
Lecture11: More Plasma Waves �
Plasma Physics 1

APPH E6101x

Columbia University


1



Last Lecture

• Wave energy density and its relationship to the dispersion function, D(ω)


• Measurement of electrostatic plasma waves (briefly)


• Waves in a (cold) magnetized plasma 
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This Lecture

• Ch. 6 Problems


• Waves in magnetized plasma
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Problem 6.1

6.7 Resonance Cones 173

• Electrostatic waves are longitudinal, k||Ê, and are found in two frequency
regimes: Bohm–Gross modes for ω > ωpe and ion-acoustic waves for ω <

ωpi. The ion-acoustic speed is Cs = (kBTe/m i)
1/2.

• In magnetized plasma, the fundamental modes for propagation along the
magnetic field line have circular polarization. The refractive index of the R-
wave and L-wave are different. This leads to Faraday rotation of a linearly
polarized wave. The R-wave (L-wave) has a resonance at the electron (ion)
cyclotron frequency.

• Resonances correspond toN 2 → ∞, cut-offs to N 2 → 0.
• Waves propagating perpendicular to a magnetic field are the O-mode
(E||B0), which is unaffected by the magnetic field, and the X-mode, which
has resonances at the upper hybrid frequency ωuh = (ω2

pe + ω2
ce)

1/2 and
lower hybrid frequency ωlh ≈ (ωceωci)

1/2.

Problems

6.1 In the limit Ti $ Te the ion-acoustic wave has the dispersion relation

ω(k) = ωpiλDe k

(1+ k2λ2
De)

1/2

(a) Derive an expression for the phase velocity vϕ(k) and group velocity vg(k) as a
function of the wave number k.
(b) Discuss the result with respect to “acoustic behavior” at kλDe $ 1.

6.2 Assume that in a dielectric medium the relation vϕ · vg = c2 holds. What is the
general shape of the dispersion relation ω(k) for this case?

6.3 (a) Show that forω2
pe % ω2

ce % ω2 the refractive index forWhistler waves takes
the limiting form

N = ωpe

(ωωce)1/2

(b) Calculate phase and group velocity and show that vgr = 2vϕ .

6.4 Determine the minimum plasma density at which a He-Ne Laser at λ = 633nm
wavelength will be reflected.

6.5 Consider an electron-positron plasma with ne = np. What is the cut-off fre-
quency for electromagnetic waves in this system?

6.6 The plasma of the ionospheric F-layer has a density ne ≈ 2 × 1012 m−3. The
typical magnetic field at mid-latitude is B = 50µT. Calculate the electron plasma
frequency fpe, electron cyclotron frequency fce and the upper hybrid frequency fuh.

6.7 Prove that vϕ = vgr requires ω = vϕ k.
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Problem 6.2

6.7 Resonance Cones 173

• Electrostatic waves are longitudinal, k||Ê, and are found in two frequency
regimes: Bohm–Gross modes for ω > ωpe and ion-acoustic waves for ω <

ωpi. The ion-acoustic speed is Cs = (kBTe/m i)
1/2.

• In magnetized plasma, the fundamental modes for propagation along the
magnetic field line have circular polarization. The refractive index of the R-
wave and L-wave are different. This leads to Faraday rotation of a linearly
polarized wave. The R-wave (L-wave) has a resonance at the electron (ion)
cyclotron frequency.

• Resonances correspond toN 2 → ∞, cut-offs to N 2 → 0.
• Waves propagating perpendicular to a magnetic field are the O-mode
(E||B0), which is unaffected by the magnetic field, and the X-mode, which
has resonances at the upper hybrid frequency ωuh = (ω2

pe + ω2
ce)

1/2 and
lower hybrid frequency ωlh ≈ (ωceωci)

1/2.

Problems

6.1 In the limit Ti $ Te the ion-acoustic wave has the dispersion relation

ω(k) = ωpiλDe k

(1+ k2λ2
De)

1/2

(a) Derive an expression for the phase velocity vϕ(k) and group velocity vg(k) as a
function of the wave number k.
(b) Discuss the result with respect to “acoustic behavior” at kλDe $ 1.

6.2 Assume that in a dielectric medium the relation vϕ · vg = c2 holds. What is the
general shape of the dispersion relation ω(k) for this case?

6.3 (a) Show that forω2
pe % ω2

ce % ω2 the refractive index forWhistler waves takes
the limiting form

N = ωpe

(ωωce)1/2

(b) Calculate phase and group velocity and show that vgr = 2vϕ .

6.4 Determine the minimum plasma density at which a He-Ne Laser at λ = 633nm
wavelength will be reflected.

6.5 Consider an electron-positron plasma with ne = np. What is the cut-off fre-
quency for electromagnetic waves in this system?

6.6 The plasma of the ionospheric F-layer has a density ne ≈ 2 × 1012 m−3. The
typical magnetic field at mid-latitude is B = 50µT. Calculate the electron plasma
frequency fpe, electron cyclotron frequency fce and the upper hybrid frequency fuh.

6.7 Prove that vϕ = vgr requires ω = vϕ k.
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Problem 6.3

6.7 Resonance Cones 173

• Electrostatic waves are longitudinal, k||Ê, and are found in two frequency
regimes: Bohm–Gross modes for ω > ωpe and ion-acoustic waves for ω <

ωpi. The ion-acoustic speed is Cs = (kBTe/m i)
1/2.

• In magnetized plasma, the fundamental modes for propagation along the
magnetic field line have circular polarization. The refractive index of the R-
wave and L-wave are different. This leads to Faraday rotation of a linearly
polarized wave. The R-wave (L-wave) has a resonance at the electron (ion)
cyclotron frequency.

• Resonances correspond toN 2 → ∞, cut-offs to N 2 → 0.
• Waves propagating perpendicular to a magnetic field are the O-mode
(E||B0), which is unaffected by the magnetic field, and the X-mode, which
has resonances at the upper hybrid frequency ωuh = (ω2

pe + ω2
ce)

1/2 and
lower hybrid frequency ωlh ≈ (ωceωci)

1/2.

