Lecturel?2:

Plasma Physics 1

APPH E6101x
Columbia University



Last Lecture

® Wave energy density and its relationship to
the dispersion function, D(w)

® Measurement of electrostatic plasma waves

® Waves in a (cold) magnetized plasma



This Lecture

® CMA Diagram (Chapter 6)



Waves in Magnetized Plasma
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Waves in Magnetized Plasma
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http://www.nytimes.com/2001/04/18/nyregion/thomas-h-stix-plasma-physicist-dies-at-76.html

Working both in the laboratory and with theoretical calculations, he found many

ways to put waves to work in fusion research in succeeding decades, and his
1962 book, "The Theory of Plasma Waves," codified the subject in
mathematical form for the first time.
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Waves in Magnetized Plasma
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Waves k 1 B

Extra-Ordinary Mode Plus: Ordinary Mode
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Waves k 1 B

Extra-Ordinary Mode Plus: Ordinary Mode

Vo

(S —1D ).(l:jx):() a)zza)ge—l—kzc2

iD(S—A4%) \E,
15 - - - -
- X-MODE
=== O-MODE
10 / _
e
sl
0 M

A V4 A A A A
0.0 0.5 1.0 1.5 2.0 2.5 3.0



3 S —iD 0
P o= 1- | ew) =|iD S 0

? 0O O P



Clemmow-Mullaly-Aillis

CMA Diagram
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Ficure 1. Clemmow—Mullaly—-Allis diagram for an H+ plasma (7 = 5:447.10-4). The

numbering of the regions corresponds to that of Stix (1962), but regions are subdivided

according to the positions of the unfoldings. Subdivisions are according to the scheme of



14 l. Wave Normal Surfaces

Fig. 1-1. Wave normal surfaces [solutions
of Eq. (46) using Egs. (30)-(32) and set
(48)] for u=1836, y= 1000, B= 1000 (R
=1000.5, L=1002.5, P = —18 X
10'?). The parameters are representative
Jor the shear Alfvén wave (inner figure)
and the compressional Alfvén wave (outer
figure), Sec. 2-4. u=wk/k’c. The zero-
order magnetic field is directed along the
Z-axis.




1-6 Wave Normal Surfaces

We now have the pieces of information most needed to discuss normal sur-
faces for waves propagating through a magnetized uniform cold plasma. As
described in the introductory section for this chapter, the wave normal sur-
face is the locus of the phase-velocity vector, v, = (@/k)k , where k = k/k.
The wave normal surfaces are figures of revolution about the B, or Z axis, and
their cross section is a two-dimensional polar plot of w/k vs 6. With k in the
x,z plane as in Eq. (28), this cross section may be equally well represented as
the plot, in Cartesian coordinates, of wk, /k* vs wk, /k* . In either case, one
must keep in mind that o is the solution of the dispersion relation, Eq. (29),
w=w(k0) or o = w(k,k,) .

The equation for the wave normal surface is easily obtained from Eq. (29),
solving for the dimensionless wave phase velocity ¥ = w/kc = 1/n:

Cu* — Bu* + A=0, (46)

with 4, B, and C given in Egs. (30)-(32). The properties of the solutions to
Eq. (46) are discussed in detail in the following four sections, but it 1s im-
mediately obvious that if u(0) is a solution, so are u( — @), u(w — @), and
u(0 — 7). The proof is simply that 4, B, and C are functions only of sin? 6
and cos’ 6.



Each of these labeling schemes adds some information to our knowledge of
the nature of the wave. We may, therefore, use all of them at once, even
though the simple identification of the wave normal surface will be redundant.
Repeating at this point the summary of labels given in Sec. 1-1, a wave normal
surface for a cold plasma will be identified by the particular bounded volume
in parameter space in which it occurs, and then will be labeled:

1. Spheroid, wheel lemniscoid, or dumbbell lemniscoid, according to the
shape of the surface.

2. Fast (F) or slow (S), according to the magnitude of the phase velocity at
angles between 0 and w/2.

3. Right (R) or left (L), according to the polarization at 6=0.

4. Ordinary (O) or extraordinary (X), according to the dispersion relation
at O=m/2. The ordinary wave obeys n* = P the extraordinary wave obeys

n*=RL/S .



1-7 The Clemmow-Mullaly-Allis Diagram 15

Fig. 1-3. Wave normal surfaces for u
= 1836, y=1000, B=1/400 (R=4.19, L
= — 1.06, P= — 10.5). The parameters

are representative for the whistler mode,
Secs. 2-7 and 4-5. w=wk/kc .




Fig. 1-2. Wave normal surfaces for p
= 1836, y=1000, B=1.1 (R=525, L
=11,000, and P = —2.2 x 10°).
The parameters are representative for
ion cyclotron waves (inner figure) and

fast waves (outer figure), Sec. 2-5.
u=wk/k’c.




Fig. 1-4. Wave normal surfaces near
P=0. Parameters are u=1836, y
=1000, B=1/1300 (R=363, L
=0.549, P= — 0.0870). u=wk/k’c.




Fig. 1-5. Wave normal surfaces near P=0. Parameters are pu= 1836, y= 1000,
B=1/1418.5 (R=4.10, L=0.602, P=0.0870). u=wk/k’c.
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Fig. 1-6. Wave normal surfaces in combinations that never occur as simultaneous
solutions of Eq. (46). In (a), (b), and (c) the two surfaces intersect each other; in
(d). (e). and (f) both surfaces are lemniscoids (rotated lemniscates).



Next Lecture

® Chapter 7: Langmuir Probes



