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8.4.2 Pinch Instabilities

The pinch effect was already introduced in Sect. 5.3.4. The pinch effect is not nec-
essarily a homogeneous mechanism. When we assume that the plasma cross section
is reduced at some point, the magnetic pressure at the plasma surface will increase,
because Bϕ = µ0 I (2πa)−1, as shown in Fig. 8.13a. This increased magnetic pres-
sure further reduces the plasma radius at this point, and the plasma column develops
a sausage instability.

The magnetic pressure can also deviate from its equilibrium value, when the
plasma column is curved, see Fig. 8.13b. Because the magnetic field lines are per-
pendicular to the local current direction, the field line density, and the associated
magnetic pressure, is higher on the inner side and lower on the outer side of the
curved plasma column. Hence, the imbalance of magnetic pressure will further dis-
place the column forming a kink.

The sausage and the kink instability can be stabilized by a superimposed longi-
tudinal magnetic field, which is frozen in the plasma. The magnetic field lines have
a tension T = B2/µ0 that tends to straighten the field lines, see Sect. 5.2.2. This
gives a net restoring force that counteracts the instablity from the magnetic pressure
imbalance of the azimuthal magnetic field component, as shown in Fig. 8.13c.

(a) (b) (c)

pmag pmag pmag pmag

Frest

Tmag

Tmag

I I Bz

Fig. 8.13 (a) Sausage instability, (b) kink instability of a pinch plasma. The magnetic pressure
increases when the cross-section shrinks or becomes asymmetric when the plasma column is
curved. (c) The magnetic tension of a superimposed longitudinal magnetic field counteracts the
instability

8.4.3 Rayleigh–Taylor Instability

A cartoon of the Rayleigh-Taylor instability for the equatorial ionosphere is shown
in Fig. 8.14. The unpurturbed plasma boundary is shown by the horizontal dashed
line. The plasma fills the upper halfspace. The magnetic field is perpendicular to
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Ch. 9 Fitzpatrick: Magnetic Reconnection

C H A P T E R 9

Magnetic Reconnection

9.1 INTRODUCTION
Magnetic reconnection is a phenomenon that is of particular importance in solar
system plasmas. In the solar corona, it results in the rapid release to the plasma of
energy stored in the large-scale structure of the coronal magnetic field, an e↵ect that
is thought to give rise to solar flares (Priest 1984). Small-scale reconnection may play
a role in heating the corona, and, thereby, driving the outflow of the solar wind (Priest
1984). In the Earth’s magnetosphere, magnetic reconnection in the magnetotail is
thought to be the precursor for auroral sub-storms (Ratcli↵e 1972).

The evolution of the magnetic field in a resistive-MHD plasma is governed by
the following well-known equation [see Equation (8.102)]:

@B
@t
= r ⇥ (V ⇥ B) +

⌘

µ0
r

2B. (9.1)

The first term on the right-hand side of this equation describes the convection of the
magnetic field by the plasma flow. The second term describes the resistive di↵usion
of the field through the plasma. If the first term dominates then magnetic flux is
frozen into the plasma, and the topology of the magnetic field cannot change. (See
Section 8.3.) On the other hand, if the second term dominates then there is little
coupling between the field and the plasma flow, and the topology of the magnetic
field is free to change.

The relative magnitude of the two terms on the right-hand side of Equation (9.1)
is conventionally measured in terms of magnetic Reynolds number or Lundquist num-
ber:

S =
µ0 V L
⌘
'
|r ⇥ (V ⇥ B)|
|(⌘/µ0)r2B|

, (9.2)

where V is the characteristic flow speed, and L the characteristic lengthscale, of the
plasma. If S is much larger than unity then convection dominates, and the frozen flux
constraint prevails, whereas if S is much less than unity then di↵usion dominates, and
the coupling between the plasma flow and the magnetic field is relatively weak.