Problems

6.1 In the limit Ti $ Te the ion-acoustic wave has the dispersion relation

ω(k) = ωpiλDe k

(1+ k2λ2
De)

1/2

(a) Derive an expression for the phase velocity vϕ(k) and group velocity vg(k) as a
function of the wave number k.
(b) Discuss the result with respect to “acoustic behavior” at kλDe $ 1.

6.2 Assume that in a dielectric medium the relation vϕ · vg = c2 holds. What is the
general shape of the dispersion relation ω(k) for this case?

6.3 (a) Show that forω2
pe % ω2

ce % ω2 the refractive index forWhistler waves takes
the limiting form

N = ωpe

(ωωce)1/2

(b) Calculate phase and group velocity and show that vgr = 2vϕ .

6.4 Determine the minimum plasma density at which a He-Ne Laser at λ = 633nm
wavelength will be reflected.

6.5 Consider an electron-positron plasma with ne = np. What is the cut-off fre-
quency for electromagnetic waves in this system?

6.6 The plasma of the ionospheric F-layer has a density ne ≈ 2 × 1012 m−3. The
typical magnetic field at mid-latitude is B = 50µT. Calculate the electron plasma
frequency fpe, electron cyclotron frequency fce and the upper hybrid frequency fuh.

6.7 Prove that vϕ = vgr requires ω = vϕ k.
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Problem 6.4

6.7 Resonance Cones 173

• Electrostatic waves are longitudinal, k||Ê, and are found in two frequency
regimes: Bohm–Gross modes for ω > ωpe and ion-acoustic waves for ω <

ωpi. The ion-acoustic speed is Cs = (kBTe/m i)
1/2.

• In magnetized plasma, the fundamental modes for propagation along the
magnetic field line have circular polarization. The refractive index of the R-
wave and L-wave are different. This leads to Faraday rotation of a linearly
polarized wave. The R-wave (L-wave) has a resonance at the electron (ion)
cyclotron frequency.

• Resonances correspond toN 2 → ∞, cut-offs to N 2 → 0.
• Waves propagating perpendicular to a magnetic field are the O-mode
(E||B0), which is unaffected by the magnetic field, and the X-mode, which
has resonances at the upper hybrid frequency ωuh = (ω2

pe + ω2
ce)

1/2 and
lower hybrid frequency ωlh ≈ (ωceωci)

1/2.

Problems

6.1 In the limit Ti $ Te the ion-acoustic wave has the dispersion relation

ω(k) = ωpiλDe k

(1+ k2λ2
De)

1/2

(a) Derive an expression for the phase velocity vϕ(k) and group velocity vg(k) as a
function of the wave number k.
(b) Discuss the result with respect to “acoustic behavior” at kλDe $ 1.

6.2 Assume that in a dielectric medium the relation vϕ · vg = c2 holds. What is the
general shape of the dispersion relation ω(k) for this case?

6.3 (a) Show that forω2
pe % ω2

ce % ω2 the refractive index forWhistler waves takes
the limiting form

N = ωpe

(ωωce)1/2

(b) Calculate phase and group velocity and show that vgr = 2vϕ .

6.4 Determine the minimum plasma density at which a He-Ne Laser at λ = 633nm
wavelength will be reflected.

6.5 Consider an electron-positron plasma with ne = np. What is the cut-off fre-
quency for electromagnetic waves in this system?

6.6 The plasma of the ionospheric F-layer has a density ne ≈ 2 × 1012 m−3. The
typical magnetic field at mid-latitude is B = 50µT. Calculate the electron plasma
frequency fpe, electron cyclotron frequency fce and the upper hybrid frequency fuh.

6.7 Prove that vϕ = vgr requires ω = vϕ k.
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Problem 6.5

6.7 Resonance Cones 173

• Electrostatic waves are longitudinal, k||Ê, and are found in two frequency
regimes: Bohm–Gross modes for ω > ωpe and ion-acoustic waves for ω <

ωpi. The ion-acoustic speed is Cs = (kBTe/m i)
1/2.

• In magnetized plasma, the fundamental modes for propagation along the
magnetic field line have circular polarization. The refractive index of the R-
wave and L-wave are different. This leads to Faraday rotation of a linearly
polarized wave. The R-wave (L-wave) has a resonance at the electron (ion)
cyclotron frequency.

• Resonances correspond toN 2 → ∞, cut-offs to N 2 → 0.
• Waves propagating perpendicular to a magnetic field are the O-mode
(E||B0), which is unaffected by the magnetic field, and the X-mode, which
has resonances at the upper hybrid frequency ωuh = (ω2

pe + ω2
ce)

1/2 and
lower hybrid frequency ωlh ≈ (ωceωci)

1/2.

Problems

6.1 In the limit Ti $ Te the ion-acoustic wave has the dispersion relation

ω(k) = ωpiλDe k

(1+ k2λ2
De)

1/2

(a) Derive an expression for the phase velocity vϕ(k) and group velocity vg(k) as a
function of the wave number k.
(b) Discuss the result with respect to “acoustic behavior” at kλDe $ 1.

6.2 Assume that in a dielectric medium the relation vϕ · vg = c2 holds. What is the
general shape of the dispersion relation ω(k) for this case?

6.3 (a) Show that forω2
pe % ω2

ce % ω2 the refractive index forWhistler waves takes
the limiting form

N = ωpe

(ωωce)1/2

(b) Calculate phase and group velocity and show that vgr = 2vϕ .

6.4 Determine the minimum plasma density at which a He-Ne Laser at λ = 633nm
wavelength will be reflected.

6.5 Consider an electron-positron plasma with ne = np. What is the cut-off fre-
quency for electromagnetic waves in this system?

6.6 The plasma of the ionospheric F-layer has a density ne ≈ 2 × 1012 m−3. The
typical magnetic field at mid-latitude is B = 50µT. Calculate the electron plasma
frequency fpe, electron cyclotron frequency fce and the upper hybrid frequency fuh.

