot = −W0 cos(ϕ) . (9.84)

For small excitation energies, the pendulum performs harmonic oscillations about
the equilibrium position at ϕ = 0. The potential well and the phase space ϕ–(dϕ/dt)
of this pendulum are shown in Fig. 9.21. The phase space contours in Fig. 9.21b
correspond to various values of total energy

Wtot = 1
2

I
(

dϕ
dt

)2

− W0 cos(ϕ) , (9.85)

I being the moment of inertia for this pendulum.
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Calculate and Repeat

9.4 Plasma Simulation with Particle Codes 249
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the equilibrium position at ϕ = 0. The potential well and the phase space ϕ–(dϕ/dt)
of this pendulum are shown in Fig. 9.21. The phase space contours in Fig. 9.21b
correspond to various values of total energy

Wtot = 1
2

I
(

dϕ
dt

)2

− W0 cos(ϕ) , (9.85)

I being the moment of inertia for this pendulum.
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Dimensionless Parameters
• Δx = 1 and Δt = 1 

• Δx/L << 1 (so L must be large, with Δx ≈ 1) 

• (qe/me) = -1 

• (qi/mi) = +1/25 

• Δt ωpe << 1, so  ω2pe = n (qe/me)(qe/ε0). Therefore, (qe/ε0) << 1 if n ≈ 1
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Dimensionless Parameters
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Dynamics (Leap-Frog)
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Poisson’s Eq
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Mathematica Notebooks
• Plasma_PIC-Simulation-Clump.nb 

• Expanding plasma cloud  

• Ambipolar diffusion  

• Plasma_PIC-Simulation-electron.nb 

• Heavy stationary ions 

• Two-stream and e-beam instabilities 

• Nonlinear saturation
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Simple Example: Uniform Plasma

Plasma_PIC-Simulation-Clump.nb
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Plasma Clump: Ambipolar Diffusion

Plasma_PIC-Simulation-Clump.nb
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Plasma Electrons (stationary ions)

Plasma_PIC-Simulation-electron.nb
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Plasma & E-Beam

Plasma_PIC-Simulation-electron.nb
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Two Electron Beams

Plasma_PIC-Simulation-electron.nb
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Next Week

• Ch 8 (Piel): Sec. 8.4 Macroscopic Instabilities 

• Ch 7 (Gurnett and Bhattacharjee): MHD Equilibria and Stability (esp Sec. 7.3)
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