It turns out that very large S -values are virtually guaranteed to occur in the solar
system because of the extremely large lengthscales of solar system plasmas. For
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compressibility, but incorporates plasma resistivity [cf. Equations (8.1)–(8.3)]:

r · V = 0, (9.3)

⇢

"
@V
@t
+ (V · r)V

#
+ rp � j ⇥ B = 0, (9.4)

E + V ⇥ B = ⌘ j. (9.5)

Here, the plasma mass density, ⇢, and resistivity, ⌘, are both assumed to be spatially
uniform, for the sake of simplicity. Compressibility is neglected (i.e., r·V is assumed
to be zero) in order to decouple the fast and slow magnetosonic waves from the
problem. (See Section 8.4.) It turns out that the instabilities that lead to magnetic
reconnection in current sheets (so-called “tearing modes”) are modified forms of
the shear-Alfvén wave (Hazeltine and Meiss 1985), and are not related to either of
the magnetosonic waves. Indeed, current sheets that exhibit magnetic reconnection
resonate with the shear-Alfvén wave, whose dispersion relation is ! = k · B/pµ0 ⇢
(see Section 8.4), where k is the wavevector. A shear-Alfvén resonance occurs when
! = 0 (i.e., when the wave frequency is reduced to zero), which implies that k ·B = 0
at the resonance.

The three simplified MHD equations, (9.3)–(9.5), form a complete set when com-
bined with Maxwell’s equations:

r · B = 0, (9.6)

r ⇥ E = �@B
@t
, (9.7)

r ⇥ B = µ0 j. (9.8)

Note that we are justified in neglecting the displacement current because we are
dealing with waves whose phase velocities are small compared to the velocity of
light in vacuum.

Consider a simplified scenario in which the Cartesian coordinate z is ignorable. In
other words, there is no variation in the z-direction (i.e., @/@z = 0), and no component
of the magnetic field or the plasma flow velocity in the z-direction (i.e., Bz = Vz = 0.)
We can automatically satisfy Equations (9.3) and (9.6) by writing

V = r� ⇥ ez, (9.9)

B = r ⇥ ez, (9.10)

where ez is a unit vector parallel to the z-axis. Note that V · r� = B · r = 0.
Thus, �(x, y) and  (x, y) map out the flow stream-lines and the magnetic field-lines,
respectively, in the x-y plane.  (x, y) is usually referred to as magnetic flux, because
the net magnetic flux (per unit length in the z-direction) that passes through a surface
(whose normal lies in the x-y plane) that links points (x1, y1) and (x2, y2) is  (x1, y1)�
 (x2, y2).
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It is helpful to define the hydromagnetic timescale,

⌧H =
k�1

(B2
0/µ0 ⇢)1/2

, (9.24)

which is the typical time required for a shear-Alfvén wave to propagate a wavelength
parallel to the y-axis, as well as the resistive di↵usion timescale,

⌧R =
µ0 a2

⌘
, (9.25)

which is the typical time required for magnetic flux to di↵use across the current sheet
in the x-direction. The e↵ective Lundquist number for the problem is

S =
⌧R

⌧H
. (9.26)

Let x = a x̂, k = k̂/a, � = �̂/⌧H ,  1 = �a B0  ̂, and �1 = i (� a/k) �̂. The
dimensionless, normalized versions of the linearized reduced-MHD equations, (9.22)
and (9.23), become

S �̂
⇣
 ̂ � F �̂

⌘
=

 
d2

dx̂2 � k̂2
!
 ̂, (9.27)

�̂ 2
 

d2

dx̂2 � k̂2
!
�̂ = �F

 
d2

dx̂2 � k̂2
�

F00

F

!
 ̂, (9.28)

where F(x̂) = tanh(x̂) and 0 ⌘ d/dx̂. Our normalization scheme is designed such
that, throughout the bulk of the plasma,  ̂ ⇠ �̂, and the only other quantities in the
previous two equations whose magnitudes di↵er substantially from unity are S �̂ and
�̂ 2. The term on the right-hand side of Equation (9.27) represents plasma resistivity,
whereas the term on the left-hand side of Equation (9.28) represents plasma inertia.
The shear-Alfvén resonance condition, k · B0 ⌘ k B0 F = 0, reduces to F = 0.

9.4 ASYMPTOTIC MATCHING
Suppose that the perturbation grows on a timescale that is much less than ⌧R, but
much greater than ⌧H . It follows that

�̂ ⌧ 1 ⌧ S �̂. (9.29)

Thus, throughout much of the plasma, we can neglect the right-hand side of Equa-
tion (9.27), and the left-hand side of Equation (9.28), which is equivalent to the ne-
glect of plasma resistivity and inertia. In this case, Equations (9.27) and (9.28) reduce
to