6.7 Prove that vϕ = vgr requires ω = vϕ k.
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Problem 6.6

6.7 Resonance Cones 173

• Electrostatic waves are longitudinal, k||Ê, and are found in two frequency
regimes: Bohm–Gross modes for ω > ωpe and ion-acoustic waves for ω <

ωpi. The ion-acoustic speed is Cs = (kBTe/m i)
1/2.

• In magnetized plasma, the fundamental modes for propagation along the
magnetic field line have circular polarization. The refractive index of the R-
wave and L-wave are different. This leads to Faraday rotation of a linearly
polarized wave. The R-wave (L-wave) has a resonance at the electron (ion)
cyclotron frequency.

• Resonances correspond toN 2 → ∞, cut-offs to N 2 → 0.
• Waves propagating perpendicular to a magnetic field are the O-mode
(E||B0), which is unaffected by the magnetic field, and the X-mode, which
has resonances at the upper hybrid frequency ωuh = (ω2

pe + ω2
ce)

1/2 and
lower hybrid frequency ωlh ≈ (ωceωci)

1/2.

Problems

6.1 In the limit Ti $ Te the ion-acoustic wave has the dispersion relation

ω(k) = ωpiλDe k

(1+ k2λ2
De)

1/2

(a) Derive an expression for the phase velocity vϕ(k) and group velocity vg(k) as a
function of the wave number k.
(b) Discuss the result with respect to “acoustic behavior” at kλDe $ 1.

6.2 Assume that in a dielectric medium the relation vϕ · vg = c2 holds. What is the
general shape of the dispersion relation ω(k) for this case?

6.3 (a) Show that forω2
pe % ω2

ce % ω2 the refractive index forWhistler waves takes
the limiting form

N = ωpe

(ωωce)1/2

(b) Calculate phase and group velocity and show that vgr = 2vϕ .

6.4 Determine the minimum plasma density at which a He-Ne Laser at λ = 633nm
wavelength will be reflected.

6.5 Consider an electron-positron plasma with ne = np. What is the cut-off fre-
quency for electromagnetic waves in this system?

6.6 The plasma of the ionospheric F-layer has a density ne ≈ 2 × 1012 m−3. The
typical magnetic field at mid-latitude is B = 50µT. Calculate the electron plasma
frequency fpe, electron cyclotron frequency fce and the upper hybrid frequency fuh.

6.7 Prove that vϕ = vgr requires ω = vϕ k.
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Problem 6.7

6.7 Resonance Cones 173

• Electrostatic waves are longitudinal, k||Ê, and are found in two frequency
regimes: Bohm–Gross modes for ω > ωpe and ion-acoustic waves for ω <

ωpi. The ion-acoustic speed is Cs = (kBTe/m i)
1/2.

• In magnetized plasma, the fundamental modes for propagation along the
magnetic field line have circular polarization. The refractive index of the R-
wave and L-wave are different. This leads to Faraday rotation of a linearly
polarized wave. The R-wave (L-wave) has a resonance at the electron (ion)
cyclotron frequency.

• Resonances correspond toN 2 → ∞, cut-offs to N 2 → 0.
• Waves propagating perpendicular to a magnetic field are the O-mode
(E||B0), which is unaffected by the magnetic field, and the X-mode, which
has resonances at the upper hybrid frequency ωuh = (ω2

pe + ω2
ce)

1/2 and
lower hybrid frequency ωlh ≈ (ωceωci)

1/2.

Problems

6.1 In the limit Ti $ Te the ion-acoustic wave has the dispersion relation

ω(k) = ωpiλDe k

(1+ k2λ2
De)

1/2

(a) Derive an expression for the phase velocity vϕ(k) and group velocity vg(k) as a
function of the wave number k.
(b) Discuss the result with respect to “acoustic behavior” at kλDe $ 1.

6.2 Assume that in a dielectric medium the relation vϕ · vg = c2 holds. What is the
general shape of the dispersion relation ω(k) for this case?

6.3 (a) Show that forω2
pe % ω2

ce % ω2 the refractive index forWhistler waves takes
the limiting form

N = ωpe

(ωωce)1/2

(b) Calculate phase and group velocity and show that vgr = 2vϕ .

6.4 Determine the minimum plasma density at which a He-Ne Laser at λ = 633nm
wavelength will be reflected.

6.5 Consider an electron-positron plasma with ne = np. What is the cut-off fre-
quency for electromagnetic waves in this system?

6.6 The plasma of the ionospheric F-layer has a density ne ≈ 2 × 1012 m−3. The
typical magnetic field at mid-latitude is B = 50µT. Calculate the electron plasma
frequency fpe, electron cyclotron frequency fce and the upper hybrid frequency fuh.

6.7 Prove that vϕ = vgr requires ω = vϕ k.
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Part 1: True or False (20 pts)

Write “T” or “F” next to each statement. Do not guess. Correct answers count “+2”
points, and wrong answers count “-1” points.

T / F The Maxwell-Boltzman particle distribution function minimizes the total energy
of a large, but fixed number, of interacting particles.

T / F For a collection of charged particles, the “coupling parameter” is the ratio of the
average electrostatic interaction between nearest neighbors and an average particle’s
thermal energy.

T / F Because of charge neutrality, the ion and electron Debye lengths are approximately
equal, even when the ion and electron temperatures are di↵erent.

T / F In tokamaks and stellarators, the curvature and gradient-B drifts are in a direction
normal to closed magnetic flux surfaces.

T / F In tokamaks and stellarators, equilibrium magnetic fields form nested toroidal
surfaces. Therefore, in the absence of collisions (or turbulence), particles circu-
late either clockwise or counter-clockwise around the torus, but they never reverse
directions.

T / F An oscillating electric field causes charged particles to “quiver”. The ion’s quiver
velocity due to an oscillating electric field is proportional to the electron’s quiver
velocity by the square root of the ratio of their temperatures, Ti/Te.

T / F The Debye length of a fully-ionized helium plasma is
q
2/5 the Debye length

of a fully-ionized hydrogen plasma when, for both plasmas, the ion and electron
temperatures are equal.

