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Last Lecture
• Introduction to plasma waves 

• Basic review of electromagnetic waves in various media (conducting, 
dielectric, gyrotropic, …) 

• Basic waves concepts (especially plane waves) 

• Electromagnetic waves in unmagnetized plasma 

• Electrostatic waves in unmagnetized plasma
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This Lecture

• Wave energy density and its relationship to the dispersion function, D(ω) 

• Measurement of electrostatic plasma waves 

• Waves in a (cold) magnetized plasma 

3



The Sounds of Interstellar Space
NASA Science Editorial Team
OCT 31, 2013

ARTICLE
 
Nov. 1, 2013: Scifi movies are sometimes criticized when explosions in the void make noise. As the old saying 
goes, “in space, no one can hear you scream.” Without air there is no sound.
But if that’s true, what was space physicist Don Gurnett talking about when he stated at a NASA press 
conference in Sept. 2013 that he had heard "the sounds of interstellar space?"
It turns out that space can make music … if you know how to listen.

https://science.nasa.gov/science-research/planetary-science/01nov_ismsounds/ 

https://space.physics.uiowa.edu/plasma-wave/space-audio/ 

https://science.nasa.gov/science-research/planetary-science/01nov_ismsounds/
https://space.physics.uiowa.edu/plasma-wave/space-audio/
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Review of EM Waves

134 6 Plasma Waves

determines the propagation speed and polarization of the plasma waves. This model
is developed step by step starting from Maxwell’s equations.

6.1.1 Basic Concepts

Plasma waves are described by the set of Maxwell’s equations

∇ × E = −∂B
∂t

(6.1)

∇ × B = µ0

(
j + ε0

∂E
∂t

)
(6.2)

and a proper equation of motion for the plasma species that establishes the relation
between the alternating electric current j(E)

j = ne(vi − ve) , (6.3)

and the electric field. The simplest case is the description of the plasma particles in
the model of single-particle motion. The velocities ve,i are solutions of Newton’s
equation that is expanded by an additional friction force that is described by a colli-
sion frequency νm for momentum loss,

m (v̇ + νmv) = q(E + v × B) . (6.4)

In warm plasmas, we could include pressure effects by solving the MHD equations
for the variable j. Other effects related to the distribution function of velocities, e.g.,
Landau damping, will be discussed in Chap. 9.

For discussing the propagation properties of the waves, we make the additional
simplifying assumption that, at a chosen angular frequency ω, the relation between
the alternating current j(ω) and the electric field strength at that frequency E(ω) is
linear or can be linearized by suitable approximations

j(ω) = σ (ω) · E(ω) . (6.5)

Here, σ (ω) is the frequency-dependent conductivity. Taking the curl in the induction
law (6.1), we obtain the wave equation

∇ × (∇ × E) = −∇ × ∂B
∂t

= − ∂

∂t
(∇ × B)

= −µ0ε0
∂2E
∂t2 − µ0

∂j
∂t

. (6.6)

134 6 Plasma Waves

determines the propagation speed and polarization of the plasma waves. This model
is developed step by step starting from Maxwell’s equations.

6.1.1 Basic Concepts

Plasma waves are described by the set of Maxwell’s equations

∇ × E = −∂B
∂t

(6.1)

∇ × B = µ0

(
j + ε0

∂E
∂t

)
(6.2)

and a proper equation of motion for the plasma species that establishes the relation
between the alternating electric current j(E)

j = ne(vi − ve) , (6.3)

and the electric field. The simplest case is the description of the plasma particles in
the model of single-particle motion. The velocities ve,i are solutions of Newton’s
equation that is expanded by an additional friction force that is described by a colli-
sion frequency νm for momentum loss,

m (v̇ + νmv) = q(E + v × B) . (6.4)

In warm plasmas, we could include pressure effects by solving the MHD equations
for the variable j. Other effects related to the distribution function of velocities, e.g.,
Landau damping, will be discussed in Chap. 9.

For discussing the propagation properties of the waves, we make the additional
simplifying assumption that, at a chosen angular frequency ω, the relation between
the alternating current j(ω) and the electric field strength at that frequency E(ω) is
linear or can be linearized by suitable approximations

j(ω) = σ (ω) · E(ω) . (6.5)

Here, σ (ω) is the frequency-dependent conductivity. Taking the curl in the induction
law (6.1), we obtain the wave equation

∇ × (∇ × E) = −∇ × ∂B
∂t

= − ∂

∂t
(∇ × B)

= −µ0ε0
∂2E
∂t2 − µ0

∂j
∂t

. (6.6)

8



Review of EM Waves
6.1 Maxwell’s Equations and the Wave Equation 135

With µ0ε0 = 1/c2, the wave equation for the electric field takes the form

∇ × (∇ × E) + 1
c2

∂2E
∂t2 = −µ0

∂j
∂t

. (6.7)

6.1.2 Fourier Representation

The wave equation has solutions that are plane monochromatic waves of the form

E = Ê exp[i(k · r − ωt)]

B = B̂ exp[i(k · r − ωt)]

j = ĵ exp[i(k · r − ωt)] . (6.8)

Here, k is the wave vector, which describes the direction of wave propagation. The
magnitude of the wave vector is related to the wavelength by k = 2π/λ. The wave
amplitudes Ê and ĵ are complex quantities, which give us a simple way to include
a phase shift between current density and electric field. Both are functions of fre-
quency and wavenumber, e.g., Ê = Ê(ω, k). Using this plane wave representation,
we can establish simple substitution rules for the differential operations in the wave
equation

∇ × E → ik × Ê , ∇ · E → ik · Ê ,
∂

∂t
E → −iωÊ . (6.9)

In this way Maxwell’s equations (6.1) and (6.2) can be rewritten in terms of a set of
algebraic relations between the complex wave amplitudes

ik × Ê = iωB̂ (6.10)

ik × B̂ = −iωε0µ0Ê + µ0 ĵ0 . (6.11)

Here, the term exp[i(k · r − ωt)] describing the phase evolution in space and time
could be dropped.