�̂ =
 ̂

F
, (9.30)

d2 ̂

dx̂2 � k̂2  ̂ �
F00

F
 ̂ = 0. (9.31)
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Phase diagram for magnetic reconnection in heliophysical, astrophysical,
and laboratory plasmas
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Recent progress in understanding the physics of magnetic reconnection is conveniently
summarized in terms of a phase diagram which organizes the essential dynamics for a wide variety
of applications in heliophysics, laboratory, and astrophysics. The two key dimensionless
parameters are the Lundquist number and the macrosopic system size in units of the ion sound
gyroradius. In addition to the conventional single X-line collisional and collisionless phases,
multiple X-line reconnection phases arise due to the presence of the plasmoid instability either in
collisional and collisionless current sheets. In particular, there exists a unique phase termed
“multiple X-line hybrid phase” where a hierarchy of collisional islands or plasmoids is terminated
by a collisionless current sheet, resulting in a rapid coupling between the macroscopic and kinetic
scales and a mixture of collisional and collisionless dynamics. The new phases involving multiple
X-lines and collisionless physics may be important for the emerging applications of magnetic
reconnection to accelerate charged particles beyond their thermal speeds. A large number of
heliophysical and astrophysical plasmas are surveyed and grouped in the phase diagram: Earth’s
magnetosphere, solar plasmas (chromosphere, corona, wind, and tachocline), galactic plasmas
(molecular clouds, interstellar media, accretion disks and their coronae, Crab nebula, Sgr A*,
gamma ray bursts, and magnetars), and extragalactic plasmas (active galactic nuclei disks and their
coronae, galaxy clusters, radio lobes, and extragalactic jets). Significance of laboratory experi-
ments, including a next generation reconnection experiment, is also discussed. VC 2011 American
Institute of Physics. [doi:10.1063/1.3647505]

I. COLLISIONAL AND COLLISIONLESS
RECONNECTION

It has been a long held view that magnetic reconnection
is primarily characterized by plasma collisionality. This is
evidenced by the common uses of the resistive magnetohy-
drodynamic (MHD) models, which is parameterized solely
by the dimensionless Lundquist number

S ! l0LCSVA

g
; (1)

as a starting point of the discussion for magnetic reconnec-
tion. In Eq. (1), LCS is the half length of the reconnecting cur-
rent sheet and can be taken as LCS ¼ !L, where L is the
plasma size and 0 # ! # 1=2 (the choices of ! are discussed
in Sec. VI A). VA is the Alfvén velocity based on the recon-
necting magnetic field component and g is the plasma
resistivity due to Coulomb collisions. The well-known
Sweet-Parker model1,2 predicts reconnection rates as an
explicit function of S

VR

VA
¼ 1ffiffiffi

S
p ; (2)

where VR is the reconnection inflow speed. When collisions
are sufficiently infrequent or S is sufficiently large, physics
beyond resistive MHD becomes crucial,3 leading to a fast
reconnection rate nearly independent of S. A large body of
the work in the past decades, therefore, has focused on

reconnection either in collisional or collisionless limit as
summarized by recent reviews.4,5

The collisional MHD description provides a good
description of magnetic reconnection for plasmas in which
all the resistive layers remain larger than the relevant ion
kinetic scale. For example, without a guide field (i.e., anti-
parallel reconnection), the transition between collisional
and collisionless reconnection occurs6–10 when the current
sheet half thickness predicted by the Sweet-Parker model
approaches

dSP !
LCSffiffiffi

S
p ¼ di; (3)

where di : c=xpi is the ion skin depth. By properly varying
both L (and thus LCS) and g (through changing, e.g., electron
temperature), S and di can be kept constant while the relative
magnitude of dSP to di can be reversed, leading to dramatic
differences in the structure of the reconnection layer along
with clear changes in the magnitude and scaling of the recon-
nection rate. This qualitative change can be characterized by
the effective plasma size which is defined by

k ! L

di
; (4)

