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Here, s = q/|q| is the sign of the particle charge. Transforming back to Cartesian
coordinates
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Êx

Êy
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In the last line of this matrix equation we have used the result from the unmagnetized
plasma. Using the definition of the particle oscillating current ĵ = ∑

α
nαqα v̂(α) we

obtain the conductivity tensor as

σ (ω) = iωε0
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and with the aid of (6.14) the dielectric tensor

ε(ω) =

⎛

⎝
S −iD 0

iD S 0
0 0 P

⎞

⎠ , (6.89)

in which we have used the parameters S, P , and D introduced by Thomas H. Stix
[100, 112]
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136 6 Plasma Waves

the electrons will oscillate about their mean position while the much heavier ions
will be immobile. Hence, we are allowed to consider the plasma as a set of dipoles
formed by pairs consisting of an electron oscillating about a corresponding ion at
rest. Such a medium is characterized by the dielectric displacement

D̂(ω) = ε0ε(ω)Ê(ω) . (6.12)

Noting that for a given frequency ω, the displacement current can be considered as
the sum of the vacuum displacement current plus the conduction current,

∂D
∂t

= ε0
∂E
∂t

+ j = ε0ε(ω)
∂E
∂t

. (6.13)

This gives us a relation between the dielectric function ε(ω) and the electric con-
ductivity σ (ω)

ε(ω) = 1 + i
ωε0

σ (ω) . (6.14)

In the following, we will call ε(ω) the dielectric function when the frequency depen-
dence is considered. For a specific value of ω, we will name ε(ω) the dielectric
constant for that frequency.

In an unmagnetized plasma, σ (ω) and ε(ω) are simple scalar functions of the
wave frequency ω. A magnetized plasma, however, is anisotropic because of the
different motion along and across the magnetic field. Therefore, dielectric function
and conductivity then become tensors, see Sect. 3.2 of Appendix.

εω = I + i
ωε0

σω . (6.15)

Here, I is the unit tensor. This means that the electric field vector E and the electric
current vector j may be no longer parallel to each other. Moreover, collisions of the
plasma particles make the plasma a lossy dielectric medium and ε(ω) is in general
a complex function.

In conclusion, there are two different views of the plasma medium. For weak
losses, the plasma behaves mostly as a dielectric and is described by a dielectric
function (or tensor) ε(ω), in which the real part is dominant over the imaginary part.
When the collisions are frequent, the plasma behaves mainly as a conductor and is
described by a complex conductivity σ (ω), in which the imaginary part represents
phase shifts resulting from inertial effects. In the following, we will be mostly inter-
ested in cases, where the plasma waves are weakly damped. Then, the dielectric
tensor elements are mostly real quantities. Therefore, we will prefer the dielectric
description of a plasma.
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Êz

⎞

⎠ . (6.87)

In the last line of this matrix equation we have used the result from the unmagnetized
plasma. Using the definition of the particle oscillating current ĵ = ∑

α
nαqα v̂(α) we

obtain the conductivity tensor as

σ (ω) = iωε0

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
α

ω2
pα

ω2 − ω2
cα

i
∑
α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω
0

−i
∑
α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω

∑

α

ω2
pα

ω2 − ω2
cα

0

0 0
∑

α

ω2
pα

ω2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.88)

and with the aid of (6.14) the dielectric tensor

ε(ω) =

⎛

⎝
S −iD 0

iD S 0
0 0 P

⎞

⎠ , (6.89)

in which we have used the parameters S, P , and D introduced by Thomas H. Stix
[100, 112]

S = 1 −
∑

α

ω2
pα

ω2 − ω2
cα

D =
∑

α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω

P = 1 −
∑

α

ω2
pα

ω2 . (6.90)

http://www.nytimes.com/2001/04/18/nyregion/thomas-h-stix-plasma-physicist-dies-at-76.html

Working both in the laboratory and with theoretical calculations, he found many 
ways to put waves to work in fusion research in succeeding decades, and his 
1962 book, ''The Theory of Plasma Waves,'' codified the subject in 
mathematical form for the first time.
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Êx

Êy
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From D⃗ =
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ϵ ·E⃗,
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ϵ = ϵ0
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The wave equation by taking the curl of the equation
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Assuming an exp(ik⃗ · r⃗) spatial dependence of E⃗ and defining a vector index
of refraction

N⃗ =
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k⃗,

the wave equation becomes

N⃗ × (N⃗ × E⃗)+
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The uniform plasma is isotropic in the x-y plane (i.e. ky = 0).

