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This Lecture: Inhomogeneous Plasma

• Trivelpiece-Gould Modes (cylindrical plasma, surface waves, ω < ωp) 

• Langmuir probes: Child-Langmuir Law, Bohm Sheath Criteria 

• Langmuir probes in magnetized plasma
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I give several simple examples of model Langmuir probe current-voltage !I-V" characteristics that
help students learn how to interpret real I-V characteristics obtained in a plasma. Students can also
create their own Langmuir probe I-V characteristics using a program with the plasma density,
plasma potential, electron temperature, ion temperature, and probe area as input parameters. Some
examples of Langmuir probe I-V characteristics obtained in laboratory plasmas are presented and
analyzed. A few comments are made advocating the inclusion of plasma experiments in the
advanced undergraduate laboratory. © 2007 American Association of Physics Teachers.
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I. INTRODUCTION

Plasma physicists use Langmuir probes in low temperature
plasmas1 !approximately a few electron volts" to measure the
plasma density, electron temperature, and the plasma poten-
tial. A Langmuir probe consists of a bare wire or metal disk,
which is inserted into a plasma and electrically biased with
respect to a reference electrode to collect electron and/or
positive ion currents. Examples of the use of a cylindrical
!wire" probe in a gas discharge tube and a planar disk probe
in a hot filament discharge plasma are shown in Fig. 1.
Probes, initially called “sounding electrodes,” were first used
in the late 19th and early 20th centuries in an attempt to
measure the voltage distribution in gas discharges. A gas
discharge #Fig 1!a"$ is produced in a glass tube of about
2–5 cm diameter and 20–40 cm long, which contains metal
disk electrodes !anode and cathode" at both ends. The tube is
first evacuated and then refilled with a gas at low pressure
!about 1 Torr or less" and an electrical discharge !ionized gas
or “plasma”" is formed by applying a DC voltage of
300–400 V across the electrodes. A common example of a
discharge tube is an ordinary fluorescent light. Probes are
inserted at one or more locations along the length of the tube,
with the exposed tips protruding into the plasma column. The
early users of probes naively assumed that the potential of
the plasma at the location of the probe !known as the plasma
potential or space potential and designated as VP" could be
determined by measuring the potential on the probe relative
to one of the electrodes. However, this procedure determined
the floating potential Vf of the probe which is generally not
the same as the plasma potential. By definition, a probe that
is electrically floating, collects no net current from the
plasma, and thus its potential rises and falls to whatever po-
tential is necessary to maintain zero net current.

In a typical plasma, the electrons, because of their smaller
mass, have significantly higher thermal speeds than the posi-
tive ions, even if the electrons and ions are at the same tem-
perature. Usually the electrons have a higher temperature
than the positive ions. Although a plasma is electrically neu-
tral, and the electron and ion densities are very nearly equal,
a floating probe will tend initially to draw a higher electron
current because the electrons reach the probe faster than the
more massive ions. Because the net current to the floating
probe must be zero, the probe floats to a negative potential
relative to the plasma so that further collection of electrons is
retarded and ion collection is enhanced. Thus, the floating
potential is less than the plasma potential. The plasma poten-

tial is the potential of the plasma with respect to the walls of
the device at a given location in the plasma. VP is generally
a few volts positive with respect to the walls, again because
the swifter electrons tend to escape to the walls first, leaving
the plasma with a slight excess of positive space charge. The
bulk of the plasma, however, is “quasineutral”
!electron density% ion density", and the potential difference
between the bulk of the plasma and the wall is concentrated
in a thin layer or sheath near the wall. The gradient of the
plasma potential determines the electric field that is respon-
sible for energizing the electrons, which maintain the dis-
charge through ionization.

Although physicists knew that Vf and VP were not the
same, they thought that the difference was probably small,
and in any case, they had no way of either estimating the
difference or of measuring the actual plasma potential. Irving
Langmuir and Harold Mott-Smith of the General Electric
Research Laboratory in the 1920s were the first to provide a
quantitative understanding of the difference between Vf and
VP. They developed an experimental method for determining
the plasma potential and also showed how it was possible to
use the probe !now known as a “Langmuir” probe" to deter-
mine the plasma density and the electron temperature as
well.2 Langmuir’s method consists of obtaining the current-
voltage !I-V" characteristic of the probe as the applied bias
voltage VB, is swept from a negative to a positive potential.

Many students of experimental plasma physics are given
the task of constructing and implementing a Langmuir probe
in a plasma. They quickly realize that building the probe and
obtaining a I-V characteristic is much easier than extracting
accurate values of the plasma parameters from the data. The
literature dealing with the theory of the Langmuir probes is
extensive, and new papers appear regularly. My purpose here
is not to discuss the complexities of probe theory, which is
treated in a number of excellent monographs,3–9 but to pro-
vide a method to help students understand why a Langmuir
characteristic looks the way it does. The difficulty with un-
derstanding probe I-V characteristics stems from the fact that
the electrons and ions are not monoenergetic and often have
very different temperatures. As a result, the probe sometimes
collects only ion current, sometimes only electron current,
and sometimes both. It is easier to understand and analyze
the full I-V characteristic if the ion and electron current con-
tributions are separated.

In Sec. II we discuss the most basic aspects of probe
theory needed to calculate the individual electron and ion
currents, and then construct an ideal probe I-V relation using
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7.6 The Plane Langmuir Probe 189

We will show below, how the probe characteristic can be used to determine the
electron density and electron temperature of a plasma.

The fundamental electric circuit of a Langmuir probe measurement is shown in
Fig. 7.6a. A small plane electrode is inserted into a gas discharge. The discharge tube
is typically operated from a high-voltage supply via a current-limiting series resistor
Rs. The probe is biased by an external voltage that is applied between the probe
and a suitable electrode. For reasons of lab safety, this electrode must be properly
grounded. Likewise, the power supply must be able to operate in a mode where
the negative output is the “hot lead” and the positive output grounded. In this case,
the anode (positive electrode) was chosen because the voltage drop in the anode
layer is usually much smaller than that in the cathode (negative electrode) layer (see
Chap.11). A voltmeter gives the probe bias voltageUp and a current meter the probe
current Ip.

A modern realisation of the circuit for recording probe characteristics with a
computer is shown in Fig. 7.6b. The bias voltage is generated by a digital-to-analog
converter (DAC), which delivers (−5 . . .+ 5)V and is amplified 20-times by a
high-voltage operational amplifier. To protect the DAC and the computer from any
unwanted plasma currents, an optically-isolated operational amplifier is used. The
probe current is sensed as the voltage drop (<1V) across a small series resistor Rm

by a second optically-isolated operational amplifier. The current signal is then read
out by the computer via an analog-to-digital converter (ADC). Finally, the probe bias
is corrected by the computer for the voltage drop across the series resistor, and the
probe characteristic can be displayed and stored. Again, the probe circuit is closed
by a connection between the ground terminal of the high-voltage opamp and the ref-
erence electrode that is connected to protective ground of the lab electrics. For your
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Fig. 7.6 a Arrangement for a plane Langmuir probe in a dc-discharge. The probe is biased with a
voltageUp with respect to a proper reference electrode. bComputer-controlled Langmuir probe cir-
cuit. A digital-to-analog converter (DAC) with subsequent amplifier provides a probe bias, between
−100 and+100V. The probe current ismeasuredwith a series resistor Rm and an isolation amplifier,
and finally A-D converted for numerical processing

Probes are Frequent Diagnostics for Plasmas
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OCTOBER) 1926 PH YSICAL REVIEW VOLUME 28'

THE THEORY OF COLLECTORS IN GASEOUS DISCHARGES

BV H. M. MOTT-SMITH AND IRVING LANGMUIR

ABSTRACT

When a cylindrical or spherical electrode {collector) immersed in an ionized
gas is brought to a suitable potential, it becomes surrounded by a symmetrical
space-charge region or "sheath" of positive or of negative ions (or electrons).
Assuming that the gas pressure is so low that the proportion of ions which
collide with gas molecules in the sheath is negligibly small, the current taken
by the collector can be calculated in terms of the radii of the collector or sheath,
the distribution of velocities among the ions arriving at the sheath boundary
and the total drop of potential in the sheath. The current is independent of the
actual distribution of potential in the sheath provided this distribution satisfies
certain conditions.

"Orbital Motion" equations for spherical and cylindrical collectors.—General
formulas for the current are derived and the calculations are then carried out
for collectors in a group of ions having velocities which are (A) equal and
parallel; (B) equal in magnitude but of random direction; (C) Maxwellian;
(D) Maxwellian with a drift velocity superimposed. In all cases the collector
current becomes practically independent of the sheath radius when this
radius is large compared with that of the collector. Thus the volt-ampere
characteristics of a collector of sufficiently small radius can be used to dis-
tinguish between the diferent types of velocity distribution. General equations
are also given by means of which the velocity distribution can be calculated
directly from the volt-ampere characteristics of a sphere or cylinder.

Special properties of the Maxmellian distribution. —For a collector of any
shape having a convex surface, the logarithm of the current taken from a
Maxwellian distribution is a linear function of the voltage diAerence between
the collector and the gas when the collector potential is such as to retard
arriving ions, but not when this potential is accelerating. This is a consequence
of the following general theorem: Supposing for simplicity of statement that
the surface of an electrode of any shape immersed in a Maxwellian distribution
is perfectly reflecting, then the ions in the surrounding sheath will have
a distribution (called D~) of velocities and densities given by Maxwell's and
Boltzmann's equations, even in the absence of collisions between the ions,
provided that there are in the sheath no possible orbits in which an ion can
circulate without reaching the boundary; but if such orbits exist, the distribu-
tion will be D~ except for the absence of such ions as would describe the circu-
lating orbits. As another corollary of this theorem there is deduced an equmtion
relating the solution of problems having inverse geometry. Finally it is indi-
cated how the theorem can be applied to calculate the volt-ampere char-
acteristic of A. F. Dittmer's "pierced collector" when placed in a Maxwellian
distribution.

The egect of reflection of ions at the collector surface in modifying currents
calculated by the preceding equations is discussed.
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COLLECTORS IN GASEOUS DISCHARGES

The volt ampere characteristic of a plane electrode of area A with a
Maxwellian distribution is

i=IAe&, for g&0. (38)

Thus the cylinder, the sphere and the plane all have the same charac-
teristic for retarding voltage in a Maxwellian distribution of ions. As
we shall see later, this same characteristic is in fact possessed by a
collector of any shape whatever.
The curves of Fig. 4 illustrate the characteristics of the three forms

of collectors with a Maxwellian distribution.

FzG. 4.

(D) Distributiort which is llfctxwellictn with superimposed drift In.
certain types of discharge there are groups of ions which presumably
have the velocity distribution of a gas with "mass-motion. " For in-
stance, in the case of a mercury-vapor arc passing through a tube of
uniform diameter, collectors are found to have characteristics which if
interpreted according to the results of the last section would indicate
that the free electrons has a nearly perfect Maxwellian distribution of
velocities. This would imply that there was no net transport of electrons
in any direction, but actually the electrons must be drifting steadily
toward the anode. It becomes important therefore to 6nd what inter-
pretation should be put upon the collector characteristics in view of this
fact.
In the case just cited the drift velocity is usually small or at any rate

of the same order of magnitude as the average absolute velocity of the
Maxwellian distribution. In other cases there exist in discharges beams
of electrons which have a common high drift velocity on which is super-
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a set of model plasma parameters. A link is provided to a
program that allows the user to input the plasma and probe
parameters !density, temperature, plasma potential, and
probe dimension" and plot the resulting Langmuir I-V char-
acteristic. Section III provides two examples of real Lang-
muir probe I-V characteristics obtained in laboratory plas-
mas. I close in Sec. IV with comments advocating the
inclusion of plasma experiments in the undergraduate ad-
vanced laboratory course.

II. MODEL LANGMUIR PROBE CURRENT-
VOLTAGE CHARACTERISTICS

In this section I discuss some of the basic aspects of Lang-
muir probe theory that are needed to construct model probe
I-V characteristics. Two examples of ideal probe I-V charac-
teristics are then given. Finally, a discussion of how the ideal
characteristics must be modified to account for real probe
effects is presented.

A. Ion and electron currents to a Langmuir probe
1. The ion current

When the bias voltage VB, on the probe is sufficiently
negative with respect to the plasma potential VP, the probe

collects the ion saturation current Iis. Positive ions continue
to be collected by the probe until the bias voltage reaches VP,
at which point ions begin to be repelled by the probe. For
VB!VP, all positive ions are repelled, and the ion current to
the probe vanishes, Ii=0. For a Maxwellian ion distribution
at the temperature Ti, the dependence of the ion current
Ii!VB" !usually taken to be the negative current" on VB is
given by10

Ii!VB" = #− Iis exp$e!VP − VB"/kTi% , VB ! VP,

− Iis, VB " VP,
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where e is the electron’s charge, and k is the Boltzmann
constant. When Ti is comparable to the electron temperature
Te, the ion saturation current, Iis is given by4
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where, ni is the ion density, vi,th=&8kTi /#mi is the ion ther-
mal speed, mi is the ion mass, and Aprobe is the probe collect-
ing area. When Te!Ti,

11 the ion saturation current is not
determined by the ion thermal speed, but rather is given by
the Bohm ion current3,4,12

Iis = IBohm = 0.6eni&kTe
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The fact that the ion current is determined by the electron
temperature when Te!Ti is counterintuitive and requires
some explanation. The physical reason for the dependence
Iis'!kTe /mi"1/2 has to do with the formation of a sheath
around a negatively biased probe.12,13 If an electrode in a
plasma has a potential different from the local plasma poten-
tial, the electrons and ions distribute themselves spatially
around the electrode in order to limit, or shield, the effect of
this potential on the bulk plasma. A positively biased elec-
trode acquires an electron shielding cloud surrounding it,
while a negatively biased electrode acquires a positive space
charge cloud. For a negatively biased electrode, the charac-
teristic shielding distance of the potential disturbance is the
electron Debye length14

$De = (%okTe
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. !4"

In the vicinity of a negatively biased probe, both the
electron and ion densities decrease as the particles ap-
proach the probe, but not at the same rate. The electron
density decreases because electrons are repelled by the
probe. In contrast, the ions are accelerated toward the
probe, and due to the continuity of the current density, the
ion density decreases. A positive space charge sheath can
form only if the ion density exceeds the electron density at
the sheath edge, and for the ion density to decrease more
slowly than the electron density, the ions must approach
the sheath with a speed exceeding the Bohm velocity uB
= !kTe /mi"1/2.13,15 To achieve this speed, the ions must ac-
quire an energy corresponding to a potential drop of
0.5!kTe /e", which occurs over a long distance in the
plasma. The factor of 0.6 in Eq. !3" is due to the reduction
in the density of the ions in the presheath, which is the
region over which the ions are accelerated up to the Bohm
speed.

Fig. 1. Schematic of basic devices for producing a plasma. !a" A discharge
tube in which a plasma is formed in a low pressure gas !"1 Torr" by
applying several hundred volts across the cathode and anode. A cylindrical
!wire" probe is inserted into the discharge to measure the properties of the
plasma. !b" Schematic of a multidipole hot filament plasma device with a
Langmuir disk probe. The plasma is produced by electron impact ionization
of argon atoms by electrons that are thermionically emitted and accelerated
from a hot tungsten !W" filament. To enhance the ionization efficiency, the
walls of the chamber are lined with rows of permanent magnetic of opposite
polarity. The lower diagram is an end view showing the arrangement of
magnets. The magnetic field lines are sketched as the dotted curves. In this
magnetic cusp configuration, the bulk plasma is essentially magnetic
field-free.
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a set of model plasma parameters. A link is provided to a
program that allows the user to input the plasma and probe
parameters !density, temperature, plasma potential, and
probe dimension" and plot the resulting Langmuir I-V char-
acteristic. Section III provides two examples of real Lang-
muir probe I-V characteristics obtained in laboratory plas-
mas. I close in Sec. IV with comments advocating the
inclusion of plasma experiments in the undergraduate ad-
vanced laboratory course.