so that the second equality in Eq. (3) can be written as

1070-664X/2011/18(11)/111207/10/$30.00 VC 2011 American Institute of Physics18, 111207-1
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Recent progress in understanding the physics of magnetic reconnection is conveniently
summarized in terms of a phase diagram which organizes the essential dynamics for a wide variety
of applications in heliophysics, laboratory, and astrophysics. The two key dimensionless
parameters are the Lundquist number and the macrosopic system size in units of the ion sound
gyroradius. In addition to the conventional single X-line collisional and collisionless phases,
multiple X-line reconnection phases arise due to the presence of the plasmoid instability either in
collisional and collisionless current sheets. In particular, there exists a unique phase termed
“multiple X-line hybrid phase” where a hierarchy of collisional islands or plasmoids is terminated
by a collisionless current sheet, resulting in a rapid coupling between the macroscopic and kinetic
scales and a mixture of collisional and collisionless dynamics. The new phases involving multiple
X-lines and collisionless physics may be important for the emerging applications of magnetic
reconnection to accelerate charged particles beyond their thermal speeds. A large number of
heliophysical and astrophysical plasmas are surveyed and grouped in the phase diagram: Earth’s
magnetosphere, solar plasmas (chromosphere, corona, wind, and tachocline), galactic plasmas
(molecular clouds, interstellar media, accretion disks and their coronae, Crab nebula, Sgr A*,
gamma ray bursts, and magnetars), and extragalactic plasmas (active galactic nuclei disks and their
coronae, galaxy clusters, radio lobes, and extragalactic jets). Significance of laboratory experi-
ments, including a next generation reconnection experiment, is also discussed. VC 2011 American
Institute of Physics. [doi:10.1063/1.3647505]

I. COLLISIONAL AND COLLISIONLESS
RECONNECTION

It has been a long held view that magnetic reconnection
is primarily characterized by plasma collisionality. This is
evidenced by the common uses of the resistive magnetohy-
drodynamic (MHD) models, which is parameterized solely
by the dimensionless Lundquist number

S ! l0LCSVA

g
; (1)

as a starting point of the discussion for magnetic reconnec-
tion. In Eq. (1), LCS is the half length of the reconnecting cur-
rent sheet and can be taken as LCS ¼ !L, where L is the
plasma size and 0 # ! # 1=2 (the choices of ! are discussed
in Sec. VI A). VA is the Alfvén velocity based on the recon-
necting magnetic field component and g is the plasma
resistivity due to Coulomb collisions. The well-known
Sweet-Parker model1,2 predicts reconnection rates as an
explicit function of S

VR

VA
¼ 1ffiffiffi

S
p ; (2)

where VR is the reconnection inflow speed. When collisions
are sufficiently infrequent or S is sufficiently large, physics
beyond resistive MHD becomes crucial,3 leading to a fast
reconnection rate nearly independent of S. A large body of
the work in the past decades, therefore, has focused on

reconnection either in collisional or collisionless limit as
summarized by recent reviews.4,5

The collisional MHD description provides a good
description of magnetic reconnection for plasmas in which
all the resistive layers remain larger than the relevant ion
kinetic scale. For example, without a guide field (i.e., anti-
parallel reconnection), the transition between collisional
and collisionless reconnection occurs6–10 when the current
sheet half thickness predicted by the Sweet-Parker model
approaches

dSP !
LCSffiffiffi

S
p ¼ di; (3)

where di : c=xpi is the ion skin depth. By properly varying
both L (and thus LCS) and g (through changing, e.g., electron
temperature), S and di can be kept constant while the relative
magnitude of dSP to di can be reversed, leading to dramatic
differences in the structure of the reconnection layer along
with clear changes in the magnitude and scaling of the recon-
nection rate. This qualitative change can be characterized by
the effective plasma size which is defined by

k ! L

di
; (4)

so that the second equality in Eq. (3) can be written as
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di = c/ωpi the ion skin depth

Lundquist Number

“plasmoids”

“electron runaway”
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Reduced MHD: Defining a “simple” model…
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Basic Derivation (“Ideal”)
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Stream Function and Poloidal Flux
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Simplifying the MHD Momentum Equation
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“Boussinesq Approximation”

μ0 Jz = ∇2⊥ψ



Simplifying the Induction Equation
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Summary of Reduced MHD
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μ0 Jz = ∇2⊥ψ



Importance of B⋅∇ (!!)
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Vitaly Shafranov

https://iopscience.iop.org/article/10.1088/0741-3335/43/12A/002

Professor Vitaly D Shafranov is widely known as one of the 
acknowledged leaders of the world's scientific community in 
plasma physics and controlled fusion. His theoretical research on 
plasma equilibrium and stability made an outstanding contribution 
to the physics of magnetically confined toroidal plasmas which 
plays a decisive role for the problem of magnetic fusion.

The first work by V D Shafranov, in co-authorship with M A Leontovich, On the stability of a flexible 
conductor in the presence of a magnetic field (1952) determined the goal for the experiments initiated by A 
D Sakharov's proposal on the confinement of a plasma by both the toroidal magnetic field and the inductive 
electric current, which later led to tokamaks. 