T / F The electron plasma frequency is proportional to the ratio of the electron’s thermal
velocity to the Debye length.

T / F The motion of any charged particle in the presence of a static electric and magnetic
field, when the electric field is perpendicular to the magnetic field (i.e. E ? B) can
be described as the sum of a circular orbit and a constant drift.

T / F If the particle distribution of speeds is normalized such that
R
dvf(v) = 1, then

the particle flow speed is the first moment of the distribution ,
R
dvvf(v), and the

average kinetic energy is proportional to the second moment,
R
v2f(v).

2

with thanks to Andrew Yang
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Review of EM Waves

134 6 Plasma Waves

determines the propagation speed and polarization of the plasma waves. This model
is developed step by step starting from Maxwell’s equations.

6.1.1 Basic Concepts

Plasma waves are described by the set of Maxwell’s equations

∇ × E = −∂B
∂t

(6.1)

∇ × B = µ0

(
j + ε0

∂E
∂t

)
(6.2)

and a proper equation of motion for the plasma species that establishes the relation
between the alternating electric current j(E)

j = ne(vi − ve) , (6.3)

and the electric field. The simplest case is the description of the plasma particles in
the model of single-particle motion. The velocities ve,i are solutions of Newton’s
equation that is expanded by an additional friction force that is described by a colli-
sion frequency νm for momentum loss,

m (v̇ + νmv) = q(E + v × B) . (6.4)

In warm plasmas, we could include pressure effects by solving the MHD equations
for the variable j. Other effects related to the distribution function of velocities, e.g.,
Landau damping, will be discussed in Chap. 9.

For discussing the propagation properties of the waves, we make the additional
simplifying assumption that, at a chosen angular frequency ω, the relation between
the alternating current j(ω) and the electric field strength at that frequency E(ω) is
linear or can be linearized by suitable approximations

j(ω) = σ (ω) · E(ω) . (6.5)

Here, σ (ω) is the frequency-dependent conductivity. Taking the curl in the induction
law (6.1), we obtain the wave equation

∇ × (∇ × E) = −∇ × ∂B
∂t

= − ∂

∂t
(∇ × B)

= −µ0ε0
∂2E
∂t2 − µ0

∂j
∂t

. (6.6)
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Review of EM Waves in Medium

136 6 Plasma Waves

the electrons will oscillate about their mean position while the much heavier ions
will be immobile. Hence, we are allowed to consider the plasma as a set of dipoles
formed by pairs consisting of an electron oscillating about a corresponding ion at
rest. Such a medium is characterized by the dielectric displacement

D̂(ω) = ε0ε(ω)Ê(ω) . (6.12)

Noting that for a given frequency ω, the displacement current can be considered as
the sum of the vacuum displacement current plus the conduction current,

∂D
∂t

= ε0
∂E
∂t

+ j = ε0ε(ω)
∂E
∂t

. (6.13)

This gives us a relation between the dielectric function ε(ω) and the electric con-
ductivity σ (ω)

ε(ω) = 1 + i
ωε0

σ (ω) . (6.14)

In the following, we will call ε(ω) the dielectric function when the frequency depen-
dence is considered. For a specific value of ω, we will name ε(ω) the dielectric
constant for that frequency.

In an unmagnetized plasma, σ (ω) and ε(ω) are simple scalar functions of the
wave frequency ω. A magnetized plasma, however, is anisotropic because of the
different motion along and across the magnetic field. Therefore, dielectric function
and conductivity then become tensors, see Sect. 3.2 of Appendix.

εω = I + i
ωε0

σω . (6.15)

Here, I is the unit tensor. This means that the electric field vector E and the electric
current vector j may be no longer parallel to each other. Moreover, collisions of the
plasma particles make the plasma a lossy dielectric medium and ε(ω) is in general
a complex function.

In conclusion, there are two different views of the plasma medium. For weak
losses, the plasma behaves mostly as a dielectric and is described by a dielectric
function (or tensor) ε(ω), in which the real part is dominant over the imaginary part.
When the collisions are frequent, the plasma behaves mainly as a conductor and is
described by a complex conductivity σ (ω), in which the imaginary part represents
phase shifts resulting from inertial effects. In the following, we will be mostly inter-
ested in cases, where the plasma waves are weakly damped. Then, the dielectric
tensor elements are mostly real quantities. Therefore, we will prefer the dielectric
description of a plasma.

−
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All of the plasma 
physics here

6.2 The General Dispersion Relation 139

In an anisotropic medium, such as a magnetized plasma, the direction of the
group velocity is not necessarily parallel to the phase velocity. There are exotic
situations, e.g., for Whistler waves, where phase velocity and group velocity can
become even perpendicular to each other [99, 100].

6.1.6 Refractive Index

In optics the refractive index of a transparent medium is defined as the ratio of the
speed of light in vacuum to the speed in that medium. This concept can be applied
in a similar manner to electromagnetic waves in a plasma. Hence, we define the
refractive index as

N = kc
ω

. (6.24)

Because of the proportionality of N and k, we can also define a refractive index
vector N = (c/ω)k. Obviously, this is the complement to the phase velocity because
it points in the direction of wave propagation but has a magnitude ∝ v−1

ϕ . As in
optics, the concept of refractive index is useful for wave refraction, ray tracing, or
interferometry.

6.2 The General Dispersion Relation

In this Section, we discuss the wave equation in Fourier representation. Using the
vector identity k × (k × Ê) = (kk − k2I)Ê, the homogeneous wave equation for the
Fourier amplitudes (6.7) can be transformed into one of the following forms

{
kk − k2 I + ω2

c2 I + iωµ0σ (ω)

}
· Ê = 0 (6.25)

{
kk − k2 I + ω2

c2 ε(ω)

}
· Ê = 0 . (6.26)

Here, the dyadic product kk of the wave vectors is defined as the tensor

kk =





kx kx kx ky kx kz

kykx kyky kykz

kzkx kzky kzkz



 . (6.27)
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the electrons will oscillate about their mean position while the much heavier ions
will be immobile. Hence, we are allowed to consider the plasma as a set of dipoles
formed by pairs consisting of an electron oscillating about a corresponding ion at
rest. Such a medium is characterized by the dielectric displacement

D̂(ω) = ε0ε(ω)Ê(ω) . (6.12)

Noting that for a given frequency ω, the displacement current can be considered as
the sum of the vacuum displacement current plus the conduction current,

∂D
∂t

= ε0
∂E
∂t

+ j = ε0ε(ω)
∂E
∂t

. (6.13)

This gives us a relation between the dielectric function ε(ω) and the electric con-
ductivity σ (ω)

ε(ω) = 1 + i
ωε0

σ (ω) . (6.14)

In the following, we will call ε(ω) the dielectric function when the frequency depen-
dence is considered. For a specific value of ω, we will name ε(ω) the dielectric
constant for that frequency.