II. MODEL LANGMUIR PROBE CURRENT-
VOLTAGE CHARACTERISTICS

In this section I discuss some of the basic aspects of Lang-
muir probe theory that are needed to construct model probe
I-V characteristics. Two examples of ideal probe I-V charac-
teristics are then given. Finally, a discussion of how the ideal
characteristics must be modified to account for real probe
effects is presented.

A. Ion and electron currents to a Langmuir probe
1. The ion current

When the bias voltage VB, on the probe is sufficiently
negative with respect to the plasma potential VP, the probe

collects the ion saturation current Iis. Positive ions continue
to be collected by the probe until the bias voltage reaches VP,
at which point ions begin to be repelled by the probe. For
VB!VP, all positive ions are repelled, and the ion current to
the probe vanishes, Ii=0. For a Maxwellian ion distribution
at the temperature Ti, the dependence of the ion current
Ii!VB" !usually taken to be the negative current" on VB is
given by10

Ii!VB" = #− Iis exp$e!VP − VB"/kTi% , VB ! VP,

− Iis, VB " VP,
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where e is the electron’s charge, and k is the Boltzmann
constant. When Ti is comparable to the electron temperature
Te, the ion saturation current, Iis is given by4
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where, ni is the ion density, vi,th=&8kTi /#mi is the ion ther-
mal speed, mi is the ion mass, and Aprobe is the probe collect-
ing area. When Te!Ti,

11 the ion saturation current is not
determined by the ion thermal speed, but rather is given by
the Bohm ion current3,4,12
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The fact that the ion current is determined by the electron
temperature when Te!Ti is counterintuitive and requires
some explanation. The physical reason for the dependence
Iis'!kTe /mi"1/2 has to do with the formation of a sheath
around a negatively biased probe.12,13 If an electrode in a
plasma has a potential different from the local plasma poten-
tial, the electrons and ions distribute themselves spatially
around the electrode in order to limit, or shield, the effect of
this potential on the bulk plasma. A positively biased elec-
trode acquires an electron shielding cloud surrounding it,
while a negatively biased electrode acquires a positive space
charge cloud. For a negatively biased electrode, the charac-
teristic shielding distance of the potential disturbance is the
electron Debye length14

$De = (%okTe
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In the vicinity of a negatively biased probe, both the
electron and ion densities decrease as the particles ap-
proach the probe, but not at the same rate. The electron
density decreases because electrons are repelled by the
probe. In contrast, the ions are accelerated toward the
probe, and due to the continuity of the current density, the
ion density decreases. A positive space charge sheath can
form only if the ion density exceeds the electron density at
the sheath edge, and for the ion density to decrease more
slowly than the electron density, the ions must approach
the sheath with a speed exceeding the Bohm velocity uB
= !kTe /mi"1/2.13,15 To achieve this speed, the ions must ac-
quire an energy corresponding to a potential drop of
0.5!kTe /e", which occurs over a long distance in the
plasma. The factor of 0.6 in Eq. !3" is due to the reduction
in the density of the ions in the presheath, which is the
region over which the ions are accelerated up to the Bohm
speed.

Fig. 1. Schematic of basic devices for producing a plasma. !a" A discharge
tube in which a plasma is formed in a low pressure gas !"1 Torr" by
applying several hundred volts across the cathode and anode. A cylindrical
!wire" probe is inserted into the discharge to measure the properties of the
plasma. !b" Schematic of a multidipole hot filament plasma device with a
Langmuir disk probe. The plasma is produced by electron impact ionization
of argon atoms by electrons that are thermionically emitted and accelerated
from a hot tungsten !W" filament. To enhance the ionization efficiency, the
walls of the chamber are lined with rows of permanent magnetic of opposite
polarity. The lower diagram is an end view showing the arrangement of
magnets. The magnetic field lines are sketched as the dotted curves. In this
magnetic cusp configuration, the bulk plasma is essentially magnetic
field-free.
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a set of model plasma parameters. A link is provided to a
program that allows the user to input the plasma and probe
parameters !density, temperature, plasma potential, and
probe dimension" and plot the resulting Langmuir I-V char-
acteristic. Section III provides two examples of real Lang-
muir probe I-V characteristics obtained in laboratory plas-
mas. I close in Sec. IV with comments advocating the
inclusion of plasma experiments in the undergraduate ad-
vanced laboratory course.

II. MODEL LANGMUIR PROBE CURRENT-
VOLTAGE CHARACTERISTICS

In this section I discuss some of the basic aspects of Lang-
muir probe theory that are needed to construct model probe
I-V characteristics. Two examples of ideal probe I-V charac-
teristics are then given. Finally, a discussion of how the ideal
characteristics must be modified to account for real probe
effects is presented.

A. Ion and electron currents to a Langmuir probe
1. The ion current

When the bias voltage VB, on the probe is sufficiently
negative with respect to the plasma potential VP, the probe

collects the ion saturation current Iis. Positive ions continue
to be collected by the probe until the bias voltage reaches VP,
at which point ions begin to be repelled by the probe. For
VB!VP, all positive ions are repelled, and the ion current to
the probe vanishes, Ii=0. For a Maxwellian ion distribution
at the temperature Ti, the dependence of the ion current
Ii!VB" !usually taken to be the negative current" on VB is
given by10

Ii!VB" = #− Iis exp$e!VP − VB"/kTi% , VB ! VP,

− Iis, VB " VP,
!1"

where e is the electron’s charge, and k is the Boltzmann
constant. When Ti is comparable to the electron temperature
Te, the ion saturation current, Iis is given by4
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where, ni is the ion density, vi,th=&8kTi /#mi is the ion ther-
mal speed, mi is the ion mass, and Aprobe is the probe collect-
ing area. When Te!Ti,

11 the ion saturation current is not
determined by the ion thermal speed, but rather is given by
the Bohm ion current3,4,12

Iis = IBohm = 0.6eni&kTe
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The fact that the ion current is determined by the electron
temperature when Te!Ti is counterintuitive and requires
some explanation. The physical reason for the dependence
Iis'!kTe /mi"1/2 has to do with the formation of a sheath
around a negatively biased probe.12,13 If an electrode in a
plasma has a potential different from the local plasma poten-
tial, the electrons and ions distribute themselves spatially
around the electrode in order to limit, or shield, the effect of
this potential on the bulk plasma. A positively biased elec-
trode acquires an electron shielding cloud surrounding it,
while a negatively biased electrode acquires a positive space
charge cloud. For a negatively biased electrode, the charac-
teristic shielding distance of the potential disturbance is the
electron Debye length14

$De = (%okTe
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. !4"

In the vicinity of a negatively biased probe, both the
electron and ion densities decrease as the particles ap-
proach the probe, but not at the same rate. The electron
density decreases because electrons are repelled by the
probe. In contrast, the ions are accelerated toward the
probe, and due to the continuity of the current density, the
ion density decreases. A positive space charge sheath can
form only if the ion density exceeds the electron density at
the sheath edge, and for the ion density to decrease more
slowly than the electron density, the ions must approach
the sheath with a speed exceeding the Bohm velocity uB
= !kTe /mi"1/2.13,15 To achieve this speed, the ions must ac-
quire an energy corresponding to a potential drop of
0.5!kTe /e", which occurs over a long distance in the
plasma. The factor of 0.6 in Eq. !3" is due to the reduction
in the density of the ions in the presheath, which is the
region over which the ions are accelerated up to the Bohm
speed.

Fig. 1. Schematic of basic devices for producing a plasma. !a" A discharge
tube in which a plasma is formed in a low pressure gas !"1 Torr" by
applying several hundred volts across the cathode and anode. A cylindrical
!wire" probe is inserted into the discharge to measure the properties of the
plasma. !b" Schematic of a multidipole hot filament plasma device with a
Langmuir disk probe. The plasma is produced by electron impact ionization
of argon atoms by electrons that are thermionically emitted and accelerated
from a hot tungsten !W" filament. To enhance the ionization efficiency, the
walls of the chamber are lined with rows of permanent magnetic of opposite
polarity. The lower diagram is an end view showing the arrangement of
magnets. The magnetic field lines are sketched as the dotted curves. In this
magnetic cusp configuration, the bulk plasma is essentially magnetic
field-free.
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a set of model plasma parameters. A link is provided to a
program that allows the user to input the plasma and probe
parameters !density, temperature, plasma potential, and
probe dimension" and plot the resulting Langmuir I-V char-
acteristic. Section III provides two examples of real Lang-
muir probe I-V characteristics obtained in laboratory plas-
mas. I close in Sec. IV with comments advocating the
inclusion of plasma experiments in the undergraduate ad-
vanced laboratory course.

II. MODEL LANGMUIR PROBE CURRENT-
VOLTAGE CHARACTERISTICS

In this section I discuss some of the basic aspects of Lang-
muir probe theory that are needed to construct model probe
I-V characteristics. Two examples of ideal probe I-V charac-
teristics are then given. Finally, a discussion of how the ideal
characteristics must be modified to account for real probe
effects is presented.

A. Ion and electron currents to a Langmuir probe
1. The ion current

When the bias voltage VB, on the probe is sufficiently
negative with respect to the plasma potential VP, the probe

collects the ion saturation current Iis. Positive ions continue
to be collected by the probe until the bias voltage reaches VP,
at which point ions begin to be repelled by the probe. For
VB!VP, all positive ions are repelled, and the ion current to
the probe vanishes, Ii=0. For a Maxwellian ion distribution
at the temperature Ti, the dependence of the ion current
Ii!VB" !usually taken to be the negative current" on VB is
given by10

Ii!VB" = #− Iis exp$e!VP − VB"/kTi% , VB ! VP,

− Iis, VB " VP,
!1"

where e is the electron’s charge, and k is the Boltzmann
constant. When Ti is comparable to the electron temperature
Te, the ion saturation current, Iis is given by4

Iis =
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where, ni is the ion density, vi,th=&8kTi /#mi is the ion ther-
mal speed, mi is the ion mass, and Aprobe is the probe collect-
ing area. When Te!Ti,

11 the ion saturation current is not
determined by the ion thermal speed, but rather is given by
the Bohm ion current3,4,12

Iis = IBohm = 0.6eni&kTe
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The fact that the ion current is determined by the electron
temperature when Te!Ti is counterintuitive and requires
some explanation. The physical reason for the dependence
Iis'!kTe /mi"1/2 has to do with the formation of a sheath
around a negatively biased probe.12,13 If an electrode in a
plasma has a potential different from the local plasma poten-
tial, the electrons and ions distribute themselves spatially
around the electrode in order to limit, or shield, the effect of
this potential on the bulk plasma. A positively biased elec-
trode acquires an electron shielding cloud surrounding it,
while a negatively biased electrode acquires a positive space
charge cloud. For a negatively biased electrode, the charac-
teristic shielding distance of the potential disturbance is the
electron Debye length14

$De = (%okTe

e2ne
)1/2

. !4"

In the vicinity of a negatively biased probe, both the
electron and ion densities decrease as the particles ap-
proach the probe, but not at the same rate. The electron
density decreases because electrons are repelled by the
probe. In contrast, the ions are accelerated toward the
probe, and due to the continuity of the current density, the
ion density decreases. A positive space charge sheath can
form only if the ion density exceeds the electron density at
the sheath edge, and for the ion density to decrease more
slowly than the electron density, the ions must approach
the sheath with a speed exceeding the Bohm velocity uB
= !kTe /mi"1/2.13,15 To achieve this speed, the ions must ac-
quire an energy corresponding to a potential drop of
0.5!kTe /e", which occurs over a long distance in the
plasma. The factor of 0.6 in Eq. !3" is due to the reduction
in the density of the ions in the presheath, which is the
region over which the ions are accelerated up to the Bohm
speed.

Fig. 1. Schematic of basic devices for producing a plasma. !a" A discharge
tube in which a plasma is formed in a low pressure gas !"1 Torr" by
applying several hundred volts across the cathode and anode. A cylindrical
!wire" probe is inserted into the discharge to measure the properties of the
plasma. !b" Schematic of a multidipole hot filament plasma device with a
Langmuir disk probe. The plasma is produced by electron impact ionization
of argon atoms by electrons that are thermionically emitted and accelerated
from a hot tungsten !W" filament. To enhance the ionization efficiency, the
walls of the chamber are lined with rows of permanent magnetic of opposite
polarity. The lower diagram is an end view showing the arrangement of
magnets. The magnetic field lines are sketched as the dotted curves. In this
magnetic cusp configuration, the bulk plasma is essentially magnetic
field-free.
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a set of model plasma parameters. A link is provided to a
program that allows the user to input the plasma and probe
parameters !density, temperature, plasma potential, and
probe dimension" and plot the resulting Langmuir I-V char-
acteristic. Section III provides two examples of real Lang-
muir probe I-V characteristics obtained in laboratory plas-
mas. I close in Sec. IV with comments advocating the
inclusion of plasma experiments in the undergraduate ad-
vanced laboratory course.
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In this section I discuss some of the basic aspects of Lang-
muir probe theory that are needed to construct model probe
I-V characteristics. Two examples of ideal probe I-V charac-
teristics are then given. Finally, a discussion of how the ideal
characteristics must be modified to account for real probe
effects is presented.

A. Ion and electron currents to a Langmuir probe
1. The ion current

When the bias voltage VB, on the probe is sufficiently
negative with respect to the plasma potential VP, the probe

collects the ion saturation current Iis. Positive ions continue
to be collected by the probe until the bias voltage reaches VP,
at which point ions begin to be repelled by the probe. For
VB!VP, all positive ions are repelled, and the ion current to
the probe vanishes, Ii=0. For a Maxwellian ion distribution
at the temperature Ti, the dependence of the ion current
Ii!VB" !usually taken to be the negative current" on VB is
given by10

Ii!VB" = #− Iis exp$e!VP − VB"/kTi% , VB ! VP,
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where e is the electron’s charge, and k is the Boltzmann
constant. When Ti is comparable to the electron temperature
Te, the ion saturation current, Iis is given by4
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where, ni is the ion density, vi,th=&8kTi /#mi is the ion ther-
mal speed, mi is the ion mass, and Aprobe is the probe collect-
ing area. When Te!Ti,

11 the ion saturation current is not
determined by the ion thermal speed, but rather is given by
the Bohm ion current3,4,12
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The fact that the ion current is determined by the electron
temperature when Te!Ti is counterintuitive and requires
some explanation. The physical reason for the dependence
Iis'!kTe /mi"1/2 has to do with the formation of a sheath
around a negatively biased probe.12,13 If an electrode in a
plasma has a potential different from the local plasma poten-
tial, the electrons and ions distribute themselves spatially
around the electrode in order to limit, or shield, the effect of
this potential on the bulk plasma. A positively biased elec-
trode acquires an electron shielding cloud surrounding it,
while a negatively biased electrode acquires a positive space
charge cloud. For a negatively biased electrode, the charac-
teristic shielding distance of the potential disturbance is the
electron Debye length14
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In the vicinity of a negatively biased probe, both the
electron and ion densities decrease as the particles ap-
proach the probe, but not at the same rate. The electron
density decreases because electrons are repelled by the
probe. In contrast, the ions are accelerated toward the
probe, and due to the continuity of the current density, the
ion density decreases. A positive space charge sheath can
form only if the ion density exceeds the electron density at
the sheath edge, and for the ion density to decrease more
slowly than the electron density, the ions must approach
the sheath with a speed exceeding the Bohm velocity uB
= !kTe /mi"1/2.13,15 To achieve this speed, the ions must ac-
quire an energy corresponding to a potential drop of
0.5!kTe /e", which occurs over a long distance in the
plasma. The factor of 0.6 in Eq. !3" is due to the reduction
in the density of the ions in the presheath, which is the
region over which the ions are accelerated up to the Bohm
speed.