He was the first to explain the stability of the tokamak plasma against perturbations with high azimuthal 
modes (1970) and to give a theory for the determination of certain internal equilibrium parameters in 
tokamaks by external magnetic measurements. Shafranov's review, written in co-authorship with V S 
Mukhovatov (Nuclear Fusion 1971), which became a handbook on tokamak systems, was very important 
for world tokamak research.
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First: Equilibrium
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Step 1: Equilibrium (Shafranov’s Simplest Case)
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Wesson’s Cylindrical Equilibrium (dJ0/dr ≠ 0)
J.A. Wesson 1978 Nucl. Fusion 18 87; http://doi.org/10.1088/0029-5515/18/1/010
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Linearized Reduced (“Ideal”) MHD
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Linearized Reduced (“Ideal”) MHD
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determine the equilibrium toroidal current and poloidal field. The famous “Wesson Diagram”
[5] is a plot of plasma evolution in current (either Ip or 1/qa) and current peekness (either li
or qa/q0). When the current is not very peaked, qa/q0 < 2, or when the current is too large,
qa < 1, then tokamak plasmas are always unstable to external kink modes. When the central
current density is too high, q0 < 1, the internal m = 1 mode is always unstable. Finally, if the
current gradient is too high (Wesson calculated q0 < 3), then m > 1 tearing modes are unstable.
(Actually, the stability of tearing modes must take into account toroidal, diamagnetic e↵ects,
and neoclassical currents, and Wesson’s early bounds on linear tearing stability turned out to
be pessimistic.)

Since plasma current gradients exist within the plasma, the approach taken in Sec. 3 to find
the global kink eigenmodes is modified. The linearized equations for plasma acceleration and
induction are

�⇢!r2
?� = �m

r

@Jz,0

@r
 ̃ +

Bp

µ0r
(m� nq)r2

? ̃ (25)

�! ̃ =
Bp

r
(m� nq)� . (26)

If we continue to assume that ⇢ is constant except for a sharp discontinuity at the edge, then
the jump condition is

!⇢
@�

@r

����
a�

=
Bp(a)
µoa

(m� nqa) ̃a�0(a) , (27)

since Jz,0(a) = 0 at the edge.
The usual approach to the eigensystem analysis of Eqs. 25, 26, and 27 in cylindrical MHD is

very interesting. In Eq. 25, the inertial term is ignored. Inside the plasma, the kink response is
assumed to be a sequence of “quasi-equilibria”. This makes good sense because the external kink
growth rate is always about ten times slower than a typical Alfvén frequency. The perturbed
poloidal field is always described by (linear) ideal (helical) MHD force-balance:

0 ⇡ �m

r

@Jz,0

@r
 ̃ +

Bp

µ0r
(m� nq)r2

? ̃ . (28)

The kink growth rate is determined solely by a thin “inertial layer” at the edge (i.e. Eq. 27),

!2 = �!2
A(m� nqa)2 �0(a)

�a

(@�/@r)|a�
. (29)

Eq. 26 is used to determine �(r) from  ̃(r). Eq. 26 also implies

1
�a

@�

@r

����
a�

=
1
 ̃a

@ ̃

@r

�����
a�

+
2m/a

m� nqa

since the magnetic shear is sq(a) ⌘ (a/qa) (dq/dr)|a = 2 when Jz,0(a) = 0. Just as in the
Shafranov equilibrium, the inertial response, �K, diverges at resonance, qa = m/n, and this
causes the kink growth rate to vanish.

The procedure described above for calculating external kink growth rate for an arbitrary
plasma current profile was followed by Cates and co-workers [11] in order to estimate the time-
evolution of the instability growth rates in HBT-EP as Jz,0(r, t) evolved due to classical plasma
resistivity.
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Alfvén Waves in Shafranov’s Equilibrium (dJ0/dr ~ 0)
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Global Kink Eigenmodes (dJ0/dr ~ 0, except edge!)