In an unmagnetized plasma, σ (ω) and ε(ω) are simple scalar functions of the
wave frequency ω. A magnetized plasma, however, is anisotropic because of the
different motion along and across the magnetic field. Therefore, dielectric function
and conductivity then become tensors, see Sect. 3.2 of Appendix.

εω = I + i
ωε0

σω . (6.15)

Here, I is the unit tensor. This means that the electric field vector E and the electric
current vector j may be no longer parallel to each other. Moreover, collisions of the
plasma particles make the plasma a lossy dielectric medium and ε(ω) is in general
a complex function.

In conclusion, there are two different views of the plasma medium. For weak
losses, the plasma behaves mostly as a dielectric and is described by a dielectric
function (or tensor) ε(ω), in which the real part is dominant over the imaginary part.
When the collisions are frequent, the plasma behaves mainly as a conductor and is
described by a complex conductivity σ (ω), in which the imaginary part represents
phase shifts resulting from inertial effects. In the following, we will be mostly inter-
ested in cases, where the plasma waves are weakly damped. Then, the dielectric
tensor elements are mostly real quantities. Therefore, we will prefer the dielectric
description of a plasma.

−
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determines the propagation speed and polarization of the plasma waves. This model
is developed step by step starting from Maxwell’s equations.

6.1.1 Basic Concepts

Plasma waves are described by the set of Maxwell’s equations

∇ × E = −∂B
∂t

(6.1)

∇ × B = µ0

(
j + ε0

∂E
∂t

)
(6.2)

and a proper equation of motion for the plasma species that establishes the relation
between the alternating electric current j(E)

j = ne(vi − ve) , (6.3)

and the electric field. The simplest case is the description of the plasma particles in
the model of single-particle motion. The velocities ve,i are solutions of Newton’s
equation that is expanded by an additional friction force that is described by a colli-
sion frequency νm for momentum loss,

m (v̇ + νmv) = q(E + v × B) . (6.4)

In warm plasmas, we could include pressure effects by solving the MHD equations
for the variable j. Other effects related to the distribution function of velocities, e.g.,
Landau damping, will be discussed in Chap. 9.

For discussing the propagation properties of the waves, we make the additional
simplifying assumption that, at a chosen angular frequency ω, the relation between
the alternating current j(ω) and the electric field strength at that frequency E(ω) is
linear or can be linearized by suitable approximations

j(ω) = σ (ω) · E(ω) . (6.5)

Here, σ (ω) is the frequency-dependent conductivity. Taking the curl in the induction
law (6.1), we obtain the wave equation

∇ × (∇ × E) = −∇ × ∂B
∂t

= − ∂

∂t
(∇ × B)

= −µ0ε0
∂2E
∂t2 − µ0

∂j
∂t

. (6.6)
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14



EM Waves without Magnetic Field

134 6 Plasma Waves

determines the propagation speed and polarization of the plasma waves. This model
is developed step by step starting from Maxwell’s equations.

6.1.1 Basic Concepts

Plasma waves are described by the set of Maxwell’s equations

∇ × E = −∂B
∂t

(6.1)

∇ × B = µ0

(
j + ε0

∂E
∂t

)
(6.2)

and a proper equation of motion for the plasma species that establishes the relation
between the alternating electric current j(E)

j = ne(vi − ve) , (6.3)

and the electric field. The simplest case is the description of the plasma particles in
the model of single-particle motion. The velocities ve,i are solutions of Newton’s
equation that is expanded by an additional friction force that is described by a colli-
sion frequency νm for momentum loss,

m (v̇ + νmv) = q(E + v × B) . (6.4)

In warm plasmas, we could include pressure effects by solving the MHD equations
for the variable j. Other effects related to the distribution function of velocities, e.g.,
Landau damping, will be discussed in Chap. 9.

For discussing the propagation properties of the waves, we make the additional
simplifying assumption that, at a chosen angular frequency ω, the relation between
the alternating current j(ω) and the electric field strength at that frequency E(ω) is
linear or can be linearized by suitable approximations

j(ω) = σ (ω) · E(ω) . (6.5)

Here, σ (ω) is the frequency-dependent conductivity. Taking the curl in the induction
law (6.1), we obtain the wave equation

∇ × (∇ × E) = −∇ × ∂B
∂t

= − ∂

∂t
(∇ × B)

= −µ0ε0
∂2E
∂t2 − µ0

∂j
∂t

. (6.6)

−

136 6 Plasma Waves

the electrons will oscillate about their mean position while the much heavier ions
will be immobile. Hence, we are allowed to consider the plasma as a set of dipoles
formed by pairs consisting of an electron oscillating about a corresponding ion at
rest. Such a medium is characterized by the dielectric displacement

D̂(ω) = ε0ε(ω)Ê(ω) . (6.12)
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Here, I is the unit tensor. This means that the electric field vector E and the electric
current vector j may be no longer parallel to each other. Moreover, collisions of the
plasma particles make the plasma a lossy dielectric medium and ε(ω) is in general
a complex function.