Fig. 1. Schematic of basic devices for producing a plasma. !a" A discharge
tube in which a plasma is formed in a low pressure gas !"1 Torr" by
applying several hundred volts across the cathode and anode. A cylindrical
!wire" probe is inserted into the discharge to measure the properties of the
plasma. !b" Schematic of a multidipole hot filament plasma device with a
Langmuir disk probe. The plasma is produced by electron impact ionization
of argon atoms by electrons that are thermionically emitted and accelerated
from a hot tungsten !W" filament. To enhance the ionization efficiency, the
walls of the chamber are lined with rows of permanent magnetic of opposite
polarity. The lower diagram is an end view showing the arrangement of
magnets. The magnetic field lines are sketched as the dotted curves. In this
magnetic cusp configuration, the bulk plasma is essentially magnetic
field-free.
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a set of model plasma parameters. A link is provided to a
program that allows the user to input the plasma and probe
parameters !density, temperature, plasma potential, and
probe dimension" and plot the resulting Langmuir I-V char-
acteristic. Section III provides two examples of real Lang-
muir probe I-V characteristics obtained in laboratory plas-
mas. I close in Sec. IV with comments advocating the
inclusion of plasma experiments in the undergraduate ad-
vanced laboratory course.

II. MODEL LANGMUIR PROBE CURRENT-
VOLTAGE CHARACTERISTICS

In this section I discuss some of the basic aspects of Lang-
muir probe theory that are needed to construct model probe
I-V characteristics. Two examples of ideal probe I-V charac-
teristics are then given. Finally, a discussion of how the ideal
characteristics must be modified to account for real probe
effects is presented.

A. Ion and electron currents to a Langmuir probe
1. The ion current

When the bias voltage VB, on the probe is sufficiently
negative with respect to the plasma potential VP, the probe

collects the ion saturation current Iis. Positive ions continue
to be collected by the probe until the bias voltage reaches VP,
at which point ions begin to be repelled by the probe. For
VB!VP, all positive ions are repelled, and the ion current to
the probe vanishes, Ii=0. For a Maxwellian ion distribution
at the temperature Ti, the dependence of the ion current
Ii!VB" !usually taken to be the negative current" on VB is
given by10

Ii!VB" = #− Iis exp$e!VP − VB"/kTi% , VB ! VP,

− Iis, VB " VP,
!1"

where e is the electron’s charge, and k is the Boltzmann
constant. When Ti is comparable to the electron temperature
Te, the ion saturation current, Iis is given by4
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where, ni is the ion density, vi,th=&8kTi /#mi is the ion ther-
mal speed, mi is the ion mass, and Aprobe is the probe collect-
ing area. When Te!Ti,

11 the ion saturation current is not
determined by the ion thermal speed, but rather is given by
the Bohm ion current3,4,12
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The fact that the ion current is determined by the electron
temperature when Te!Ti is counterintuitive and requires
some explanation. The physical reason for the dependence
Iis'!kTe /mi"1/2 has to do with the formation of a sheath
around a negatively biased probe.12,13 If an electrode in a
plasma has a potential different from the local plasma poten-
tial, the electrons and ions distribute themselves spatially
around the electrode in order to limit, or shield, the effect of
this potential on the bulk plasma. A positively biased elec-
trode acquires an electron shielding cloud surrounding it,
while a negatively biased electrode acquires a positive space
charge cloud. For a negatively biased electrode, the charac-
teristic shielding distance of the potential disturbance is the
electron Debye length14
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In the vicinity of a negatively biased probe, both the
electron and ion densities decrease as the particles ap-
proach the probe, but not at the same rate. The electron
density decreases because electrons are repelled by the
probe. In contrast, the ions are accelerated toward the
probe, and due to the continuity of the current density, the
ion density decreases. A positive space charge sheath can
form only if the ion density exceeds the electron density at
the sheath edge, and for the ion density to decrease more
slowly than the electron density, the ions must approach
the sheath with a speed exceeding the Bohm velocity uB
= !kTe /mi"1/2.13,15 To achieve this speed, the ions must ac-
quire an energy corresponding to a potential drop of
0.5!kTe /e", which occurs over a long distance in the
plasma. The factor of 0.6 in Eq. !3" is due to the reduction
in the density of the ions in the presheath, which is the
region over which the ions are accelerated up to the Bohm
speed.

Fig. 1. Schematic of basic devices for producing a plasma. !a" A discharge
tube in which a plasma is formed in a low pressure gas !"1 Torr" by
applying several hundred volts across the cathode and anode. A cylindrical
!wire" probe is inserted into the discharge to measure the properties of the
plasma. !b" Schematic of a multidipole hot filament plasma device with a
Langmuir disk probe. The plasma is produced by electron impact ionization
of argon atoms by electrons that are thermionically emitted and accelerated
from a hot tungsten !W" filament. To enhance the ionization efficiency, the
walls of the chamber are lined with rows of permanent magnetic of opposite
polarity. The lower diagram is an end view showing the arrangement of
magnets. The magnetic field lines are sketched as the dotted curves. In this
magnetic cusp configuration, the bulk plasma is essentially magnetic
field-free.
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a set of model plasma parameters. A link is provided to a
program that allows the user to input the plasma and probe
parameters !density, temperature, plasma potential, and
probe dimension" and plot the resulting Langmuir I-V char-
acteristic. Section III provides two examples of real Lang-
muir probe I-V characteristics obtained in laboratory plas-
mas. I close in Sec. IV with comments advocating the
inclusion of plasma experiments in the undergraduate ad-
vanced laboratory course.

II. MODEL LANGMUIR PROBE CURRENT-
VOLTAGE CHARACTERISTICS

In this section I discuss some of the basic aspects of Lang-
muir probe theory that are needed to construct model probe
I-V characteristics. Two examples of ideal probe I-V charac-
teristics are then given. Finally, a discussion of how the ideal
characteristics must be modified to account for real probe
effects is presented.

A. Ion and electron currents to a Langmuir probe
1. The ion current

When the bias voltage VB, on the probe is sufficiently
negative with respect to the plasma potential VP, the probe

collects the ion saturation current Iis. Positive ions continue
to be collected by the probe until the bias voltage reaches VP,
at which point ions begin to be repelled by the probe. For
VB!VP, all positive ions are repelled, and the ion current to
the probe vanishes, Ii=0. For a Maxwellian ion distribution
at the temperature Ti, the dependence of the ion current
Ii!VB" !usually taken to be the negative current" on VB is
given by10

Ii!VB" = #− Iis exp$e!VP − VB"/kTi% , VB ! VP,

− Iis, VB " VP,
!1"

where e is the electron’s charge, and k is the Boltzmann
constant. When Ti is comparable to the electron temperature
Te, the ion saturation current, Iis is given by4
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where, ni is the ion density, vi,th=&8kTi /#mi is the ion ther-
mal speed, mi is the ion mass, and Aprobe is the probe collect-
ing area. When Te!Ti,

11 the ion saturation current is not
determined by the ion thermal speed, but rather is given by
the Bohm ion current3,4,12

Iis = IBohm = 0.6eni&kTe
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The fact that the ion current is determined by the electron
temperature when Te!Ti is counterintuitive and requires
some explanation. The physical reason for the dependence
Iis'!kTe /mi"1/2 has to do with the formation of a sheath
around a negatively biased probe.12,13 If an electrode in a
plasma has a potential different from the local plasma poten-
tial, the electrons and ions distribute themselves spatially
around the electrode in order to limit, or shield, the effect of
this potential on the bulk plasma. A positively biased elec-
trode acquires an electron shielding cloud surrounding it,
while a negatively biased electrode acquires a positive space
charge cloud. For a negatively biased electrode, the charac-
teristic shielding distance of the potential disturbance is the
electron Debye length14
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In the vicinity of a negatively biased probe, both the
electron and ion densities decrease as the particles ap-
proach the probe, but not at the same rate. The electron
density decreases because electrons are repelled by the
probe. In contrast, the ions are accelerated toward the
probe, and due to the continuity of the current density, the
ion density decreases. A positive space charge sheath can
form only if the ion density exceeds the electron density at
the sheath edge, and for the ion density to decrease more
slowly than the electron density, the ions must approach
the sheath with a speed exceeding the Bohm velocity uB
= !kTe /mi"1/2.13,15 To achieve this speed, the ions must ac-
quire an energy corresponding to a potential drop of
0.5!kTe /e", which occurs over a long distance in the
plasma. The factor of 0.6 in Eq. !3" is due to the reduction
in the density of the ions in the presheath, which is the
region over which the ions are accelerated up to the Bohm
speed.

Fig. 1. Schematic of basic devices for producing a plasma. !a" A discharge
tube in which a plasma is formed in a low pressure gas !"1 Torr" by
applying several hundred volts across the cathode and anode. A cylindrical
!wire" probe is inserted into the discharge to measure the properties of the
plasma. !b" Schematic of a multidipole hot filament plasma device with a
Langmuir disk probe. The plasma is produced by electron impact ionization
of argon atoms by electrons that are thermionically emitted and accelerated
from a hot tungsten !W" filament. To enhance the ionization efficiency, the
walls of the chamber are lined with rows of permanent magnetic of opposite
polarity. The lower diagram is an end view showing the arrangement of
magnets. The magnetic field lines are sketched as the dotted curves. In this
magnetic cusp configuration, the bulk plasma is essentially magnetic
field-free.
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a set of model plasma parameters. A link is provided to a
program that allows the user to input the plasma and probe
parameters !density, temperature, plasma potential, and
probe dimension" and plot the resulting Langmuir I-V char-
acteristic. Section III provides two examples of real Lang-
muir probe I-V characteristics obtained in laboratory plas-
mas. I close in Sec. IV with comments advocating the
inclusion of plasma experiments in the undergraduate ad-
vanced laboratory course.

II. MODEL LANGMUIR PROBE CURRENT-
VOLTAGE CHARACTERISTICS

In this section I discuss some of the basic aspects of Lang-
muir probe theory that are needed to construct model probe
I-V characteristics. Two examples of ideal probe I-V charac-
teristics are then given. Finally, a discussion of how the ideal
characteristics must be modified to account for real probe
effects is presented.

A. Ion and electron currents to a Langmuir probe
1. The ion current

When the bias voltage VB, on the probe is sufficiently
negative with respect to the plasma potential VP, the probe

collects the ion saturation current Iis. Positive ions continue
to be collected by the probe until the bias voltage reaches VP,
at which point ions begin to be repelled by the probe. For
VB!VP, all positive ions are repelled, and the ion current to
the probe vanishes, Ii=0. For a Maxwellian ion distribution
at the temperature Ti, the dependence of the ion current
Ii!VB" !usually taken to be the negative current" on VB is
given by10

Ii!VB" = #− Iis exp$e!VP − VB"/kTi% , VB ! VP,

− Iis, VB " VP,
!1"

where e is the electron’s charge, and k is the Boltzmann
constant. When Ti is comparable to the electron temperature
Te, the ion saturation current, Iis is given by4

Iis =
1
4

enivi,thAprobe, !2"

where, ni is the ion density, vi,th=&8kTi /#mi is the ion ther-
mal speed, mi is the ion mass, and Aprobe is the probe collect-
ing area. When Te!Ti,

11 the ion saturation current is not
determined by the ion thermal speed, but rather is given by
the Bohm ion current3,4,12

Iis = IBohm = 0.6eni&kTe

mi
Aprobe. !3"

The fact that the ion current is determined by the electron
temperature when Te!Ti is counterintuitive and requires
some explanation. The physical reason for the dependence
Iis'!kTe /mi"1/2 has to do with the formation of a sheath
around a negatively biased probe.12,13 If an electrode in a
plasma has a potential different from the local plasma poten-
tial, the electrons and ions distribute themselves spatially
around the electrode in order to limit, or shield, the effect of
this potential on the bulk plasma. A positively biased elec-
trode acquires an electron shielding cloud surrounding it,
while a negatively biased electrode acquires a positive space
charge cloud. For a negatively biased electrode, the charac-
teristic shielding distance of the potential disturbance is the
electron Debye length14
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In the vicinity of a negatively biased probe, both the
electron and ion densities decrease as the particles ap-
proach the probe, but not at the same rate. The electron
density decreases because electrons are repelled by the
probe. In contrast, the ions are accelerated toward the
probe, and due to the continuity of the current density, the
ion density decreases. A positive space charge sheath can
form only if the ion density exceeds the electron density at
the sheath edge, and for the ion density to decrease more
slowly than the electron density, the ions must approach
the sheath with a speed exceeding the Bohm velocity uB
= !kTe /mi"1/2.13,15 To achieve this speed, the ions must ac-
quire an energy corresponding to a potential drop of
0.5!kTe /e", which occurs over a long distance in the
plasma. The factor of 0.6 in Eq. !3" is due to the reduction
in the density of the ions in the presheath, which is the
region over which the ions are accelerated up to the Bohm
speed.
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from a hot tungsten !W" filament. To enhance the ionization efficiency, the
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polarity. The lower diagram is an end view showing the arrangement of
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a set of model plasma parameters. A link is provided to a
program that allows the user to input the plasma and probe
parameters !density, temperature, plasma potential, and
probe dimension" and plot the resulting Langmuir I-V char-
acteristic. Section III provides two examples of real Lang-
muir probe I-V characteristics obtained in laboratory plas-
mas. I close in Sec. IV with comments advocating the
inclusion of plasma experiments in the undergraduate ad-
vanced laboratory course.

II. MODEL LANGMUIR PROBE CURRENT-
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In this section I discuss some of the basic aspects of Lang-
muir probe theory that are needed to construct model probe
I-V characteristics. Two examples of ideal probe I-V charac-
teristics are then given. Finally, a discussion of how the ideal
characteristics must be modified to account for real probe
effects is presented.
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The fact that the ion current is determined by the electron
temperature when Te!Ti is counterintuitive and requires
some explanation. The physical reason for the dependence
Iis'!kTe /mi"1/2 has to do with the formation of a sheath
around a negatively biased probe.12,13 If an electrode in a
plasma has a potential different from the local plasma poten-
tial, the electrons and ions distribute themselves spatially
around the electrode in order to limit, or shield, the effect of
this potential on the bulk plasma. A positively biased elec-
trode acquires an electron shielding cloud surrounding it,
while a negatively biased electrode acquires a positive space
charge cloud. For a negatively biased electrode, the charac-
teristic shielding distance of the potential disturbance is the
electron Debye length14
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In the vicinity of a negatively biased probe, both the
electron and ion densities decrease as the particles ap-
proach the probe, but not at the same rate. The electron
density decreases because electrons are repelled by the
probe. In contrast, the ions are accelerated toward the
probe, and due to the continuity of the current density, the
ion density decreases. A positive space charge sheath can
form only if the ion density exceeds the electron density at
the sheath edge, and for the ion density to decrease more
slowly than the electron density, the ions must approach
the sheath with a speed exceeding the Bohm velocity uB
= !kTe /mi"1/2.13,15 To achieve this speed, the ions must ac-
quire an energy corresponding to a potential drop of
0.5!kTe /e", which occurs over a long distance in the
plasma. The factor of 0.6 in Eq. !3" is due to the reduction
in the density of the ions in the presheath, which is the
region over which the ions are accelerated up to the Bohm
speed.