20

(K = Surface current)



Global Kink Eigenmodes (dJ0/dr ~ 0, except edge!)
Boundary Matching Conditions
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Kink Mode (dJ0/dr ~ 0)

22

At the plasma boundary, Eq. 6 is integrated over the step discontinuity at r = a. This gives
Z

a
+

a�
2⇡r dr

⇢
�i!r? · ⇢r?� = (ẑ⇥r? ̃) · r̂ @Jz

@r
+ i

Bp

µ0r
(m� nq)r? ·r? ̃

�

or

!⇢
@�

@r

����
a�

=
2mBp(a)

µ0a2
 ̃a +

Bp(a)
µoa

(m� nqa) ̃a�0(a) (11)

=
2mBp(a)

µ0a2
 ̃a


(m� nq)

✓��0(a)
2m/a

◆
� 1

�
. (12)

Eq. 11 describes the acceleration of a thin “inertial layer” at the edge of the plasma, r = a. The
plasma edge undergoes kink motion due to the perturbed J⇥B forces as was well described by
Wesson [5]. The derivative jump in the perturbed poloidal flux,

�0(a) ⌘ 1
 ̃

@ ̃

@r

�����
a+

� 1
 ̃

@ ̃

@r

�����
a�

, (13)

is proportional to the helical surface current, K̃z, on the plasma surface, �0(a) ̃a = µ0K̃z/a.
The boundary condition involves the inner solution for � and  ̃,

{�,  ̃} /
✓

r

a

◆
m

(for r < a). (14)

This results becauser2
?{�,  ̃} must also vanish within the plasma (for helical perturbations that

are not Alfvén waves) for an equilibrium with constant profiles. In the Shafranov equilibrium,
no perturbed currents exists within the plasma, and the entire plasma kink response is contained
in the helical surface current, K̃z.

Combining Eqs. 13 and 14, �0(a) is

�0(a) = �2m

a

(b/a)m

(b/a)m � (a/b)m
⌘ �m

a
(⇤ + 1) , (15)

Where ⇤ ⌘ [1 + (a/b)2m]/[1 � (a/b)2m]. As the wall is removed from the plasma, ⇤ ! 1 and
�0(a) ! �2m/a. With the wall at the plasma surface, ⇤ ! 1, and �0(a) ! �1. Since
��1 (@�/@r)|a� = �m/a, Eqs. 9, 12, 15 determine the external kink eigensystem:

 
! Bp

a
(m� nqa)

2mBp(a)
µ0a

[(m� nqa)(⇤ + 1)/2� 1] !⇢

!

·
 
 ̃a

�a

!

= 0 (16)

The dispersion relation for global kink eigenmodes is

!2 = 2!2
a(m� nqa) [(m� nqa) (⇤ + 1)/2� 1] (17)

Fig. 1 shows the growth rate, � = ={!}, of the external kink as a function of qa for two wall
positions. Note that the peak growth rate of the external kink is approximately 0.1!A. This is
important. Even a “fast” external kink mode is slow compared with a shear Alfvén wave. While
the kink mixes the edge inertial layer, the central plasma region remains in force balance and
evolves (approximately) as a sequence of helically-distorted quasi-equilibria, r2

? ̃ = 0.
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Kink Mode
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60 4 Current Driven Ideal MHD Modes in a Tokamak

and, as shown earlier, the qa = 2 limit is usually a hard one in experiments, nomat-
ter how peaked the current profiles are, unless active feedback control is applied.
It turns out that for tokamak operation with a ‘conventional’ q-profile, that is

one where the current distribution is peaked in the centre4), external kink modes
are not an issue as long as qa > 2, unless 𝛽 is so high that it cannot be neglected any
longer. Purely current driven external kinks have however been found to occur in
fast current ramps, provided the ramp rate is much larger than the inverse of the
resistive current redistribution rate, as these lead to a broad current profile. An
example is shown in Figure 4.4 where a fast current ramp provokes ideal external
kinks of mode number (m = qa, n = 1) as qa passes through the corresponding
integer values.
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Figure 4.4 Occurrence of ideal external kinks in the current ramp up of a tokamak dis-
charge in the ASDEX tokamak. The (2,1) mode occurring at reduced ramp rate is a resistive
mode that terminates the discharge disruptively. This instability is treated in Chapter 10.

4) This is the case if the current profile is dominated by the ohmic contribution as the electrical con-
ductivity is the highest in the centre (Chapter 7).
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Wesson’s Cylindrical Equilibrium (dJ0/dr ≠ 0)
J.A. Wesson 1978 Nucl. Fusion 18 87; http://doi.org/10.1088/0029-5515/18/1/010
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Wesson’s Kink Modes
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Wesson’s Kink Modes
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Next Lecture
Resistive MHD (and tearing modes)

Magnetohydrodynamic Stability of Tokamaks by Hartmut Zohm (Wiley 2014) and 
Plasma physics : An introduction by Richard Fitzpatrick (2nd ed. 2022; CRC Press). 

(both online at Columbia University)
27