In conclusion, there are two different views of the plasma medium. For weak
losses, the plasma behaves mostly as a dielectric and is described by a dielectric
function (or tensor) ε(ω), in which the real part is dominant over the imaginary part.
When the collisions are frequent, the plasma behaves mainly as a conductor and is
described by a complex conductivity σ (ω), in which the imaginary part represents
phase shifts resulting from inertial effects. In the following, we will be mostly inter-
ested in cases, where the plasma waves are weakly damped. Then, the dielectric
tensor elements are mostly real quantities. Therefore, we will prefer the dielectric
description of a plasma.
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6.6 Waves in Magnetized Plasmas

In this Section, we will discuss the influence of a magnetic field on the propagation
of plasma waves. To avoid the entanglement of magnetic field effects and pressure
effects, we restrict the discussion to cold plasmas. This allows us to use the single
particle model. The starting point is again Newton’s equation of motion

∂v(α)

∂t
= qα

mα

(
E1 + v(α) × B0

)
α = e, i . (6.80)

Here, v(α) represents the velocity of particle oscillations, E1 the wave electric field
and B0 = (0, 0, B0) a static magnetic field. The oscillation velocity and the electric
field are considered as small quantities, so we will retain only linear terms contain-
ing these quantities. For the same reason we have neglected the wave magnetic field
B1 because it would form a second-order term v(α) × B1 in the Lorentz force.

6.6.1 The Dielectric Tensor

To reduce the cluttering with subscripts and superscripts, we drop the symbol α for
the particle species in the following and distinguish the particles by their q and m
values. The interesting new effects in the dielectric tensor arise from the particle
motion across the magnetic field

v̂x = i
q
ωm

(Êx + v̂y B0) , v̂y = i
q
ωm

(Êy − v̂x B0) . (6.81)

The ideal way to describe the gyromotion of the particles is using rotating vectors
for the velocities and the electric field

v̂± = v̂x ± iv̂y , Ê± = Êx ± iÊy . (6.82)

In this way we can decouple the particle motion in (6.81)

v̂± = i
q
ωm

(Ê± ∓ iv̂± B0) . (6.83)

The cyclotron frequencies for electrons and ions are defined as

ωce = eB0

me
ωci = |q|B0

mi
, (6.84)

which results in

v̂± = i
q
m

Ê± 1
ω ∓ sωc

. (6.85)
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(Êy − v̂x B0) . (6.81)

The ideal way to describe the gyromotion of the particles is using rotating vectors
for the velocities and the electric field

v̂± = v̂x ± iv̂y , Ê± = Êx ± iÊy . (6.82)
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Ê± 1
ω ∓ sωc

. (6.85)

156 6 Plasma Waves

6.6 Waves in Magnetized Plasmas

In this Section, we will discuss the influence of a magnetic field on the propagation
of plasma waves. To avoid the entanglement of magnetic field effects and pressure
effects, we restrict the discussion to cold plasmas. This allows us to use the single
particle model. The starting point is again Newton’s equation of motion

∂v(α)

∂t
= qα

mα

(
E1 + v(α) × B0

)
α = e, i . (6.80)

Here, v(α) represents the velocity of particle oscillations, E1 the wave electric field
and B0 = (0, 0, B0) a static magnetic field. The oscillation velocity and the electric
field are considered as small quantities, so we will retain only linear terms contain-
ing these quantities. For the same reason we have neglected the wave magnetic field
B1 because it would form a second-order term v(α) × B1 in the Lorentz force.

6.6.1 The Dielectric Tensor

To reduce the cluttering with subscripts and superscripts, we drop the symbol α for
the particle species in the following and distinguish the particles by their q and m
values. The interesting new effects in the dielectric tensor arise from the particle
motion across the magnetic field

v̂x = i
q
ωm
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Here, s = q/|q| is the sign of the particle charge. Transforming back to Cartesian
coordinates

v̂x = 1
2
(v̂+ + v̂−) , v̂y = 1

2i
(v̂+ − v̂−) , (6.86)

we obtain the matrix relation




v̂x
v̂y
v̂z



 = i
q
ωm





ω2

ω2 − ω2
c

i
sωωc

ω2 − ω2
c

0

−i
sωωc

ω2 − ω2
c

ω2

ω2 − ω2
c

0

0 0 1




·




Êx

Êy

Êz



 . (6.87)

In the last line of this matrix equation we have used the result from the unmagnetized
plasma. Using the definition of the particle oscillating current ĵ = ∑

α
nαqα v̂(α) we

obtain the conductivity tensor as

σ (ω) = iωε0





∑
α

ω2
pα

ω2 − ω2
cα

i
∑
α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω
0

−i
∑
α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω

∑

α

ω2
pα

ω2 − ω2
cα

0

0 0
∑

α

ω2
pα

ω2





(6.88)

and with the aid of (6.14) the dielectric tensor

ε(ω) =




S −iD 0

iD S 0
0 0 P



 , (6.89)

in which we have used the parameters S, P , and D introduced by Thomas H. Stix
[100, 112]

S = 1 −
∑

α

ω2
pα

ω2 − ω2
cα

D =
∑

α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω

P = 1 −
∑

α

ω2
pα

ω2 . (6.90)
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the electrons will oscillate about their mean position while the much heavier ions
will be immobile. Hence, we are allowed to consider the plasma as a set of dipoles
formed by pairs consisting of an electron oscillating about a corresponding ion at
rest. Such a medium is characterized by the dielectric displacement

D̂(ω) = ε0ε(ω)Ê(ω) . (6.12)

Noting that for a given frequency ω, the displacement current can be considered as
the sum of the vacuum displacement current plus the conduction current,

∂D
∂t

= ε0
∂E
∂t

+ j = ε0ε(ω)
∂E
∂t

. (6.13)

This gives us a relation between the dielectric function ε(ω) and the electric con-
ductivity σ (ω)

ε(ω) = 1 + i
ωε0

σ (ω) . (6.14)

In the following, we will call ε(ω) the dielectric function when the frequency depen-
dence is considered. For a specific value of ω, we will name ε(ω) the dielectric
constant for that frequency.

In an unmagnetized plasma, σ (ω) and ε(ω) are simple scalar functions of the
wave frequency ω. A magnetized plasma, however, is anisotropic because of the
different motion along and across the magnetic field. Therefore, dielectric function
and conductivity then become tensors, see Sect. 3.2 of Appendix.