If θ is the angle between k⃗ and B⃗0 we then have

Nx = n sin θ Nz = n cos θ Ny = 0
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From this it is clear that the Ex, Ey components are coupled to Ez only if
one deviates from the principal angles θ = 0, 90◦.

3
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Introducing further the refractive index N = kc/ω and the angle ψ between wave
vector and magnetic field direction, the wave (6.35) takes the form

⎛

⎝
S − N 2 cos2 ψ −iD N 2 cosψ sinψ

iD S − N 2 0
N 2 cosψ sinψ 0 P − N 2 sin2 ψ

⎞

⎠ ·

⎛

⎝
Êx

Êy

Êz

⎞

⎠ = 0 . (6.91)

Because of the rotational symmetry of the problem about the direction of the
magnetic field, we could arbitrarily choose the wave vector in the x-z plane,
k = (k sinψ, 0, k cosψ). Equation (6.91) is now defining the refractive index
N (ω, k,ψ), which we will start discussing for the principal directions ψ = 0
and ψ = π/2.

6.6.2 Circularly Polarized Modes and the Faraday Effect

We begin with studying the wave propagation along the magnetic field (ψ = 0).
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Here, we have to distinguish two cases:

1. Êx = Êy = 0 und Êz ̸= 0. This is a longitudinal wave that is described by
the dispersion relation P = 1 − (ω2

pe + ω2
pi)/ω

2 = 0. In fact, we find the
plasma oscillations again, which appeared in the unmagnetized case. Obviously,
the magnetic field has no effect on the wave because the oscillations are aligned
with the magnetic field and the Lorentz force vanishes.

2. Êx ̸= 0 ̸= Êy und Êz = 0. In this case we have transverse electromagnetic
waves that are described by a 2 × 2 system of equations

(
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·
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= 0 . (6.93)

Introducing again the rotating electric field Ê± with (6.82)—this corresponds to a
circular polarization of the wave—the two equations are decoupled:

(S − D − N 2)Ê+ + (S + D − N 2)Ê− = 0 . (6.94)

When Ê+ ̸= 0 und Ê− = 0, we have a left-handed circularly polarized wave
(L-wave) with a refractive index NL = √

S − D. In the other case, Ê+ = 0 und
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Ê− ̸= 0, the wave is a right-handed circularly polarized (R-mode), and the refrac-
tive index is NR = √

S + D.
Using the definitions of the parameters S and D we obtain

NR =
(

1 −
ω2

pe

ω(ω − ωce)
−

ω2
pi

ω(ω + ωci)

)1/2

(6.95)

NL =
(

1 −
ω2

pe

ω(ω + ωce)
−

ω2
pi

ω(ω − ωci)

)1/2

. (6.96)

For ω = ωce the refractive index of the R-mode approaches NR → ∞. The R-
mode is said to have a resonance at the electron cyclotron frequency. This resonance
becomes immediately evident when we see that the sense of rotation of the wave
vector and the electron are the same (Fig. 6.11). In the rotating frame of reference the
electron experiences a DC electric field and can gain energy indefinitely. The same
consideration applies to the L-mode, which has a resonance at the ion cyclotron
frequency.

Fig. 6.11 The sense of
rotation for the R-mode and
L-mode compared to the
gyromotion of electrons and
positive ions

E–= ER E+= EL

B

Fig. 6.12 The square of the refractive index for wave propagation along the magnetic field as a
function of frequency. For clarity, an artificial mass ratio me/mi = 0.4 was chosen. The R-mode
has a resonance, N 2 → ∞, at the electron cyclotron frequency whereas the L-wave shows a
resonance at (the lower) ion cyclotron frequency. In the high density limit ω2

pe ≫ ω2
ce considered

here, only the R-wave is propagating between ion and electron cyclotron frequency while the L-
wave is in the cut-off, N 2 < 0
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The extraordinary mode or X-mode has E ⊥ B0 and is described by the 2 × 2
system of equations

(
S −iD

iD (S − N 2)

)
·
(

Êx

Êy

)
= 0 . (6.101)

Again, non-vanishing solutions for E are found when the determinant of the matrix
becomes zero, yielding a refractive index given by

NX =
(

S2 − D2

S

)1/2

. (6.102)

Resonances appear when the Stix parameter S vanishes (S = 0). In the case of very
high frequencies, we can neglect the ion contributions in S, and find the so-called
upper-hybrid resonance frequency

ωuh = (ω2
ce + ω2

pe)
1/2 . (6.103)

For intermediate frequencies, there is a second zero of S, which defines the lower
hybrid resonance frequency

ωlh =
(

ω2
ci +

ω2
piω

2
ce

ω2
pe + ω2

ce

)1/2

. (6.104)

In the limit of high electron density,ω2
pe ≫ ω2

ce, the lower hybrid frequency becomes
ωlh ≈ (ωciωce)

1/2 The behavior of the refractive index for the X-mode and O-mode
as a function of wave frequency is shown in Fig. 6.15.