Fig. 1. Schematic of basic devices for producing a plasma. !a" A discharge
tube in which a plasma is formed in a low pressure gas !"1 Torr" by
applying several hundred volts across the cathode and anode. A cylindrical
!wire" probe is inserted into the discharge to measure the properties of the
plasma. !b" Schematic of a multidipole hot filament plasma device with a
Langmuir disk probe. The plasma is produced by electron impact ionization
of argon atoms by electrons that are thermionically emitted and accelerated
from a hot tungsten !W" filament. To enhance the ionization efficiency, the
walls of the chamber are lined with rows of permanent magnetic of opposite
polarity. The lower diagram is an end view showing the arrangement of
magnets. The magnetic field lines are sketched as the dotted curves. In this
magnetic cusp configuration, the bulk plasma is essentially magnetic
field-free.
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a set of model plasma parameters. A link is provided to a
program that allows the user to input the plasma and probe
parameters !density, temperature, plasma potential, and
probe dimension" and plot the resulting Langmuir I-V char-
acteristic. Section III provides two examples of real Lang-
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mas. I close in Sec. IV with comments advocating the
inclusion of plasma experiments in the undergraduate ad-
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The fact that the ion current is determined by the electron
temperature when Te!Ti is counterintuitive and requires
some explanation. The physical reason for the dependence
Iis'!kTe /mi"1/2 has to do with the formation of a sheath
around a negatively biased probe.12,13 If an electrode in a
plasma has a potential different from the local plasma poten-
tial, the electrons and ions distribute themselves spatially
around the electrode in order to limit, or shield, the effect of
this potential on the bulk plasma. A positively biased elec-
trode acquires an electron shielding cloud surrounding it,
while a negatively biased electrode acquires a positive space
charge cloud. For a negatively biased electrode, the charac-
teristic shielding distance of the potential disturbance is the
electron Debye length14
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In the vicinity of a negatively biased probe, both the
electron and ion densities decrease as the particles ap-
proach the probe, but not at the same rate. The electron
density decreases because electrons are repelled by the
probe. In contrast, the ions are accelerated toward the
probe, and due to the continuity of the current density, the
ion density decreases. A positive space charge sheath can
form only if the ion density exceeds the electron density at
the sheath edge, and for the ion density to decrease more
slowly than the electron density, the ions must approach
the sheath with a speed exceeding the Bohm velocity uB
= !kTe /mi"1/2.13,15 To achieve this speed, the ions must ac-
quire an energy corresponding to a potential drop of
0.5!kTe /e", which occurs over a long distance in the
plasma. The factor of 0.6 in Eq. !3" is due to the reduction
in the density of the ions in the presheath, which is the
region over which the ions are accelerated up to the Bohm
speed.

Fig. 1. Schematic of basic devices for producing a plasma. !a" A discharge
tube in which a plasma is formed in a low pressure gas !"1 Torr" by
applying several hundred volts across the cathode and anode. A cylindrical
!wire" probe is inserted into the discharge to measure the properties of the
plasma. !b" Schematic of a multidipole hot filament plasma device with a
Langmuir disk probe. The plasma is produced by electron impact ionization
of argon atoms by electrons that are thermionically emitted and accelerated
from a hot tungsten !W" filament. To enhance the ionization efficiency, the
walls of the chamber are lined with rows of permanent magnetic of opposite
polarity. The lower diagram is an end view showing the arrangement of
magnets. The magnetic field lines are sketched as the dotted curves. In this
magnetic cusp configuration, the bulk plasma is essentially magnetic
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170 7 Plasma Boundaries

Fig. 7.1 Geometry of the
plasma-wall boundary layer.
A space charge sheath of
thickness d with ne < ni is
formed at the wall. The
matching between sheath and
bulk plasma occurs in a
quasi-neutral presheath of a
size comparable to the ion
mean free path λ
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This simple picture gives us an impression why all isolated bodies inside a plasma
charge up negatively. This applies to the fine metal wires which Langmuir intro-
duced as probes into the plasma, to satellites in the Earth’s plasmasphere, or to dust
particles in a plasma. Of course, the real situation is more complex because we will
see that the ion flux to a negative body (except for the very first moment) is not
determined by the ion thermal velocity. Moreover, we may have neglected other
processes that lead to charging. In the case of satellites, these processes are pho-
toemission from solar UV-radiation or secondary emission by impact of energetic
particles. We will discuss these effects in Sect. 10.1.

For completeness, we introduce a transition layer adjacent to the sheath, called
the presheath, that matches the conditions between the space charge sheath and the
unpertubed plasma. The presheath will be quasineutral, but the densities of electrons
and ions will depend on position, and the ion drift velocity will be non-zero. This
transition region has a thickness of roughly one ion mean free path.

7.2 The Child-Langmuir Law

Here, we consider a situation, where a potential difference between the wall atΦ(0)

and the sheath edge at Φ(−d) is determined by an external voltage applied to the
wall. We are mostly interested in cases where this potential difference creates a
high potential barrier for thermal electrons |Φ(0) − Φ(−d)| " kBTe/e. Then the
Boltzmann factor for the electron gas,

ne(x) = ne(−d) exp
{

e[Φ(x) −Φ(−d)]
kBTe

}
, (7.1)

ensures that only few electrons can overcome the barrier, and that a significant
number of electrons is only found close to the sheath edge. In other words, for
large negative voltages applied to the wall, most of the sheath will be a pure ion
sheath. For simplicity of the calculation, we will completely ignore the electron
space charge for the moment.

176 7 Plasma Boundaries

In conclusion, the ion motion in a quasineutral presheath requires that vi ≤ vB.
Hence, this is a second Bohm criterion, which follows from the conditions on the
presheath side of the sheath edge, while the condition on the sheath side required
vi ≥ vB. Therefore, the complete Bohm criterion for the ion speed at the sheath
edge can only be fulfilled by a unique velocity, the Bohm velocity,

vi(−d) = vB , (7.24)

or, in other words, the Mach number has to be M = 1.
Does the singularity in the electric field mean that there is also a singularity in

the electric potential? The answer is no. On its way from the plasma bulk through
the presheath, an ion has gained the kinetic energy 1

2 miv
2
B = 1

2 kBTe. Neglecting the
energy dissipated in ion-neutral collisions, the potential at the sheath edge can be
estimated from energy conservation as

Φ(−d) ≈ −1
2

kBTe

e
. (7.25)

Accordingly, the plasma density at the sheath edge is reduced to

ni(−d) = ne(−d) = ne0 exp
(

−1
2

)
≈ 0.61 ne0 . (7.26)

7.4 The Plane Langmuir Probe

In 1925, Mott-Smith and Langmuir [145] had introduced small additional electrodes
into a plasma and studied its volt-ampere characteristic. These Langmuir probes are
widely used in plasma physics because of their simple construction and versatility.
We will show below, how the probe characteristic can be used to determine the
electron density and electron temperature of a plasma.

The fundamental electric circuit of a Langmuir probe measurement is shown in
Fig. 7.3a. A small plane electrode is inserted into a gas discharge. The discharge
tube is typically operated from a high-voltage supply via a current-limiting series
resistor Rs. The probe is biased by an external voltage that is applied between the
probe and a suitable electrode. For reasons of lab safety, this electrode must be
properly grounded. Likewise, the power supply must be able to operate in a mode
where the negative output is the “hot lead” and the positive output grounded. In
this case, the anode (positive electrode) was chosen because the voltage drop in the
anode layer is usually much smaller than that in the cathode (negative electrode)
layer (see Chap. 11). A voltmeter gives the probe bias voltage Up and a current
meter the probe current Ip.

A modern realisation of the circuit for recording probe characteristics with a
computer is shown in Fig. 7.3b. The bias voltage is generated by a digital-to-analog
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a set of model plasma parameters. A link is provided to a
program that allows the user to input the plasma and probe
parameters !density, temperature, plasma potential, and
probe dimension" and plot the resulting Langmuir I-V char-
acteristic. Section III provides two examples of real Lang-
muir probe I-V characteristics obtained in laboratory plas-
mas. I close in Sec. IV with comments advocating the
inclusion of plasma experiments in the undergraduate ad-
vanced laboratory course.

II. MODEL LANGMUIR PROBE CURRENT-
VOLTAGE CHARACTERISTICS

In this section I discuss some of the basic aspects of Lang-
muir probe theory that are needed to construct model probe
I-V characteristics. Two examples of ideal probe I-V charac-
teristics are then given. Finally, a discussion of how the ideal
characteristics must be modified to account for real probe
effects is presented.

A. Ion and electron currents to a Langmuir probe
1. The ion current

When the bias voltage VB, on the probe is sufficiently
negative with respect to the plasma potential VP, the probe

collects the ion saturation current Iis. Positive ions continue
to be collected by the probe until the bias voltage reaches VP,
at which point ions begin to be repelled by the probe. For
VB!VP, all positive ions are repelled, and the ion current to
the probe vanishes, Ii=0. For a Maxwellian ion distribution
at the temperature Ti, the dependence of the ion current
Ii!VB" !usually taken to be the negative current" on VB is
given by10

Ii!VB" = #− Iis exp$e!VP − VB"/kTi% , VB ! VP,

− Iis, VB " VP,
!1"

where e is the electron’s charge, and k is the Boltzmann
constant. When Ti is comparable to the electron temperature
Te, the ion saturation current, Iis is given by4

Iis =
1
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enivi,thAprobe, !2"

where, ni is the ion density, vi,th=&8kTi /#mi is the ion ther-
mal speed, mi is the ion mass, and Aprobe is the probe collect-
ing area. When Te!Ti,

11 the ion saturation current is not
determined by the ion thermal speed, but rather is given by
the Bohm ion current3,4,12

Iis = IBohm = 0.6eni&kTe
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The fact that the ion current is determined by the electron
temperature when Te!Ti is counterintuitive and requires
some explanation. The physical reason for the dependence
Iis'!kTe /mi"1/2 has to do with the formation of a sheath
around a negatively biased probe.12,13 If an electrode in a
plasma has a potential different from the local plasma poten-
tial, the electrons and ions distribute themselves spatially
around the electrode in order to limit, or shield, the effect of
this potential on the bulk plasma. A positively biased elec-
trode acquires an electron shielding cloud surrounding it,
while a negatively biased electrode acquires a positive space
charge cloud. For a negatively biased electrode, the charac-
teristic shielding distance of the potential disturbance is the
electron Debye length14

$De = (%okTe
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In the vicinity of a negatively biased probe, both the
electron and ion densities decrease as the particles ap-
proach the probe, but not at the same rate. The electron
density decreases because electrons are repelled by the
probe. In contrast, the ions are accelerated toward the
probe, and due to the continuity of the current density, the
ion density decreases. A positive space charge sheath can
form only if the ion density exceeds the electron density at
the sheath edge, and for the ion density to decrease more
slowly than the electron density, the ions must approach
the sheath with a speed exceeding the Bohm velocity uB
= !kTe /mi"1/2.13,15 To achieve this speed, the ions must ac-
quire an energy corresponding to a potential drop of
0.5!kTe /e", which occurs over a long distance in the
plasma. The factor of 0.6 in Eq. !3" is due to the reduction
in the density of the ions in the presheath, which is the
region over which the ions are accelerated up to the Bohm
speed.

Fig. 1. Schematic of basic devices for producing a plasma. !a" A discharge
tube in which a plasma is formed in a low pressure gas !"1 Torr" by
applying several hundred volts across the cathode and anode. A cylindrical
!wire" probe is inserted into the discharge to measure the properties of the
plasma. !b" Schematic of a multidipole hot filament plasma device with a
Langmuir disk probe. The plasma is produced by electron impact ionization
of argon atoms by electrons that are thermionically emitted and accelerated
from a hot tungsten !W" filament. To enhance the ionization efficiency, the
walls of the chamber are lined with rows of permanent magnetic of opposite
polarity. The lower diagram is an end view showing the arrangement of
magnets. The magnetic field lines are sketched as the dotted curves. In this
magnetic cusp configuration, the bulk plasma is essentially magnetic
field-free.
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Fig. 7.1 Geometry of the
plasma-wall boundary layer.
A space charge sheath of
thickness d with ne < ni is
formed at the wall. The
matching between sheath and
bulk plasma occurs in a
quasi-neutral presheath of a
size comparable to the ion
mean free path λ
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This simple picture gives us an impression why all isolated bodies inside a plasma
charge up negatively. This applies to the fine metal wires which Langmuir intro-
duced as probes into the plasma, to satellites in the Earth’s plasmasphere, or to dust
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determined by the ion thermal velocity. Moreover, we may have neglected other
processes that lead to charging. In the case of satellites, these processes are pho-
toemission from solar UV-radiation or secondary emission by impact of energetic
particles. We will discuss these effects in Sect. 10.1.

For completeness, we introduce a transition layer adjacent to the sheath, called
the presheath, that matches the conditions between the space charge sheath and the
unpertubed plasma. The presheath will be quasineutral, but the densities of electrons
and ions will depend on position, and the ion drift velocity will be non-zero. This
transition region has a thickness of roughly one ion mean free path.

7.2 The Child-Langmuir Law
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and the sheath edge at Φ(−d) is determined by an external voltage applied to the
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ne(x) = ne(−d) exp
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e[Φ(x) −Φ(−d)]
kBTe

}
, (7.1)

ensures that only few electrons can overcome the barrier, and that a significant
number of electrons is only found close to the sheath edge. In other words, for
large negative voltages applied to the wall, most of the sheath will be a pure ion
sheath. For simplicity of the calculation, we will completely ignore the electron
space charge for the moment.

Assuming only ions…
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The ion motion inside the sheath will be discussed here only for the collisionless
sheath, d ! λmfp. Then, the ion velocity ui (x) is determined by energy conservation

1
2

miu2
i (x) + eΦ(x) = 1

2
miu2

i (−d) + eΦ(−d) (7.2)

assuming an initial velocity ui (−d) = u0. Then, setting Φ(−d) = 0, we obtain

ui(x) =
[

u2
0 − 2eΦ(x)

mi

]1/2

. (7.3)

In the following, we are interested to describe a steady-state solution for the ion
flow towards the wall. In the absence of ionisation or recombination, the continuity
equation reads

ni(x)ui(x) = ni(−d)u0. (7.4)

Hence, the acceleration of ions leads to a reduction of ion density

ni(x) = ni(−d)

[

1 − 2eΦ(x)

miu2
0

]−1/2

. (7.5)

This ion density must be used to determine the self-consistent electric poten-
tial distribution Φ(x). Therefore, potential and ion density must fulfill Poissons’
equation

Φ ′′ ≈ −eni(−d)

ε0

(

−2eΦ(x)

miu2
0

)−1/2

, (7.6)

where we have used e|Φ(x)| % miu2
0/2, i.e., stating that the initial energy of the

ion is small compared to the energy gained by free fall in the sheath potential. The
classical solution of this problem according to Langmuir starts by multiplying both
sides of Eq. (7.6) by Φ ′ and integrating from x = −d to x = 0,

1
2

[
Φ ′2(x) −Φ ′2(−d)

]
= eni(−d)u0

ε0

(
2mi

e

)1/2

×
{
[−Φ(x)]1/2 − [−Φ(−d)]1/2

}
. (7.7)

We can neglectΦ ′2(−d) compared toΦ ′2(x), because the electric field at the sheath
edge is small compared to that inside the sheath. By definition, Φ(−d) = 0. Noting
that eni(−d)u0 = ji is the (constant) ion current density inside the sheath, we have
to perform a second integration of the equation
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Φ ′(x) = 2
(mi

2e

)1/4
(

ji
ε0

)1/2

[−Φ(x)]1/4 , (7.8)

which can be done by separation of the variables and leads to

4
3
Φ3/4 = 2

(mi

2e

)1/4
(

ji
ε0

)1/2

(x + d) . (7.9)

This result defines the potential distribution in a space charge sheath

Φ(x) =
(

3
2

)4/3 (mi

2e

)1/3
(

ji
ε0

)2/3

(x + d)4/3 , (7.10)

and gives a relation between the total voltage drop U = Φ(−d) − Φ(0), the ion
current density ji and the sheath thickness d:

U 3/2 = 9
4

(mi

2e

)1/2
(

ji
ε0

)
d2 . (7.11)

Solving for the current density, we obtain the famous Child-Langmuir law, [143,
144]

ji = 4
9
ε0

(
2e
mi

)1/2 U 3/2

d2 , (7.12)

which was originally formulated for the space-charge limited electron flow in a
vacuum diode.

In a vacuum diode, the separation d between cathode and anode is fixed and the
Child-Langmuir law defines the volt-ampere characteristic of the diode. In a plasma
sheath, the voltage drop is fixed and we will see below that the ion current is also
defined by the properties of the unperturbed plasma. Hence, the plasma sheath reacts
by adjusting the sheath thickness d to fulfill the constraints by space-charge limited
flow described by the Child-Langmuir law.