εω = I + i
ωε0

σω . (6.15)

Here, I is the unit tensor. This means that the electric field vector E and the electric
current vector j may be no longer parallel to each other. Moreover, collisions of the
plasma particles make the plasma a lossy dielectric medium and ε(ω) is in general
a complex function.

In conclusion, there are two different views of the plasma medium. For weak
losses, the plasma behaves mostly as a dielectric and is described by a dielectric
function (or tensor) ε(ω), in which the real part is dominant over the imaginary part.
When the collisions are frequent, the plasma behaves mainly as a conductor and is
described by a complex conductivity σ (ω), in which the imaginary part represents
phase shifts resulting from inertial effects. In the following, we will be mostly inter-
ested in cases, where the plasma waves are weakly damped. Then, the dielectric
tensor elements are mostly real quantities. Therefore, we will prefer the dielectric
description of a plasma.
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Here, s = q/|q| is the sign of the particle charge. Transforming back to Cartesian
coordinates

v̂x = 1
2
(v̂+ + v̂−) , v̂y = 1

2i
(v̂+ − v̂−) , (6.86)

we obtain the matrix relation




v̂x
v̂y
v̂z



 = i
q
ωm





ω2

ω2 − ω2
c

i
sωωc

ω2 − ω2
c

0

−i
sωωc

ω2 − ω2
c

ω2

ω2 − ω2
c

0

0 0 1




·




Êx

Êy

Êz



 . (6.87)

In the last line of this matrix equation we have used the result from the unmagnetized
plasma. Using the definition of the particle oscillating current ĵ = ∑

α
nαqα v̂(α) we

obtain the conductivity tensor as

σ (ω) = iωε0





∑
α

ω2
pα

ω2 − ω2
cα

i
∑
α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω
0

−i
∑
α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω

∑

α

ω2
pα

ω2 − ω2
cα

0

0 0
∑

α

ω2
pα

ω2





(6.88)

and with the aid of (6.14) the dielectric tensor

ε(ω) =




S −iD 0

iD S 0
0 0 P



 , (6.89)

in which we have used the parameters S, P , and D introduced by Thomas H. Stix
[100, 112]

S = 1 −
∑

α

ω2
pα

ω2 − ω2
cα

D =
∑

α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω

P = 1 −
∑

α

ω2
pα

ω2 . (6.90)
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http://www.nytimes.com/2001/04/18/nyregion/thomas-h-stix-plasma-physicist-dies-at-76.html

Working both in the laboratory and with theoretical calculations, he found many ways to 
put waves to work in fusion research in succeeding decades, and his 1962 book, ''The 
Theory of Plasma Waves,'' codified the subject in mathematical form for the first time.
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Figure 1: CMA diagram for a two-component plasma. The ion-to-electron
mass ratio is chosen to be 2.5. Bounding surfaces appear as lines in this
two-dimensional parameter space. Cross sections of wave-normal surfaces
are sketched and labeled for each region. For these sketches the direction of
the magnetic field is vertical. The small mass ratio can be misleading here:
the L = 0 line intersects P = 0 at Ωi/ω = 1 − (Zme/mi). From T. Stix’s
book (AIP, 1992).
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Introducing further the refractive index N = kc/ω and the angle ψ between wave
vector and magnetic field direction, the wave (6.35) takes the form




S − N 2 cos2 ψ −iD N 2 cosψ sinψ

iD S − N 2 0
N 2 cosψ sinψ 0 P − N 2 sin2 ψ



 ·




Êx

Êy

Êz



 = 0 . (6.91)

Because of the rotational symmetry of the problem about the direction of the
magnetic field, we could arbitrarily choose the wave vector in the x-z plane,
k = (k sinψ, 0, k cosψ). Equation (6.91) is now defining the refractive index
N (ω, k,ψ), which we will start discussing for the principal directions ψ = 0
and ψ = π/2.

6.6.2 Circularly Polarized Modes and the Faraday Effect

We begin with studying the wave propagation along the magnetic field (ψ = 0).
Then the wave equation has the particular form




S − N 2 −iD 0

iD S − N 2 0
0 0 P



 ·




Êx

Êy

Êz



 = 0 . (6.92)

Here, we have to distinguish two cases:

1. Êx = Êy = 0 und Êz "= 0. This is a longitudinal wave that is described by
the dispersion relation P = 1 − (ω2

pe + ω2
pi)/ω

2 = 0. In fact, we find the
plasma oscillations again, which appeared in the unmagnetized case. Obviously,
the magnetic field has no effect on the wave because the oscillations are aligned
with the magnetic field and the Lorentz force vanishes.

2. Êx "= 0 "= Êy und Êz = 0. In this case we have transverse electromagnetic
waves that are described by a 2 × 2 system of equations

(
S − N 2 −iD

−iD S − N 2

)
·
(

Êx

Êy

)
= 0 . (6.93)

Introducing again the rotating electric field Ê± with (6.82)—this corresponds to a
circular polarization of the wave—the two equations are decoupled:

(S − D − N 2)Ê+ + (S + D − N 2)Ê− = 0 . (6.94)

When Ê+ "= 0 und Ê− = 0, we have a left-handed circularly polarized wave
(L-wave) with a refractive index NL = √

S − D. In the other case, Ê+ = 0 und
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Êz



 = 0 . (6.91)

Because of the rotational symmetry of the problem about the direction of the
magnetic field, we could arbitrarily choose the wave vector in the x-z plane,
k = (k sinψ, 0, k cosψ). Equation (6.91) is now defining the refractive index
N (ω, k,ψ), which we will start discussing for the principal directions ψ = 0
and ψ = π/2.