Fig. 6.15 The square of the
refractive index for wave
propagation perpendicular to
the magnetic field as a
function of frequency. An
artificial mass ratio
me/mi = 0.4 is chosen. The
X-mode has resonances at the
lower hybrid frequency ωlh
and the upper hybrid
frequency ωuh

Extra-Ordinary Mode Plus: Ordinary Mode
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The transverse waves are twofold degenerate corresponding to the two possible
directions of polarization in y or z-direction. The case of longitudinal waves will
be postponed to Sect. 6.5.1. Here, we will focus on the transverse waves. For this
purpose we set Êx = 0 and retain only the middle line in the set of (6.35),

(

−k2 +
ω2 − ω2

pe

c2

)

Êy = 0 . (6.36)

Since Êy ̸= 0 we conclude that the factor in parantheses must vanish, yielding

ω2 = ω2
pe + k2c2 . (6.37)

The same result is obtained from the last line of (6.35) because of the degeneracy.
The explicit form of the dispersion relation for the transverse wave becomes

ω =
(
ω2

pe + k2c2
)1/2

. (6.38)

Since we have k in x-direction and Ê in y-direction the vector product k × Ê
is nonzero and the induction law (6.10) gives an associated wave magnetic field.
Therefore, the transverse wave is an electromagnetic mode. When we consider the
limit of vanishing electron density, the electron plasma frequency goes to zero and
the wave dispersion takes the limiting form ω = kc, which is the light wave in
vacuum. The transverse mode in an unmagnetized plasma is therefore the light wave
modified by the presence of the plasma as a dielectric medium.

The wave dispersion of the electromagnetic wave is shown in Fig. 6.3. The
transverse wave is only propagating for ω > ωpe. Therefore, we call the electron
plasma frequency the cut-off frequency for the electromagnetic mode. In the limit
of very high frequencies the dispersion approaches the light wave in vacuum. This
case is different from the limit of vanishing plasma density because, with increasing

Fig. 6.3 Dispersion relation
for electromagnetic waves in
an unmagnetized plasma.
Wave propagation is only
possible for frequencies
larger than the plasma
frequency. For ω ≫ ωpe the
wave dispersion approaches
the light wave in vacuum
ω = kc
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is nonzero and the induction law (6.10) gives an associated wave magnetic field.
Therefore, the transverse wave is an electromagnetic mode. When we consider the
limit of vanishing electron density, the electron plasma frequency goes to zero and
the wave dispersion takes the limiting form ω = kc, which is the light wave in
vacuum. The transverse mode in an unmagnetized plasma is therefore the light wave
modified by the presence of the plasma as a dielectric medium.

The wave dispersion of the electromagnetic wave is shown in Fig. 6.3. The
transverse wave is only propagating for ω > ωpe. Therefore, we call the electron
plasma frequency the cut-off frequency for the electromagnetic mode. In the limit
of very high frequencies the dispersion approaches the light wave in vacuum. This
case is different from the limit of vanishing plasma density because, with increasing

Fig. 6.3 Dispersion relation
for electromagnetic waves in
an unmagnetized plasma.
Wave propagation is only
possible for frequencies
larger than the plasma
frequency. For ω ≫ ωpe the
wave dispersion approaches
the light wave in vacuum
ω = kc

6.6 Waves in Magnetized Plasmas 163

The extraordinary mode or X-mode has E ⊥ B0 and is described by the 2 × 2
system of equations

(
S −iD

iD (S − N 2)

)
·
(

Êx
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Here, s = q/|q| is the sign of the particle charge. Transforming back to Cartesian
coordinates

v̂x = 1
2
(v̂+ + v̂−) , v̂y = 1

2i
(v̂+ − v̂−) , (6.86)

we obtain the matrix relation

⎛

⎝
v̂x
v̂y
v̂z

⎞

⎠ = i
q
ωm

⎛

⎜⎜⎜⎜⎝

ω2

ω2 − ω2
c

i
sωωc

ω2 − ω2
c

0

−i
sωωc

ω2 − ω2
c

ω2

ω2 − ω2
c

0

0 0 1

⎞

⎟⎟⎟⎟⎠
·

⎛

⎝
Êx

Êy

Êz

⎞

⎠ . (6.87)