7.3 The Bohm Criterion

The matching of a space charge sheath with a plasma raises the question, why such
a huge violation of quasi-neutrality does not set up a large-amplitude ion acoustic
wave, by which the charge perturbation could propagate into the plasma bulk. So,
what mechanism holds the space charge from spreading into the plasma? Obviously,
we are asking for the stability of the plasma-sheath boundary. Under which condi-
tions tends a neutral plasma to develop a charge imbalance? Such a question cannot
be answered by the steady-state considerations of the previous Section. Rather, we
must use more general concepts, e.g., those for mechanical stability.
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flow described by the Child-Langmuir law.

7.3 The Bohm Criterion

The matching of a space charge sheath with a plasma raises the question, why such
a huge violation of quasi-neutrality does not set up a large-amplitude ion acoustic
wave, by which the charge perturbation could propagate into the plasma bulk. So,
what mechanism holds the space charge from spreading into the plasma? Obviously,
we are asking for the stability of the plasma-sheath boundary. Under which condi-
tions tends a neutral plasma to develop a charge imbalance? Such a question cannot
be answered by the steady-state considerations of the previous Section. Rather, we
must use more general concepts, e.g., those for mechanical stability.
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This result defines the potential distribution in a space charge sheath
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and gives a relation between the total voltage drop U = Φ(−d) − Φ(0), the ion
current density ji and the sheath thickness d:
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Solving for the current density, we obtain the famous Child-Langmuir law, [143,
144]
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Assuming only ions… Child-Langmuir Law
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Fig. 7.1 Geometry of the
plasma-wall boundary layer.
A space charge sheath of
thickness d with ne < ni is
formed at the wall. The
matching between sheath and
bulk plasma occurs in a
quasi-neutral presheath of a
size comparable to the ion
mean free path λ
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This simple picture gives us an impression why all isolated bodies inside a plasma
charge up negatively. This applies to the fine metal wires which Langmuir intro-
duced as probes into the plasma, to satellites in the Earth’s plasmasphere, or to dust
particles in a plasma. Of course, the real situation is more complex because we will
see that the ion flux to a negative body (except for the very first moment) is not
determined by the ion thermal velocity. Moreover, we may have neglected other
processes that lead to charging. In the case of satellites, these processes are pho-
toemission from solar UV-radiation or secondary emission by impact of energetic
particles. We will discuss these effects in Sect. 10.1.

For completeness, we introduce a transition layer adjacent to the sheath, called
the presheath, that matches the conditions between the space charge sheath and the
unpertubed plasma. The presheath will be quasineutral, but the densities of electrons
and ions will depend on position, and the ion drift velocity will be non-zero. This
transition region has a thickness of roughly one ion mean free path.

7.2 The Child-Langmuir Law

Here, we consider a situation, where a potential difference between the wall atΦ(0)

and the sheath edge at Φ(−d) is determined by an external voltage applied to the
wall. We are mostly interested in cases where this potential difference creates a
high potential barrier for thermal electrons |Φ(0) − Φ(−d)| " kBTe/e. Then the
Boltzmann factor for the electron gas,

ne(x) = ne(−d) exp
{

e[Φ(x) −Φ(−d)]
kBTe

}
, (7.1)

ensures that only few electrons can overcome the barrier, and that a significant
number of electrons is only found close to the sheath edge. In other words, for
large negative voltages applied to the wall, most of the sheath will be a pure ion
sheath. For simplicity of the calculation, we will completely ignore the electron
space charge for the moment.
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In conclusion, the ion motion in a quasineutral presheath requires that vi ≤ vB.
Hence, this is a second Bohm criterion, which follows from the conditions on the
presheath side of the sheath edge, while the condition on the sheath side required
vi ≥ vB. Therefore, the complete Bohm criterion for the ion speed at the sheath
edge can only be fulfilled by a unique velocity, the Bohm velocity,

vi(−d) = vB , (7.24)

or, in other words, the Mach number has to be M = 1.
Does the singularity in the electric field mean that there is also a singularity in

the electric potential? The answer is no. On its way from the plasma bulk through
the presheath, an ion has gained the kinetic energy 1

2 miv
2
B = 1

2 kBTe. Neglecting the
energy dissipated in ion-neutral collisions, the potential at the sheath edge can be
estimated from energy conservation as

Φ(−d) ≈ −1
2

kBTe

e
. (7.25)

Accordingly, the plasma density at the sheath edge is reduced to

ni(−d) = ne(−d) = ne0 exp
(

−1
2

)
≈ 0.61 ne0 . (7.26)

7.4 The Plane Langmuir Probe

In 1925, Mott-Smith and Langmuir [145] had introduced small additional electrodes
into a plasma and studied its volt-ampere characteristic. These Langmuir probes are
widely used in plasma physics because of their simple construction and versatility.
We will show below, how the probe characteristic can be used to determine the
electron density and electron temperature of a plasma.

The fundamental electric circuit of a Langmuir probe measurement is shown in
Fig. 7.3a. A small plane electrode is inserted into a gas discharge. The discharge
tube is typically operated from a high-voltage supply via a current-limiting series
resistor Rs. The probe is biased by an external voltage that is applied between the
probe and a suitable electrode. For reasons of lab safety, this electrode must be
properly grounded. Likewise, the power supply must be able to operate in a mode
where the negative output is the “hot lead” and the positive output grounded. In
this case, the anode (positive electrode) was chosen because the voltage drop in the
anode layer is usually much smaller than that in the cathode (negative electrode)
layer (see Chap. 11). A voltmeter gives the probe bias voltage Up and a current
meter the probe current Ip.

A modern realisation of the circuit for recording probe characteristics with a
computer is shown in Fig. 7.3b. The bias voltage is generated by a digital-to-analog
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7.3.1 Stability Analysis

Consider the equilibria of a point mass in the mechanical potentials shown in
Fig. 7.2. In situation (a), the point mass attains a stable equilibrium at the minimum
of the potential well. The potential well exerts a restoring force, when the mass is
displaced from the minimum. The stable “trajectory” of the point mass is a dull
function, x(t) = 0. In situation (b), the mass sits on top of a potential hill (think
of an inverted pendulum). Any displacement from the maximum position leads to a
force that drives the point mass further away from its initial equilibrium. Therefore,
the equilibrium is unstable and the point mass follows a non-trivial trajectory x(t).
Obviously, the sign of the second derivative of the mechanical potential determines
whether the equilibrium is stable or unstable.

The equation of motion for a point mass m in a mechanical potential V (x)

m
d2x
dt2 = −dV

dx
(7.13)

determines the trajectory x(t) of the particle after it has experienced its first small
displacement from the equilibrium position. What has this to do with our problem of
the development of a space charge sheath? Consider the general shape of Poisson’s
equation

d2Φ

dx2 = f (Φ) = −d"
dΦ

, (7.14)

in which the r.h.s. is a function ofΦ that can be interpreted as being the derivative of
a so-called pseudopotential " (also known as classical potential or Sagdeev poten-
tial). This problem becomes mathematically equivalent to the mechanical problem
when we make the identifications listed in Table 7.1.

Fig. 7.2 (a) Stable
mechanical equilibrium,
V ′′(0) > 0. (b) Unstable
mechanical equilibrium,
V ′′(0) < 0

a) b)

x x

V(x) V(x)

Table 7.1 Analogy between mechanical stability and sheath stability

Mechanical stability Sheath stability

Particle trajectory x(t) Electric potential distribution Φ(x)
Time t Space coordinate x
Mechanical potential V (x) Pseudopotential "(Φ)
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7.3.2 The Bohm Criterion Imposed by the Sheath

Our remaining task is to calculate the pseudopotential and to determine its second
derivative d2!/dΦ2, which has to be negative at the point of equilibrium to allow
a plasma to develop a space charge sheath. When it is positive, the plasma remains
neutral, which corresponds to the case in which the point mass rests in its stable
minimum position.

Instead of calculating the second derivative of the pseudopotential, we can sim-
ply calculate the first derivate of the space-charge function, −d f (Φ)/dΦ. For this
calculation it is essential to retain the electron space charge at the sheath edge given
by (7.1). Hence, we have

f (Φ) = ene(−d)

ε0



exp
(

eΦ
kBTe

)
−
(

1 − 2eΦ

miu2
0

)−1/2


 (7.15)

and finally

− d f
dΦ

∣∣∣∣
Φ=0

= e
kBTe

− e

miu2
0

≤ 0 . (7.16)

This gives the Bohm-criterion, named after the U.S.-born British physicist David
Bohm (1917–1992), for the formation of a space charge sheath

u0 ≥ vB =
(

kBTe

mi

)1/2

. (7.17)

Hence, the speed of the ions at the sheath edge must be equal to or exceed the Bohm
velocity vB, which is obviously identical with the ion sound speed. We can also
define a Mach number

M = u0

vB
(7.18)

and rewrite the Bohm condition as M ≥ 1, i.e., the ion flow has to be supersonic.
Therefore, the original question, why the space charge layer does not simply

expand into a plasma by means of an ion acoustic wave can be answered as follows:
The plasma in the presheath is not at rest. Rather, there is a mass motion with ion
sound speed, or faster, into the sheath. An ion sound wave in this medium would
be stationary in the laboratory frame of reference or would be swept back into the
sheath. Hence, the Bohm criterion represents a sound barrier for the propagation
of information from the sheath into the plasma. In this language of information, the
plasma “does not know” about the presence of a space charge sheath.
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tends a neutral plasma to develop a charge imbalance? Such a question cannot be
answered by the steady-state considerations of the previous section. Rather, we must
use more general concepts, e.g., those for mechanical stability.

7.3.1 The Pseudopotential

Consider the equilibria of a point mass in themechanical potentials shown in Fig.7.2.
In situation (a), the point mass attains a stable equilibrium at the minimum of the
potential well. The potential well exerts a restoring force when the mass is displaced
from the minimum. The stable “trajectory” of the point mass is a dull function,
x(t) = 0. In situation (b), the mass sits on top of a potential hill (think of an inverted
pendulum). Any displacement from themaximumposition leads to a force that drives
the point mass further away from its initial equilibrium. Therefore, this equilibrium
is unstable and the point mass follows a non-trivial trajectory x(t). Obviously, the
sign of the second derivative of the mechanical potential determines whether the
equilibrium is stable or unstable.

The equation of motion for a point mass m in a mechanical potential V (x)

m
d2x
dt2

= −dV
dx

(7.13)

determines the trajectory x(t) of the particle after it has experienced its first small
displacement from the equilibrium position. What has this to do with our problem of
the development of a space charge sheath? Consider the general shape of Poisson’s
equation (2.19)

d2Φ
dx2

= − ρ

ε0
= f (Φ) = −dΨ

dΦ
. (7.14)

Here, the space charge ρ is a function of the electric potentialΦ.We can interpret this
function f (Φ) as being the derivative of a so-called pseudopotential Ψ (also known
as classical potential or Sagdeev potential). This problem becomes mathematically
equivalent to the mechanical problem when we make the identifications listed in
Table7.1. Our goal is to find a non-trivial potential distribution Φ(x) in the sheath,
which corresponds to the unstable solution of the mechanical problem.

Fig. 7.2 a Stable
mechanical equilibrium,
V ′′(0) > 0. b Unstable
mechanical equilibrium,
V ′′(0) < 0

(a) (b)

x x

V(x) V(x)
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Table 7.1 Analogy between mechanical stability and sheath stability
Mechanical stability Sheath stability

Particle trajectory x(t) Electric potential distribution Φ(x)

Time t Space coordinate x

Mechanical potential V (x) Pseudopotential Ψ (Φ)

7.3.2 The Bohm Criterion Imposed by the Sheath

Our remaining task is to calculate the pseudopotential and to determine its second
derivative d2Ψ/dΦ2, which has to be negative at the point of equilibrium to allow a
plasma to develop a space charge sheath. When it were positive, the plasma would
remain neutral.

From (7.14)we see that the secondderivative of the pseudopotential can bedirectly
obtained from the space charge

d2Ψ
dΦ2

= 1
ε0

dρ
dΦ

. (7.15)

For this calculation it is essential to retain the electron space charge near the sheath
edge given by (7.1). Hence, we have

d2Ψ
dΦ2

= ene(−d)
ε0

d
dΦ

[(
1 − 2eΦ

m iu20

)−1/2

− exp
(

eΦ
kBTe

)]

(7.16)

and finally
d2Ψ
dΦ2

∣∣∣∣
Φ=0

= e2ne(−d)
ε0

[
1

m iu20
− 1

kBTe

]
≤ 0 , (7.17)

which implies m iu20 ≥ kBTe. This gives the Bohm-criterion, named after the U.S.-
born British physicist David Bohm (1917–1992), for the formation of a space charge
sheath
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Hence, the speed of the ions at the sheath edge must be equal to or exceed the Bohm
velocity vB, which is obviously identical with the ion sound speed.We can also define
a Mach number

M = u0
vB

(7.19)

and rewrite the Bohm condition as M ≥ 1, i.e., the ion flow has to be supersonic.
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2. The electron current

For VB!VP the probe collects electron saturation current
Ies. For VB!VP the electrons are partially repelled by the
probe, and for a Maxwellian electron velocity distribution,
the electron current decreases exponentially with decreasing
V. For VB"VP all electrons are repelled, so that Ie=0. The
electron current as a function of VB can be expressed as

Ie!VB" = #Ies exp$− e!VP − VB"/kTe% , VB " VP,

Ies, VB # VP.
!5"

The electron saturation current Ies is given by

Ies =
1
4

eneve,thAprobe, !6"

where ne is the electron density, ve,th&'8kTe /$me is the
electron thermal speed, and me is the electron mass. We see
from Eqs. !2", !3", and !6" that because ne=ni and me"mi,
the electron saturation current will be much greater than
the ion saturation current. For example, in an argon plasma
for Te!Ti we see from Eqs. !3" and !6" that Ies / Iis

='mi /me / !0.6'2$"=271/1.5=180.

B. Examples of Langmuir probe characteristic
1. The ideal Langmuir probe characteristic

For the values in Table I, with Aprobe=2$!dprobe/2"2

=1.41%10−5 m2 for a planar disk probe that collects from
both sides, we find from Eqs. !3" and !6", Iis=0.03 mA and
Ies=5.4 mA, so that Ies / Iis=180. The I-V characteristic cor-
responding to these parameters is shown in Fig. 2. The cal-
culations of the ion current, Eq. !1", the electron current, Eq.
!5", and the total current I!VB"= Ie!VB"+ Ii!VB" for the I-V
curve in Fig. 2 were performed using the Maple procedure
function and the standard plotting command.16 Alternately,
the data for the I-V curve could be computed and plotted in
a spreadsheet program. The heavy solid curve in Fig. 2 is the
total probe current; the electron current !positive" and ion
current !negative" are also indicated. The ion current is mag-
nified by a factor of 20 in order to see its contribution to the
total current. Because the electron current is much larger
than the ion current, it is necessary to bias the probe to very
negative voltages to even see the ion current. The total cur-
rent is also displayed on a magnified scale !%20" to show the
probe bias at which the total current is zero. The probe bias
for which I!VB=Vf"= Ie+ Ii=0 is the probe’s floating poten-
tial, which occurs at Vf (−9.5 V. The floating potential can

be calculated from Eqs. !1"–!5", as the bias voltage at which
Ii!Vf"+ Ie!Vf"=0,

Ies exp$e!Vf − VP"/kTe% = Iis, !7"

or

Vf = VP + ) kTe

e
*ln)0.6'2$me

mi
* . !8"

If the appropriate parameters are inserted into Eq. !6", we
find that Vf =VP−5.2Te, or Vf =−9.4 V for !kTe /e"=2 V, cor-
responding to an electron temperature of 2 eV.

The nature of the Langmuir probe I-V characteristic of the
type shown in Fig. 2 is dominated by the fact that the speed
of the electrons is considerably higher than that of the posi-
tive ions. As a consequence, it is impossible to use the probe
to determine the ion temperature, whereas the electron tem-
perature can be easily found from the portion of the charac-
teristic corresponding to electron repulsion, that is, for VB
!VP.