6.6.2 Circularly Polarized Modes and the Faraday Effect

We begin with studying the wave propagation along the magnetic field (ψ = 0).
Then the wave equation has the particular form




S − N 2 −iD 0

iD S − N 2 0
0 0 P



 ·




Êx
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(S − D − N 2)Ê+ + (S + D − N 2)Ê− = 0 . (6.94)
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Propagation ⊥ to B (ψ = π/2)
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Êx

Êy
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Ê− "= 0, the wave is a right-handed circularly polarized (R-mode), and the refrac-
tive index is NR = √

S + D.
Using the definitions of the parameters S and D we obtain

NR =
(

1 −
ω2

pe

ω(ω − ωce)
−

ω2
pi

ω(ω + ωci)

)1/2

(6.95)

NL =
(

1 −
ω2

pe

ω(ω + ωce)
−

ω2
pi

ω(ω − ωci)

)1/2

. (6.96)

For ω = ωce the refractive index of the R-mode approaches NR → ∞. The R-
mode is said to have a resonance at the electron cyclotron frequency. This resonance
becomes immediately evident when we see that the sense of rotation of the wave
vector and the electron are the same (Fig. 6.11). In the rotating frame of reference the
electron experiences a DC electric field and can gain energy indefinitely. The same
consideration applies to the L-mode, which has a resonance at the ion cyclotron
frequency.

Fig. 6.11 The sense of
rotation for the R-mode and
L-mode compared to the
gyromotion of electrons and
positive ions

E–= ER E+= EL

B

Fig. 6.12 The square of the refractive index for wave propagation along the magnetic field as a
function of frequency. For clarity, an artificial mass ratio me/mi = 0.4 was chosen. The R-mode
has a resonance, N 2 → ∞, at the electron cyclotron frequency whereas the L-wave shows a
resonance at (the lower) ion cyclotron frequency. In the high density limit ω2

pe & ω2
ce considered

here, only the R-wave is propagating between ion and electron cyclotron frequency while the L-
wave is in the cut-off, N 2 < 0
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The extraordinary mode or X-mode has E ⊥ B0 and is described by the 2 × 2
system of equations

(
S −iD

iD (S − N 2)

)
·
(

Êx

Êy

)
= 0 . (6.101)

Again, non-vanishing solutions for E are found when the determinant of the matrix
becomes zero, yielding a refractive index given by

NX =
(

S2 − D2

S

)1/2

. (6.102)

Resonances appear when the Stix parameter S vanishes (S = 0). In the case of very
high frequencies, we can neglect the ion contributions in S, and find the so-called
upper-hybrid resonance frequency

ωuh = (ω2
ce + ω2

pe)
1/2 . (6.103)

For intermediate frequencies, there is a second zero of S, which defines the lower
hybrid resonance frequency

ωlh =
(

ω2
ci +

ω2
piω

2
ce

ω2
pe + ω2

ce

)1/2

. (6.104)

In the limit of high electron density,ω2
pe $ ω2

ce, the lower hybrid frequency becomes
ωlh ≈ (ωciωce)

1/2 The behavior of the refractive index for the X-mode and O-mode
as a function of wave frequency is shown in Fig. 6.15.

Fig. 6.15 The square of the
refractive index for wave
propagation perpendicular to
the magnetic field as a
function of frequency. An
artificial mass ratio
me/mi = 0.4 is chosen. The
X-mode has resonances at the
lower hybrid frequency ωlh
and the upper hybrid
frequency ωuh

Extra-Ordinary Mode Plus: Ordinary Mode
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The transverse waves are twofold degenerate corresponding to the two possible
directions of polarization in y or z-direction. The case of longitudinal waves will
be postponed to Sect. 6.5.1. Here, we will focus on the transverse waves. For this
purpose we set Êx = 0 and retain only the middle line in the set of (6.35),

(

−k2 +
ω2 − ω2

pe

c2

)

Êy = 0 . (6.36)

Since Êy "= 0 we conclude that the factor in parantheses must vanish, yielding

ω2 = ω2
pe + k2c2 . (6.37)

The same result is obtained from the last line of (6.35) because of the degeneracy.
The explicit form of the dispersion relation for the transverse wave becomes

ω =
(
ω2

pe + k2c2
)1/2

. (6.38)

Since we have k in x-direction and Ê in y-direction the vector product k × Ê
is nonzero and the induction law (6.10) gives an associated wave magnetic field.
Therefore, the transverse wave is an electromagnetic mode. When we consider the
limit of vanishing electron density, the electron plasma frequency goes to zero and
the wave dispersion takes the limiting form ω = kc, which is the light wave in
vacuum. The transverse mode in an unmagnetized plasma is therefore the light wave
modified by the presence of the plasma as a dielectric medium.

The wave dispersion of the electromagnetic wave is shown in Fig. 6.3. The
transverse wave is only propagating for ω > ωpe. Therefore, we call the electron
plasma frequency the cut-off frequency for the electromagnetic mode. In the limit
of very high frequencies the dispersion approaches the light wave in vacuum. This
case is different from the limit of vanishing plasma density because, with increasing

Fig. 6.3 Dispersion relation
for electromagnetic waves in
an unmagnetized plasma.
Wave propagation is only
possible for frequencies
larger than the plasma
frequency. For ω $ ωpe the
wave dispersion approaches
the light wave in vacuum
ω = kc
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Êy = 0 . (6.36)
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vacuum. The transverse mode in an unmagnetized plasma is therefore the light wave
modified by the presence of the plasma as a dielectric medium.

The wave dispersion of the electromagnetic wave is shown in Fig. 6.3. The
transverse wave is only propagating for ω > ωpe. Therefore, we call the electron
plasma frequency the cut-off frequency for the electromagnetic mode. In the limit
of very high frequencies the dispersion approaches the light wave in vacuum. This
case is different from the limit of vanishing plasma density because, with increasing

Fig. 6.3 Dispersion relation
for electromagnetic waves in
an unmagnetized plasma.
Wave propagation is only
possible for frequencies
larger than the plasma
frequency. For ω $ ωpe the
wave dispersion approaches
the light wave in vacuum
ω = kc

24



Next …
• APS Division of Plasma Physics (Next Week)


• Chapter 7: “Plasma Boundaries” (Monday, November 6)


• Probes (!)


• More plasma boundaries, and


• Wednesday, November 8: Review


• Quiz #2: Monday, November 13
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