In the last line of this matrix equation we have used the result from the unmagnetized
plasma. Using the definition of the particle oscillating current ĵ = ∑

α
nαqα v̂(α) we

obtain the conductivity tensor as

σ (ω) = iωε0

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
α

ω2
pα

ω2 − ω2
cα

i
∑
α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω
0

−i
∑
α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω

∑

α

ω2
pα

ω2 − ω2
cα

0

0 0
∑

α

ω2
pα

ω2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.88)

and with the aid of (6.14) the dielectric tensor

ε(ω) =

⎛

⎝
S −iD 0

iD S 0
0 0 P

⎞

⎠ , (6.89)

in which we have used the parameters S, P , and D introduced by Thomas H. Stix
[100, 112]

S = 1 −
∑

α

ω2
pα

ω2 − ω2
cα

D =
∑

α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω

P = 1 −
∑

α

ω2
pα

ω2 . (6.90)
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and with the aid of (6.14) the dielectric tensor

ε(ω) =

⎛

⎝
S −iD 0

iD S 0
0 0 P

⎞

⎠ , (6.89)

in which we have used the parameters S, P , and D introduced by Thomas H. Stix
[100, 112]
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∑
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From D⃗ =
↔
ϵ ·E⃗,

↔
ϵ = ϵ0

⎛

⎝

S −iD 0
iD S 0
0 0 P

⎞

⎠ ≡ ϵ0
↔
K

The wave equation by taking the curl of the equation

∇× E⃗ = − ˙⃗
B and substituting ∇× B⃗ = µ0

↔
ϵ · ˙⃗

E:

∇×∇× E⃗ = −µ0ϵ0(
↔
K · ¨⃗E) = −

1

c2

↔
K · ¨⃗E

Assuming an exp(ik⃗ · r⃗) spatial dependence of E⃗ and defining a vector index
of refraction

N⃗ =
c

ω
k⃗,

the wave equation becomes

N⃗ × (N⃗ × E⃗)+
↔
K ·E⃗ = 0

The uniform plasma is isotropic in the x-y plane (i.e. ky = 0).

If θ is the angle between k⃗ and B⃗0 we then have

Nx = n sin θ Nz = n cos θ Ny = 0

Using the elements of
↔
K,

↔
M ·E⃗ ≡

⎛

⎝

S − N2 cos2 θ −iD N2 sin θ cos θ
iD S − N2 0

N2 sin θ cos θ 0 P − N2 sin2 θ

⎞

⎠

⎛

⎝

Ex

Ey

Ez

⎞

⎠ = 0

From this it is clear that the Ex, Ey components are coupled to Ez only if
one deviates from the principal angles θ = 0, 90◦.
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Figure 1: CMA diagram for a two-component plasma. The ion-to-electron
mass ratio is chosen to be 2.5. Bounding surfaces appear as lines in this
two-dimensional parameter space. Cross sections of wave-normal surfaces
are sketched and labeled for each region. For these sketches the direction of
the magnetic field is vertical. The small mass ratio can be misleading here:
the L = 0 line intersects P = 0 at Ωi/ω = 1 − (Zme/mi). From T. Stix’s
book (AIP, 1992).

7

Clemmow-Mullaly-Allis
CMA Diagram



Ray velocity surface 345

104 105

FIGUEE 1. Clemmow-Mullaly-AUis diagram for an H+ plasma (?) = 5-447. lO"4). The
numbering of the regions corresponds to that of Stix (1962), but regions are subdivided
according to the positions of the unfoldings. Subdivisions are according to the scheme of
Paper I. Each region is distinguished by shading. Regions 9 and 10 are very near and just
below the ion gyrofrequency {Y = r]-1) and where X < 1. They are not numbered on
this diagram. They are shown in the CMA diagram given by Stix (1962 figure 2.1) for an
unrealistic value of 1} (0-25). The detailed behaviour of the unfoldings near the ion gyro-
frequency is shown in figure 2. The unfoldings are labelled with letters corresponding to the
formulae as follows: ^ . 2PS = RL(P+S)

B,C:P* + RL + 2PS - 0.
D: r(F2-e) =

5. Discussion and conclusions
The chief results of this paper are the formulae for the ray surface unfoldings

which are found in § 3. I t must be emphasized that there is no guarantee that this
is a complete set of all the cases which may occur. Because of the complexity of
the algebra, it is possible that a case in which two inflexion points coalesce for
6 4= 0 or 7r/2 could have been missed.
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Next Lecture

• Chapter 7: Langmuir Probes