2. Probe I-V characteristic for a positive ion (+) /negative
ion (−) plasma with m+=m− and T+=T−

Consider constructing the I-V characteristic in a plasma
consisting of positive and negative ions of equal mass and
temperatures, for example. In this case because the thermal
speeds of the positive and negative plasma constituents are
identical, we expect that VP=Vf =0, and I+s= I−s. An example
of such an interesting plasma would be an electron-positron
plasma.17 The probe I-V characteristic for this case is shown
in Fig. 3, where arbitrary !but equal" values of the saturation
currents are used. An important point to take from a consid-
eration of the I-V plot in Fig. 3 is that the part of the curve
where the negative ions are repelled !VB!VP" occurs at
−10 V!VB!0 V, and the portion corresponding to positive
ion repulsion is 0 V!VB!10 V. To find the negative ion
current the positive ion saturation current must be used as the
baseline !and not the I=0 line" and vice versa to obtain the
positive ion current. The line extrapolated from the ion cur-

Table I. Parameters of a typical laboratory plasma used to construct an ideal
Langmuir probe volt-ampere characteristic.

Parameter Symbol Value Units

Ion species Ar+

Ion mass mi 6.7%10−26 kg
Electron density ne 1.0%1016 m−3

Ion density ni 1.0%1016 m−3

Electron temperature Te 2.0 eV
Ion temperature Ti 0.1 eV
Plasma potential VP 1.0 V
Probe diameter dprobe 3.0 mm

Fig. 2. Ideal Langmuir probe current-voltage characteristic !heavy line" for
a model plasma with the parameters listed in Table I. The individual electron
and ion currents that are used to construct the full characteristic are also
shown. The dotted line is the full probe characteristic magnified by a factor
of 20 so that the probe floating potential, Vf !the probe voltage where I=0"
can be easily determined.
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responding to an electron temperature of 2 eV.
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to determine the ion temperature, whereas the electron tem-
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temperatures, for example. In this case because the thermal
speeds of the positive and negative plasma constituents are
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V. For VB"VP all electrons are repelled, so that Ie=0. The
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responding to an electron temperature of 2 eV.

The nature of the Langmuir probe I-V characteristic of the
type shown in Fig. 2 is dominated by the fact that the speed
of the electrons is considerably higher than that of the posi-
tive ions. As a consequence, it is impossible to use the probe
to determine the ion temperature, whereas the electron tem-
perature can be easily found from the portion of the charac-
teristic corresponding to electron repulsion, that is, for VB
!VP.

2. Probe I-V characteristic for a positive ion (+) /negative
ion (−) plasma with m+=m− and T+=T−

Consider constructing the I-V characteristic in a plasma
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the data for the I-V curve could be computed and plotted in
a spreadsheet program. The heavy solid curve in Fig. 2 is the
total probe current; the electron current !positive" and ion
current !negative" are also indicated. The ion current is mag-
nified by a factor of 20 in order to see its contribution to the
total current. Because the electron current is much larger
than the ion current, it is necessary to bias the probe to very
negative voltages to even see the ion current. The total cur-
rent is also displayed on a magnified scale !%20" to show the
probe bias at which the total current is zero. The probe bias
for which I!VB=Vf"= Ie+ Ii=0 is the probe’s floating poten-
tial, which occurs at Vf (−9.5 V. The floating potential can

be calculated from Eqs. !1"–!5", as the bias voltage at which
Ii!Vf"+ Ie!Vf"=0,

Ies exp$e!Vf − VP"/kTe% = Iis, !7"

or

Vf = VP + ) kTe

e
*ln)0.6'2$me

mi
* . !8"

If the appropriate parameters are inserted into Eq. !6", we
find that Vf =VP−5.2Te, or Vf =−9.4 V for !kTe /e"=2 V, cor-
responding to an electron temperature of 2 eV.

The nature of the Langmuir probe I-V characteristic of the
type shown in Fig. 2 is dominated by the fact that the speed
of the electrons is considerably higher than that of the posi-
tive ions. As a consequence, it is impossible to use the probe
to determine the ion temperature, whereas the electron tem-
perature can be easily found from the portion of the charac-
teristic corresponding to electron repulsion, that is, for VB
!VP.

2. Probe I-V characteristic for a positive ion (+) /negative
ion (−) plasma with m+=m− and T+=T−

Consider constructing the I-V characteristic in a plasma
consisting of positive and negative ions of equal mass and
temperatures, for example. In this case because the thermal
speeds of the positive and negative plasma constituents are
identical, we expect that VP=Vf =0, and I+s= I−s. An example
of such an interesting plasma would be an electron-positron
plasma.17 The probe I-V characteristic for this case is shown
in Fig. 3, where arbitrary !but equal" values of the saturation
currents are used. An important point to take from a consid-
eration of the I-V plot in Fig. 3 is that the part of the curve
where the negative ions are repelled !VB!VP" occurs at
−10 V!VB!0 V, and the portion corresponding to positive
ion repulsion is 0 V!VB!10 V. To find the negative ion
current the positive ion saturation current must be used as the
baseline !and not the I=0 line" and vice versa to obtain the
positive ion current. The line extrapolated from the ion cur-

Table I. Parameters of a typical laboratory plasma used to construct an ideal
Langmuir probe volt-ampere characteristic.

Parameter Symbol Value Units

Ion species Ar+

Ion mass mi 6.7%10−26 kg
Electron density ne 1.0%1016 m−3

Ion density ni 1.0%1016 m−3

Electron temperature Te 2.0 eV
Ion temperature Ti 0.1 eV
Plasma potential VP 1.0 V
Probe diameter dprobe 3.0 mm

Fig. 2. Ideal Langmuir probe current-voltage characteristic !heavy line" for
a model plasma with the parameters listed in Table I. The individual electron
and ion currents that are used to construct the full characteristic are also
shown. The dotted line is the full probe characteristic magnified by a factor
of 20 so that the probe floating potential, Vf !the probe voltage where I=0"
can be easily determined.
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2. The electron current

For VB!VP the probe collects electron saturation current
Ies. For VB!VP the electrons are partially repelled by the
probe, and for a Maxwellian electron velocity distribution,
the electron current decreases exponentially with decreasing
V. For VB"VP all electrons are repelled, so that Ie=0. The
electron current as a function of VB can be expressed as

Ie!VB" = #Ies exp$− e!VP − VB"/kTe% , VB " VP,

Ies, VB # VP.
!5"

The electron saturation current Ies is given by

Ies =
1
4

eneve,thAprobe, !6"

where ne is the electron density, ve,th&'8kTe /$me is the
electron thermal speed, and me is the electron mass. We see
from Eqs. !2", !3", and !6" that because ne=ni and me"mi,
the electron saturation current will be much greater than
the ion saturation current. For example, in an argon plasma
for Te!Ti we see from Eqs. !3" and !6" that Ies / Iis

='mi /me / !0.6'2$"=271/1.5=180.

B. Examples of Langmuir probe characteristic
1. The ideal Langmuir probe characteristic

For the values in Table I, with Aprobe=2$!dprobe/2"2

=1.41%10−5 m2 for a planar disk probe that collects from
both sides, we find from Eqs. !3" and !6", Iis=0.03 mA and
Ies=5.4 mA, so that Ies / Iis=180. The I-V characteristic cor-
responding to these parameters is shown in Fig. 2. The cal-
culations of the ion current, Eq. !1", the electron current, Eq.
!5", and the total current I!VB"= Ie!VB"+ Ii!VB" for the I-V
curve in Fig. 2 were performed using the Maple procedure
function and the standard plotting command.16 Alternately,
the data for the I-V curve could be computed and plotted in
a spreadsheet program. The heavy solid curve in Fig. 2 is the
total probe current; the electron current !positive" and ion
current !negative" are also indicated. The ion current is mag-
nified by a factor of 20 in order to see its contribution to the
total current. Because the electron current is much larger
than the ion current, it is necessary to bias the probe to very
negative voltages to even see the ion current. The total cur-
rent is also displayed on a magnified scale !%20" to show the
probe bias at which the total current is zero. The probe bias
for which I!VB=Vf"= Ie+ Ii=0 is the probe’s floating poten-
tial, which occurs at Vf (−9.5 V. The floating potential can

be calculated from Eqs. !1"–!5", as the bias voltage at which
Ii!Vf"+ Ie!Vf"=0,

Ies exp$e!Vf − VP"/kTe% = Iis, !7"

or

Vf = VP + ) kTe

e
*ln)0.6'2$me

mi
* . !8"

If the appropriate parameters are inserted into Eq. !6", we
find that Vf =VP−5.2Te, or Vf =−9.4 V for !kTe /e"=2 V, cor-
responding to an electron temperature of 2 eV.

The nature of the Langmuir probe I-V characteristic of the
type shown in Fig. 2 is dominated by the fact that the speed
of the electrons is considerably higher than that of the posi-
tive ions. As a consequence, it is impossible to use the probe
to determine the ion temperature, whereas the electron tem-
perature can be easily found from the portion of the charac-
teristic corresponding to electron repulsion, that is, for VB
!VP.

2. Probe I-V characteristic for a positive ion (+) /negative
ion (−) plasma with m+=m− and T+=T−

Consider constructing the I-V characteristic in a plasma
consisting of positive and negative ions of equal mass and
temperatures, for example. In this case because the thermal
speeds of the positive and negative plasma constituents are
identical, we expect that VP=Vf =0, and I+s= I−s. An example
of such an interesting plasma would be an electron-positron
plasma.17 The probe I-V characteristic for this case is shown
in Fig. 3, where arbitrary !but equal" values of the saturation
currents are used. An important point to take from a consid-
eration of the I-V plot in Fig. 3 is that the part of the curve
where the negative ions are repelled !VB!VP" occurs at
−10 V!VB!0 V, and the portion corresponding to positive
ion repulsion is 0 V!VB!10 V. To find the negative ion
current the positive ion saturation current must be used as the
baseline !and not the I=0 line" and vice versa to obtain the
positive ion current. The line extrapolated from the ion cur-

Table I. Parameters of a typical laboratory plasma used to construct an ideal
Langmuir probe volt-ampere characteristic.

Parameter Symbol Value Units

Ion species Ar+

Ion mass mi 6.7%10−26 kg
Electron density ne 1.0%1016 m−3

Ion density ni 1.0%1016 m−3

Electron temperature Te 2.0 eV
Ion temperature Ti 0.1 eV
Plasma potential VP 1.0 V
Probe diameter dprobe 3.0 mm

Fig. 2. Ideal Langmuir probe current-voltage characteristic !heavy line" for
a model plasma with the parameters listed in Table I. The individual electron
and ion currents that are used to construct the full characteristic are also
shown. The dotted line is the full probe characteristic magnified by a factor
of 20 so that the probe floating potential, Vf !the probe voltage where I=0"
can be easily determined.
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rent should also be used as the baseline to determine the
electron current for the case shown in Fig. 2, although in that
case the positive ion contribution is negligible, and the I=0
line can usually be used to measure Ie. When the plasma
contains a significant fraction of high energy !tens of elec-
tron volts" ionizing primary electrons in addition to the sec-
ondary electrons resulting from ionization, it is essential to
first subtract the ion current from the total current to obtain
accurate values of the electron current.

C. Effect of sheath expansion on probe characteristics

The sharp knee at the plasma potential !VP=1.0 V" in the
I-V characteristic and flat electron and ion saturation currents
shown in Fig. 3 are ideal probe features that are rarely seen
in practice. For this reason the I-V characteristic in Fig. 1 is
ideal. Real Langmuir probe I-V characteristics have rounded
knees and saturation currents that increase gradually with
increasing voltage. The lack of saturation is related to the
fact that a sheath13–15 is formed around the probe, and this
sheath expands with increasing bias voltage. Sheaths form
around any electrode in a plasma if the bias voltage differs
from VP. The formation of a sheath is the plasma’s way of
maintaining charge neutrality in the bulk of the plasma. An
electrode with a positive bias !relative to VP" attracts an elec-
tron cloud to limit the penetration of the electric field into the
plasma to a distance approximately equal to the electron De-
bye length, !De, defined in Eq. !4". If the plasma density is
greater than #1016 m−3 and Te$2 eV, then the sheath width
will be "0.1 mm. In this case the expansion of the sheath
will produce only a negligible increase in current as the
probe bias is increased. For lower plasma densities and small
probes the sheath expansion produces an increase in the col-
lected current because the effective area for particle collec-
tion is the sheath area and not the geometric probe area.
Another way to think about the sheath expansion effect is to
realize that for a finite probe, the collection of plasma par-
ticles is limited by fact that some particles that enter the
sheath will orbit around the probe and not be collected. As
the potential on the probe is increased, the minimum impact
parameter for which particles are collected increases and thus
more particles will be collected.

Sheath expansion occurs for both the ion and electron cur-
rents and must be taken into account in the interpretation of
the I-V characteristics. The sheath expansion effect can be
incorporated in the ideal probe characteristic so that we can
learn how to deal with it when interpreting real Langmuir
probe characteristics. An illustration of this effect is shown in
Fig. 4. The parameters used to produce this I-V characteristic
were VP=4 V, Ies=100Iis ,Te=4 eV, and Ti=0.1 eV. The
sheath expansion was modeled as a linear function of the
bias voltage with Iis!VB"=−%0.2!VP−VB"+ Iis& for VB#VP for
the ions, and Ies!VB"=0.7!VB−VP"+ Ies for VB$VP for the
electrons. Figure 4!a" shows the full I-V characteristic. Real
characteristics rarely show the sharp knee at the plasma po-
tential; rather the knee tends to be rounded !as illustrated by
the dotted curve" due to the presence of oscillations of the
plasma potential15 or averaging in the data acquisition or
analysis process. The rounding of the knee complicates the
determination of the electron saturation current, but the loca-
tion of the knee is made more evident by replotting the cur-
rent on a semilog scale, as shown in Fig. 4!b". Both Ies and
Vp can now be easily determined as the coordinates of the
intersection of two straight lines—one parallel to the curve
above the knee and the other parallel to the sloping part. The
slope of the straight line fit tothe electron current in Fig. 4!b"
is used to determine Te, as Te= !V2−V1" / ln!Ie2 / Ie1", where 1
and 2 refer to any two points on the line. The electron current
begins falling off the straight line due to the contribution of
the ion current. An accurate measurement of the ion current
in this case requires that Ii be obtained for a sufficiently
negative probe bias so that the electron contribution is ex-
cluded. The procedure for measuring Iis is shown in Fig.
4!c". The ion current is plotted on an expanded scale and a
straight line is fitted through the points; Iis is taken as the
value of Ii at Vp. More accurate methods of dealing with the
nonsaturation of the ion current are discussed in Refs. 5, 7, 9,
and 18.

III. EXAMPLES OF LANGMUIR PROBE
CHARACTERISTICS FROM LABORATORY
PLASMAS

In this section I provide two examples of Langmuir probe
I-V characteristics obtained in more realistic laboratory plas-
mas. These examples demonstrate how the basic principles
presented in Sec. II are applied in the interpretation of real
characteristics.

A. Multidipole plasma

A multidipole device19–21 is a relatively simple setup for
producing a plasma that can be used for basic plasma physics
experiments. A schematic diagram of a typical multidipole
device is shown in Fig. 1!b". It is essentially a large !about
20 l" stainless steel soup pot !sometimes literally" which is
pumped down to a base pressure of #10−6 Torr, and then
filled with a gas such as argon to a pressure of approximately
10−5–10−3 Torr. The plasma is produced by electron emis-
sion from a set of tungsten filaments that are biased to a
negative potential of approximately 50 V. The thermioni-
cally emitted primary electrons that are accelerated from the
filaments ionize the gas producing the plasma. To enhance
the probability that a primary electron will undergo an ion-
izing collision with a neutral atom, the walls of the device
are lined with permanent magnets in rows of opposite polar-

Fig. 3. Langmuir probe I-V characteristic for a plasma with positive and
negative ions of equal mass and temperatures. The positive ion and negative
ion currents are also shown.
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rent should also be used as the baseline to determine the
electron current for the case shown in Fig. 2, although in that
case the positive ion contribution is negligible, and the I=0
line can usually be used to measure Ie. When the plasma
contains a significant fraction of high energy !tens of elec-
tron volts" ionizing primary electrons in addition to the sec-
ondary electrons resulting from ionization, it is essential to
first subtract the ion current from the total current to obtain
accurate values of the electron current.

C. Effect of sheath expansion on probe characteristics

The sharp knee at the plasma potential !VP=1.0 V" in the
I-V characteristic and flat electron and ion saturation currents
shown in Fig. 3 are ideal probe features that are rarely seen
in practice. For this reason the I-V characteristic in Fig. 1 is
ideal. Real Langmuir probe I-V characteristics have rounded
knees and saturation currents that increase gradually with
increasing voltage. The lack of saturation is related to the
fact that a sheath13–15 is formed around the probe, and this
sheath expands with increasing bias voltage. Sheaths form
around any electrode in a plasma if the bias voltage differs
from VP. The formation of a sheath is the plasma’s way of
maintaining charge neutrality in the bulk of the plasma. An
electrode with a positive bias !relative to VP" attracts an elec-
tron cloud to limit the penetration of the electric field into the
plasma to a distance approximately equal to the electron De-
bye length, !De, defined in Eq. !4". If the plasma density is
greater than #1016 m−3 and Te$2 eV, then the sheath width
will be "0.1 mm. In this case the expansion of the sheath
will produce only a negligible increase in current as the
probe bias is increased. For lower plasma densities and small
probes the sheath expansion produces an increase in the col-
lected current because the effective area for particle collec-
tion is the sheath area and not the geometric probe area.
Another way to think about the sheath expansion effect is to
realize that for a finite probe, the collection of plasma par-
ticles is limited by fact that some particles that enter the
sheath will orbit around the probe and not be collected. As
the potential on the probe is increased, the minimum impact
parameter for which particles are collected increases and thus
more particles will be collected.

Sheath expansion occurs for both the ion and electron cur-
rents and must be taken into account in the interpretation of
the I-V characteristics. The sheath expansion effect can be
incorporated in the ideal probe characteristic so that we can
learn how to deal with it when interpreting real Langmuir
probe characteristics. An illustration of this effect is shown in
Fig. 4. The parameters used to produce this I-V characteristic
were VP=4 V, Ies=100Iis ,Te=4 eV, and Ti=0.1 eV. The
sheath expansion was modeled as a linear function of the
bias voltage with Iis!VB"=−%0.2!VP−VB"+ Iis& for VB#VP for
the ions, and Ies!VB"=0.7!VB−VP"+ Ies for VB$VP for the
electrons. Figure 4!a" shows the full I-V characteristic. Real
characteristics rarely show the sharp knee at the plasma po-
tential; rather the knee tends to be rounded !as illustrated by
the dotted curve" due to the presence of oscillations of the
plasma potential15 or averaging in the data acquisition or
analysis process. The rounding of the knee complicates the
determination of the electron saturation current, but the loca-
tion of the knee is made more evident by replotting the cur-
rent on a semilog scale, as shown in Fig. 4!b". Both Ies and
Vp can now be easily determined as the coordinates of the
intersection of two straight lines—one parallel to the curve
above the knee and the other parallel to the sloping part. The
slope of the straight line fit tothe electron current in Fig. 4!b"
is used to determine Te, as Te= !V2−V1" / ln!Ie2 / Ie1", where 1
and 2 refer to any two points on the line. The electron current
begins falling off the straight line due to the contribution of
the ion current. An accurate measurement of the ion current
in this case requires that Ii be obtained for a sufficiently
negative probe bias so that the electron contribution is ex-
cluded. The procedure for measuring Iis is shown in Fig.
4!c". The ion current is plotted on an expanded scale and a
straight line is fitted through the points; Iis is taken as the
value of Ii at Vp. More accurate methods of dealing with the
nonsaturation of the ion current are discussed in Refs. 5, 7, 9,
and 18.

III. EXAMPLES OF LANGMUIR PROBE
CHARACTERISTICS FROM LABORATORY
PLASMAS

In this section I provide two examples of Langmuir probe
I-V characteristics obtained in more realistic laboratory plas-
mas. These examples demonstrate how the basic principles
presented in Sec. II are applied in the interpretation of real
characteristics.

A. Multidipole plasma

A multidipole device19–21 is a relatively simple setup for
producing a plasma that can be used for basic plasma physics
experiments. A schematic diagram of a typical multidipole
device is shown in Fig. 1!b". It is essentially a large !about
20 l" stainless steel soup pot !sometimes literally" which is
pumped down to a base pressure of #10−6 Torr, and then
filled with a gas such as argon to a pressure of approximately
10−5–10−3 Torr. The plasma is produced by electron emis-
sion from a set of tungsten filaments that are biased to a
negative potential of approximately 50 V. The thermioni-
cally emitted primary electrons that are accelerated from the
filaments ionize the gas producing the plasma. To enhance
the probability that a primary electron will undergo an ion-
izing collision with a neutral atom, the walls of the device
are lined with permanent magnets in rows of opposite polar-

Fig. 3. Langmuir probe I-V characteristic for a plasma with positive and
negative ions of equal mass and temperatures. The positive ion and negative
ion currents are also shown.
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ity creating a magnetic barrier, which inhibits the ionizing
electrons from escaping. Due to the alternating polarity of
the magnet rows, the magnetic field has substantial strength
only very close to the walls, so that the main plasma region
is essentially magnetic field free.

A typical Langmuir probe I-V characteristic obtained in

the multidipole device in the University of Iowa’s under-
graduate Advanced Physics Lab is shown in Fig. 5. This
characteristic was taken with a 6 mm diameter planar disk
probe in an argon plasma at a pressure of 0.5 mTorr. The top
curve !Fig. 5"a#$ is the positive probe current due to electron
collection. As discussed in Sec. II "see Fig. 4#, the electron
current continues to increase slightly with increasing voltage
above the plasma potential due to the sheath expansion ef-
fect. The determination of the electron saturation current and
plasma potential is facilitated by replotting the current on a
semilog scale as shown in Fig. 5"b#. The break point occurs
at VP%4 V, with Ies= "100±5# mA. The slope of the down-
ward portion of the line on the semilog plot gives Te
%1.5 eV. The negative "ion# current is shown on an ex-
panded scale in Fig. 5"c#. Again we see the sheath expansion
effect as the "negative# probe voltage increases. The ion satu-
ration current is estimated by extrapolating the linear portion
of the ion current to the plasma potential, where Ii"VP#
= "0.85±0.05# mA. The floating potential is also found from
Fig. 5"c# as Vf"I=0#%−5 V. The ion and electron densities
can now be calculated using Eqs. "2# and "4# with Te
=1.5 eV. We find that ni= "8.3±0.5#!1016 m−3, and ne
= "5.5±0.55#!1016 m−3. Even taking into account the uncer-
tainties involved in measuring the saturation currents from
the plots, there remains a &25% difference between the
plasma density obtained from the ion and electron currents.
This difference is a typical occurrence with Langmuir probes
measurements. In a magnetized plasma, the discrepancy in
the densities obtained from the electron and ion saturation

Fig. 4. Model Langmuir probe I-V characteristic including the effect of
sheath expansion, computed with VP=4 V, Te=4 eV, Ti=0.1 eV, and
Ies / Iis=200. "a# Total current. The dotted curve depicts the rounding of the
knee due to plasma noise or averaging effects. "b# log I"VB# versus VB. The
intersection of the horizontal and vertical dotted lines occurs at the coordi-
nates "VP , Ies#. The electron temperature is obtained from the slope of the
linear part of the downward sloping portion of this curve. "c# Expanded view
of the ion current. The sloping dotted line is a linear fit to the ion current.
The ion saturation current is found by extrapolating this line to the plasma
potential.

Fig. 5. Langmuir probe I-V characteristic obtained in a multidipole plasma
in argon at a pressure of 0.5 mTorr. "a# Electron current. "b# log I"VB# versus
VB. The semilog plot of the electron current provides a clear demarcation of
the plasma potential and electron saturation current. Te is found from the
slope of the exponentially decreasing portion. "c# Expanded scale view of
the ion current used to find Iis.
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a set of model plasma parameters. A link is provided to a
program that allows the user to input the plasma and probe
parameters !density, temperature, plasma potential, and
probe dimension" and plot the resulting Langmuir I-V char-
acteristic. Section III provides two examples of real Lang-
muir probe I-V characteristics obtained in laboratory plas-
mas. I close in Sec. IV with comments advocating the
inclusion of plasma experiments in the undergraduate ad-
vanced laboratory course.

II. MODEL LANGMUIR PROBE CURRENT-
VOLTAGE CHARACTERISTICS

In this section I discuss some of the basic aspects of Lang-
muir probe theory that are needed to construct model probe
I-V characteristics. Two examples of ideal probe I-V charac-
teristics are then given. Finally, a discussion of how the ideal
characteristics must be modified to account for real probe
effects is presented.

A. Ion and electron currents to a Langmuir probe
1. The ion current

When the bias voltage VB, on the probe is sufficiently
negative with respect to the plasma potential VP, the probe

collects the ion saturation current Iis. Positive ions continue
to be collected by the probe until the bias voltage reaches VP,
at which point ions begin to be repelled by the probe. For
VB!VP, all positive ions are repelled, and the ion current to
the probe vanishes, Ii=0. For a Maxwellian ion distribution
at the temperature Ti, the dependence of the ion current
Ii!VB" !usually taken to be the negative current" on VB is
given by10

Ii!VB" = #− Iis exp$e!VP − VB"/kTi% , VB ! VP,

− Iis, VB " VP,
!1"

where e is the electron’s charge, and k is the Boltzmann
constant. When Ti is comparable to the electron temperature
Te, the ion saturation current, Iis is given by4

Iis =
1
4

enivi,thAprobe, !2"

where, ni is the ion density, vi,th=&8kTi /#mi is the ion ther-
mal speed, mi is the ion mass, and Aprobe is the probe collect-
ing area. When Te!Ti,

11 the ion saturation current is not
determined by the ion thermal speed, but rather is given by
the Bohm ion current3,4,12

Iis = IBohm = 0.6eni&kTe

mi
Aprobe. !3"

The fact that the ion current is determined by the electron
temperature when Te!Ti is counterintuitive and requires
some explanation. The physical reason for the dependence
Iis'!kTe /mi"1/2 has to do with the formation of a sheath
around a negatively biased probe.12,13 If an electrode in a
plasma has a potential different from the local plasma poten-
tial, the electrons and ions distribute themselves spatially
around the electrode in order to limit, or shield, the effect of
this potential on the bulk plasma. A positively biased elec-
trode acquires an electron shielding cloud surrounding it,
while a negatively biased electrode acquires a positive space
charge cloud. For a negatively biased electrode, the charac-
teristic shielding distance of the potential disturbance is the
electron Debye length14

$De = (%okTe

e2ne
)1/2

. !4"

In the vicinity of a negatively biased probe, both the
electron and ion densities decrease as the particles ap-
proach the probe, but not at the same rate. The electron
density decreases because electrons are repelled by the
probe. In contrast, the ions are accelerated toward the
probe, and due to the continuity of the current density, the
ion density decreases. A positive space charge sheath can
form only if the ion density exceeds the electron density at
the sheath edge, and for the ion density to decrease more
slowly than the electron density, the ions must approach
the sheath with a speed exceeding the Bohm velocity uB
= !kTe /mi"1/2.13,15 To achieve this speed, the ions must ac-
quire an energy corresponding to a potential drop of
0.5!kTe /e", which occurs over a long distance in the
plasma. The factor of 0.6 in Eq. !3" is due to the reduction
in the density of the ions in the presheath, which is the
region over which the ions are accelerated up to the Bohm
speed.

Fig. 1. Schematic of basic devices for producing a plasma. !a" A discharge
tube in which a plasma is formed in a low pressure gas !"1 Torr" by
applying several hundred volts across the cathode and anode. A cylindrical
!wire" probe is inserted into the discharge to measure the properties of the
plasma. !b" Schematic of a multidipole hot filament plasma device with a
Langmuir disk probe. The plasma is produced by electron impact ionization
of argon atoms by electrons that are thermionically emitted and accelerated
from a hot tungsten !W" filament. To enhance the ionization efficiency, the
walls of the chamber are lined with rows of permanent magnetic of opposite
polarity. The lower diagram is an end view showing the arrangement of
magnets. The magnetic field lines are sketched as the dotted curves. In this
magnetic cusp configuration, the bulk plasma is essentially magnetic
field-free.
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currents is considerably larger, but expected. The gyroradius
of the electrons is typically much smaller than that of the
ions so that the collection of electrons is affected more than
the collection of ions. In that case, measurements of the
plasma density using the ion saturation current are more re-
liable.

It is interesting to calculate the fraction of the neutral ar-
gon atoms that are actually ionized in the plasma using the
measured value of the plasma density. This fraction is known
as the percent ionization or ionization fraction. The density
of the neutral argon atoms is na= P /kTg, where Tg is the
temperature of the neutral gas, and P is the neutral gas pres-
sure. For P=5!10−4 Torr and Tgas!300 K, na=1.65
!1019 m−3. With ni=8!1016 m−3, we obtain ni /na=0.005.
Thus, only 0.5% of the neutral atoms are ionized.

The fact that the neutral density is roughly 1000 times the
plasma density might lead one to wonder about the role of
these neutral atoms on the plasma and probe measurements.
To access the possible effects of collisions of the ions and
electrons with neutrals, we need to estimate a few typical
collision mean free paths, "= "na##−1, where # is the cross
section22 for the particular process considered. For ioniza-
tion, #ionz!8!10−20 m2 "for 50 eV electrons on argon#, so
"ionz$75 cm. Thus "ionz is on the order of the dimensions of
a typical laboratory plasma device. The relatively long ion-
ization mean free path explains, in part, the relatively low
value of the ionization percentage—electrons that are ener-
getically capable of ionizing atoms are more likely to make it
to the wall before ionizing an atom.

The purpose of the magnets on the walls of the multidi-
pole device is to reflect the ionizing electrons back into the
plasma, thus increasing their chances of having an ionizing
collision. Electrons can also make elastic collisions with neu-
tral atoms; a typical cross section in this case is #en
$10−20 m2, giving "en$6 m. For collisions between the
ions and neutral atoms, the most important process to con-
sider is charge exchange, Ar++Ar→Ar+Ar+, in which an
argon ion exchanges an electron with an argon atom, result-
ing in the production of very slow argon ions and argon
atoms with an energy practically equal to the initial energy of
the ions. The cross section for this process is #in$5
!10−19 m2, giving "in$12 cm.

We note that for all of the processes considered the mean
free paths are much greater than the probe size and the
shielding distance or sheath size, so that even though the
neutral density far exceeds the plasma density, the neutral
gas atoms produce negligible effects on the probe measure-
ments.

B. A positive ion/negative ion plasma in a Q machine

Figure 3 is an example of a Langmuir probe I-V charac-
teristic in a plasma in which the positive and negative par-
ticles have the same mass. This example might appear to be
exotic, but it is not difficult to produce a plasma having
almost equal numbers of positive and negative ions of com-
parable mass. We have produced positive ion/negative ion
plasmas "also known as electronegative plasmas# in a device
called a Q machine.23 In a Q machine the plasma is produced
by surface ionization, an effect discovered by Langmuir and
Kingdon in 1923.24 They found that cesium atoms that come
into contact with a tungsten filament heated to 1200 K
emerge as cesium ions. The reason is that the ionizing poten-
tial of cesium is 3.89 eV, and the work function for tungsten

is 4.52 eV. Surface ionization is exploited in a Q machine23

by directing an atomic beam of cesium or potassium atoms
onto a hot "$2000 K# tungsten or tantalum plate, usually
several centimeters in diameter. Both positive ions and ther-
mionic electrons emerge from the plate forming a nearly
fully ionized plasma that is confined by a strong
"$0.1–0.5 T# longitudinal magnetic field. The relatively
good thermal contact between the plasma and the hot plate
results in a plasma in which both the electrons and positive
ions are at roughly the plate temperature, typically 0.2 eV.
The Q machine has been used mainly for studying the basic
properties of magnetized plasmas, and in particular plasma
waves. "The Q designation refers to the expectation that a
thermally produced plasma would be quiescent, that is, rela-
tively free of low frequency plasma instabilities.#

Negative ions are readily formed in a Q machine plasma
by leaking into the vacuum chamber sulfur hexafluoride SF6
at a pressure $10−5–10−4 Torr. Electrons attach to SF6
forming SF6

− negative ions.25 The cross section for electron
attachment to SF6 is energy dependent and peaks in the en-
ergy range that coincides closely with that of the Q machine
electrons. Under these circumstances it is possible to produce
plasmas in which the ratio of electron density to positive ion
density is ne /n+$10−3. A Langmuir probe I-V characteristic
obtained in such a K+ /SF6

− "m− /m+=3.7# is shown in Fig. 6.
Note that the negative ion "positive current# and positive ion
"negative current# saturation currents are comparable. With
such a characteristic the plasma potential is most easily
determined as the voltage at which the first derivative of
the characteristic is a maximum. In this case we see that
VP%−1 V. The characteristic is roughly symmetric about I
=0, with a floating potential Vf !VP, a result that is to be
expected in a plasma with n+!n− and ne"n+. When the
negative ion and positive ion densities are comparable, it
may even be possible to extract both the negative and posi-
tive ion temperatures from the Langmuir characteristic.

Fig. 6. Langmuir probe I-V characteristic obtained in a singly ionized po-
tassium plasma produced in a Q machine. SF6 gas was introduced into the
plasma to form a negative ion plasma by electron attachment. A substantial
fraction of the electrons became attached to the heavy SF6 molecules result-
ing in a nearly symmetric probe characteristic with I+s! I−s. The lower curve
is the derivative of the probe current, dI /dVB. The plasma potential is the
value of the VB for which dI /dVB is a maximum.
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!10−19 m2, giving "in$12 cm.

We note that for all of the processes considered the mean
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waves. "The Q designation refers to the expectation that a
thermally produced plasma would be quiescent, that is, rela-
tively free of low frequency plasma instabilities.#

Negative ions are readily formed in a Q machine plasma
by leaking into the vacuum chamber sulfur hexafluoride SF6
at a pressure $10−5–10−4 Torr. Electrons attach to SF6
forming SF6

− negative ions.25 The cross section for electron
attachment to SF6 is energy dependent and peaks in the en-
ergy range that coincides closely with that of the Q machine
electrons. Under these circumstances it is possible to produce
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"negative current# saturation currents are comparable. With
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determined as the voltage at which the first derivative of
the characteristic is a maximum. In this case we see that
VP%−1 V. The characteristic is roughly symmetric about I
=0, with a floating potential Vf !VP, a result that is to be
expected in a plasma with n+!n− and ne"n+. When the
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may even be possible to extract both the negative and posi-
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IV. COMMENTS

A Langmuir probe I-V characteristic becomes less confus-
ing once we are able to see the individual current contribu-
tions as well as the total probe current. The procedure for
constructing an I-V characteristic given an appropriate set of
plasma input parameters has been presented. A MAPLE pro-
gram that creates the I-V characteristic is available on
EPAPS16 and is also available on the author’s website.

The inclusion of plasma physics experiments in upper
level advanced laboratory courses for physics majors can
provide students with much exposure to many important top-
ics and methods in experimental physics including basic
vacuum techniques, vacuum measurement methods, solder-
ing, spot welding, brazing, electronic circuit design and fab-
rication, data acquisition methods, curve fitting techniques,
and instrument design and construction !building a Langmuir
probe". Students also experience using basic concepts in the
kinetic theory of gases.

Plasma physics experiments also provide ideal research
topics for undergraduate thesis projects. For instructors con-
templating the inclusion of plasma experiments in advanced
laboratory courses, my suggestion is to start with the basic
multidipole plasma.19–21 This device is relatively simple and
inexpensive, with the most costly component being the
vacuum pumping system. If money is not a concern, it is
possible to purchase fully operational vacuum systems that
are easily adaptable for plasma production. Although it is
now possible to purchase off the shelf Langmuir probe sys-
tems, complete with probe and associated electronics, the
experience of constructing probes from scratch is a valuable
one that should not be avoided. Building a probe is often the
first instance in which students are required to use their
hands to create an experimental instrument. Far too often
students are left with the impression that everything needed
to perform a measurement can be found at manufacturers’
web sites.
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APPENDIX: SUGGESTED PROBLEMS
FOR FURTHER STUDY

The following two problems are intended to extend the
basic probe theory to include some other important effects
often encountered in using Langmuir probes in realistic plas-
mas.

Problem 1. It is not uncommon to find in low pressure
plasma discharges that there are two distinct Maxwellian dis-
tributions of electrons—a cold and hot distribution with tem-
peratures Tec and Teh, respectively. Extend the analysis of
Sec. II to include a two-temperature electron distribution. In
this case the electron probe current is written as Ie!VB"
= Iec!VB"+ Ieh!VB". Take the respective densities of the cold
and hot components to be nec and neh with ne=nec+neh. To
simplify the analysis, introduce the parameter feh#neh /ne as
the fraction of hot electrons, so that nec /ne=1− feh. An inter-
esting issue arises as to what value of Te to use in calculating
the Bohm ion current. It was shown26 that the appropriate Te
is the harmonic average of Tec and Teh:
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After you have produced a Langmuir I-V plot, replot the
electron current as a semilog plot to see more clearly the
effect of the two-temperature electron distribution.

Problem 2. In plasmas produced in hot-filament dis-
charges, the effect of the ionizing !primary" electrons on the
probe I-V trace can be observed, particularly at neutral pres-
sures below &10−4 Torr. Extend the probe analysis to in-
clude the presence of these energetic primary electrons,
which can be modeled as an isotropic monoenergetic distri-
bution. Express the total electron current as Iet!VB"= Ie!VB"
+ Iep!VB", where Ie!VB" is the contribution from the bulk elec-
trons, and Iep!VB" is the primary electron contribution, which
for an isotropic monoenergetic distribution is3
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where nep is the density of primary electrons, and vep

=+2Ep /me is the speed of the primary electrons with energy
Ep. To produce an I-V plot, assume that the primary electrons
are accelerated through a potential drop &50–60 V, and the
density is in the range of !0.001–0.1"ne.
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trons are considerable hotter !by a factor of about 100" because they must
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IV. COMMENTS

A Langmuir probe I-V characteristic becomes less confus-
ing once we are able to see the individual current contribu-
tions as well as the total probe current. The procedure for
constructing an I-V characteristic given an appropriate set of
plasma input parameters has been presented. A MAPLE pro-
gram that creates the I-V characteristic is available on
EPAPS16 and is also available on the author’s website.

The inclusion of plasma physics experiments in upper
level advanced laboratory courses for physics majors can
provide students with much exposure to many important top-
ics and methods in experimental physics including basic
vacuum techniques, vacuum measurement methods, solder-
ing, spot welding, brazing, electronic circuit design and fab-
rication, data acquisition methods, curve fitting techniques,
and instrument design and construction !building a Langmuir
probe". Students also experience using basic concepts in the
kinetic theory of gases.

Plasma physics experiments also provide ideal research
topics for undergraduate thesis projects. For instructors con-
templating the inclusion of plasma experiments in advanced
laboratory courses, my suggestion is to start with the basic
multidipole plasma.19–21 This device is relatively simple and
inexpensive, with the most costly component being the
vacuum pumping system. If money is not a concern, it is
possible to purchase fully operational vacuum systems that
are easily adaptable for plasma production. Although it is
now possible to purchase off the shelf Langmuir probe sys-
tems, complete with probe and associated electronics, the
experience of constructing probes from scratch is a valuable
one that should not be avoided. Building a probe is often the
first instance in which students are required to use their
hands to create an experimental instrument. Far too often
students are left with the impression that everything needed
to perform a measurement can be found at manufacturers’
web sites.
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APPENDIX: SUGGESTED PROBLEMS
FOR FURTHER STUDY

The following two problems are intended to extend the
basic probe theory to include some other important effects
often encountered in using Langmuir probes in realistic plas-
mas.

Problem 1. It is not uncommon to find in low pressure
plasma discharges that there are two distinct Maxwellian dis-
tributions of electrons—a cold and hot distribution with tem-
peratures Tec and Teh, respectively. Extend the analysis of
Sec. II to include a two-temperature electron distribution. In
this case the electron probe current is written as Ie!VB"
= Iec!VB"+ Ieh!VB". Take the respective densities of the cold
and hot components to be nec and neh with ne=nec+neh. To
simplify the analysis, introduce the parameter feh#neh /ne as
the fraction of hot electrons, so that nec /ne=1− feh. An inter-
esting issue arises as to what value of Te to use in calculating
the Bohm ion current. It was shown26 that the appropriate Te
is the harmonic average of Tec and Teh:

1
Te

= $nec

ne
% 1

Tec
+ $neh

ne
% 1

Teh
. !A1"

After you have produced a Langmuir I-V plot, replot the
electron current as a semilog plot to see more clearly the
effect of the two-temperature electron distribution.

Problem 2. In plasmas produced in hot-filament dis-
charges, the effect of the ionizing !primary" electrons on the
probe I-V trace can be observed, particularly at neutral pres-
sures below &10−4 Torr. Extend the probe analysis to in-
clude the presence of these energetic primary electrons,
which can be modeled as an isotropic monoenergetic distri-
bution. Express the total electron current as Iet!VB"= Ie!VB"
+ Iep!VB", where Ie!VB" is the contribution from the bulk elec-
trons, and Iep!VB" is the primary electron contribution, which
for an isotropic monoenergetic distribution is3

Iep

='Iep
* #

1
4

enepvepAprobe, VB ! VP,

Iep
* (1 −

2e!VP − VB"
mevep

2 ) , $Vp −
mevep

2

2e
% " VB " VP,

0, VB " $VP −
mevep

2

2e
% ,

*
!A2"

where nep is the density of primary electrons, and vep

=+2Ep /me is the speed of the primary electrons with energy
Ep. To produce an I-V plot, assume that the primary electrons
are accelerated through a potential drop &50–60 V, and the
density is in the range of !0.001–0.1"ne.

a"Electronic mail: robert-merlino@uiowa.edu
1It is common in plasma physics to give temperatures in equivalent energy
units !eV". For example, we say that Te=2 eV, which means we are really
giving kTe converted to electron volts. The actual temperature corre-
sponding to 1 eV is 11,600 K.

2I. Langmuir and H. Mott-Smith, “The theory of collectors in gaseous
discharges,” Phys. Rev. 28, 727–763 !1926".

3I suggest that Langmuir probe novices start by reading Noah Hershkow-
itz’s article, “How Langmuir probes work,” in Plasma Diagnostics, Dis-
charge Parameters and Chemistry, edited by O. Auciello and D. L.
Flamm !Academic, Boston, 1989", Vol. 1, Chap. 3.

4B. E. Cherrington, “The use of Langmuir probes for plasma diagnostics:
A review,” Plasma Chem. Plasma Process. 2, 113–140 !1982".

5F. F. Chen, “Electric Probes,” in Plasma Diagnostic Techniques, edited by
R. H. Huddlestone and S. L. Leonard !Academic, New York, 1965",
Chap. 4. A concise summary of Langmuir probe techniques by F. F. Chen,
“Lecture notes on Langmuir probe diagnostics” is available at
,www.ee.ucla.edu/~ffchen/Publs/Chen210R.pdf-.

6L. Schott, “Electrical probes,” in Plasma Diagnostics, edited by W.
Lochte-Holtgreven !North-Holland, Amsterdam, 1968", Chap. 11.

7J. D. Swift and M. J. R. Schwar, Electrical Probes for Plasma Diagnos-
tics !American Elsevier, New York, 1969".
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11 It is common in discharge plasmas to have Ti#Te due to the fact that the
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Next Lecture 
(Monday November 20)

• Two-stream instabilities  

• PIC simulations

9.4 Plasma Simulation with Particle Codes 263

Fig. 9.18 The Landau
damping puzzle showing the
ingredients of a simplified
description of the physical
processes behind Landau’s
famous formula

9.4 Plasma Simulation with Particle Codes

The principal difficulty in solving Newton’s equation for N interacting particles lay
in the sheer number of N = 1010 − 1020 particles in a typical plasma. Moreover,
calculating the interaction force between N particles involves ≈N 2 evaluations of
the shielded Coulomb force. We had overcome this difficulty in the previous section
by grinding the particles into ever finer “Vlasov sand” that has the same q/m for
each grain, and therefore preserves the interaction forces between volume elements
of finite size. This concept allowed a statistical treatment in terms of the Vlasov
equation.

In this Section, we go into the other direction and merge all particles within a
volume element into a superparticle. Again this superparticle has the sameq/m as the
individual particles it consists of. Typical numbers of particles within a superparticle
can be Ns = 104 − 106. A further improvement for the numerical simulations of
electrostatic problemswith superparticles is the assignment of the charge distribution,
the resulting electric field and potential to a fixed grid with Ng grid points. This
reduces the calculation effort for a one-dimensional system to NsNg log2 Ng insteadof
N 2
s steps, which can be a substantial reduction, if Ns = 105 and Ng = 100, typically.
Plasma physics by computer simulation is now an established branch of our field.

The fundamental methods are described in textbooks, e.g., [228, 229]. In the fol-
lowing, the particle-in-cell (PIC) method will be described, which is implemented
in many codes. Some of these codes are available for free.1 Have fun playing your-
self with the codes. It will give you the impression that you can master the plasma.
The experimental plasma physicists often experience that the plasma masters the
experimenter.

1Look for XPDP1 at http://ptsg.egr.msu.edu/.
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Then, the electric field results from

Ep =
Φp−1 − Φp+1

2∆x
. (9.81)

Poisson’s equation can be readily solved by diagonalization of the matrix, see e.g.,
[228]. For periodic boundary conditions, methods based on fast Fourier transform
may be even superior. The interpolation of the field force at the position of the particle
is made with the same weighting function (9.79) as used for the charge assignment
on the grid

Fi = qNs

Ng−1∑

p=0

W (xi − xp)Ep . (9.82)

The particle position is advanced by a discrete representation of Newton’s equation
in terms of a leap-frog scheme

xn+1
i − xni

∆t
= vn+1/2

i

vn+1/2
i − vn−1/2

i

∆t
= F(xi )

mi
, (9.83)

in which the superscript labels the number of the time step. The advancement of
the velocity is made at half timesteps. A full cycle of the PIC time step is shown in
Fig. 9.20.

9.4.2 Phase-Space Representation

Before discussing the interaction of electrons with wave fields, let us shortly recall
the description of a dynamical system in phase space. A simple one-dimensional
system, the pendulum, is described by the potential energy

Wpot = −W0 cos(ϕ) . (9.84)

Fig. 9.20 Time step of the
particle-in-cell technique
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Fig. 9.22 Particle-in-cell simulation of the beam-plasma instability for αb = 0.01. a Semi-log plot
of the electric field energy (full line) and beam kinetic energy (dashed line). b–f x–vx phase space
showing plasma electrons at v ≈ 0 and beam electrons at v ≈ 1. For comparison, the wave potential
(long-dashed line) is superimposed. The selected examples correspond to the times marked by
vertical lines in panel (a)

energy ε0 Ê2/2, is twice the growth rate (8.9) of thewave amplitude. From the slope of
the straight line we obtain the growth rate as 2γ /ωpe = 0.272, which compares well
with the value from linear instability analysis, 2γ /ωpe = 31/2(αb/2)1/3 = 0.296.

The time ωpet = 72 marks the end of the exponential growth phase. Figure9.22b
shows that the beam electrons are still free streaming, but experience a considerable
velocitymodulation. The initial beam velocity v0 = 1 is indicated by a fine horizontal
line. The non-resonant plasma electrons show a much smaller velocity modulation.
The field energy in Fig. 9.22a begins to saturate and then performs oscillations, in
which field energy and beam kinetic energy are exchanged. At the first maximum
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