6.1.3 Dielectric or Conducting Media

Since we have assumed a linear relation between the alternating current and the
electric field, we can give different interpretations to the current density. When we
consider the plasma as a dielectric medium, we can think of the wiggling motion
of electrons and ions as a polarization current, which can be combined with the
vacuum displacement current ε0(∂E/∂t). In the limit of very high frequencies only
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∂

∂t
E → −iωÊ . (6.9)
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6.2 The General Dispersion Relation 139

In an anisotropic medium, such as a magnetized plasma, the direction of the
group velocity is not necessarily parallel to the phase velocity. There are exotic
situations, e.g., for Whistler waves, where phase velocity and group velocity can
become even perpendicular to each other [99, 100].

6.1.6 Refractive Index

In optics the refractive index of a transparent medium is defined as the ratio of the
speed of light in vacuum to the speed in that medium. This concept can be applied
in a similar manner to electromagnetic waves in a plasma. Hence, we define the
refractive index as

N = kc
ω

. (6.24)

Because of the proportionality of N and k, we can also define a refractive index
vector N = (c/ω)k. Obviously, this is the complement to the phase velocity because
it points in the direction of wave propagation but has a magnitude ∝ v−1

ϕ . As in
optics, the concept of refractive index is useful for wave refraction, ray tracing, or
interferometry.

6.2 The General Dispersion Relation

In this Section, we discuss the wave equation in Fourier representation. Using the
vector identity k × (k × Ê) = (kk − k2I)Ê, the homogeneous wave equation for the
Fourier amplitudes (6.7) can be transformed into one of the following forms

{
kk − k2 I + ω2

c2 I + iωµ0σ (ω)

}
· Ê = 0 (6.25)

{
kk − k2 I + ω2

c2 ε(ω)

}
· Ê = 0 . (6.26)

Here, the dyadic product kk of the wave vectors is defined as the tensor

kk =





kx kx kx ky kx kz

kykx kyky kykz

kzkx kzky kzkz



 . (6.27)

6.2 The General Dispersion Relation 139

In an anisotropic medium, such as a magnetized plasma, the direction of the
group velocity is not necessarily parallel to the phase velocity. There are exotic
situations, e.g., for Whistler waves, where phase velocity and group velocity can
become even perpendicular to each other [99, 100].

6.1.6 Refractive Index

In optics the refractive index of a transparent medium is defined as the ratio of the
speed of light in vacuum to the speed in that medium. This concept can be applied
in a similar manner to electromagnetic waves in a plasma. Hence, we define the
refractive index as

N = kc
ω

. (6.24)

Because of the proportionality of N and k, we can also define a refractive index
vector N = (c/ω)k. Obviously, this is the complement to the phase velocity because
it points in the direction of wave propagation but has a magnitude ∝ v−1

ϕ . As in
optics, the concept of refractive index is useful for wave refraction, ray tracing, or
interferometry.

6.2 The General Dispersion Relation

In this Section, we discuss the wave equation in Fourier representation. Using the
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All of the plasma 
physics here

9



Wave Energy Density (Poynting’s Theorem)
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Electrostatic Waves

152 6 Plasma Waves

which is the defining condition for the dispersion of an electrostatic wave. It further
implies that, in a cold plasma, this electrostatic wave only exists for ω = ωpe.
These are Langmuir’s plasma oscillations, in which the electrons oscillate about
their equilibrium at the electron plasma frequency. Although we have found a wave
solution, the dispersion relation turns out to be independent of k. This means that
the plasma oscillations cannot form propagating wave packets because the group
velocity is zero.

6.5.2 Bohm-Gross Waves

When we consider a warm electron gas, in which pressure forces have a similar
magnitude as the electric force, the Langmuir oscillations discussed above become
dispersive. The dispersion relation can be derived as follows: We start with adding
the pressure per particle to Newton’s equation in one space dimension, because the
electrostatic waves are one-dimensional

mv̇ = −q
dφ
dx

− γ

n
d(nkBT )

dx
. (6.62)

We have introduced the concept of adiabatic compression with an adiabatic expo-
nent γ = 3 (for one-dimensional motion) to take into account that the pressure
in the wave field changes on a rapid time scale. The velocity fluctuations can be
transformed into density fluctuations by using the equation of continuity

∂n
∂t

+ ∂

∂x
(nv) = 0 . (6.63)

First, we split the density and velocity into equilibrium part and fluctuating part,
n = n0 + n̂ exp[i(kx − ωt)], v = v0 + v̂ exp[i(kx − ωt)]. We further assume that
the electron gas is at rest, v0 = 0. The wave amplitudes n̂ and v̂ and the potential
fluctuation φ̂ are first-order quantities. Then, we replace the differential operators
by frequency and wavenumber according to the substitution rules (6.9). This gives
the equation of motion (6.62) as

− iωmv̂ = −ikqφ̂ − ikγ kBT n̂ . (6.64)

Likewise, the continuity equation takes the form

− iωn̂ + ikn0v̂ = 0 , (6.65)

which we use to substitute the velocity fluctuation by the corresponding density
fluctuation

v̂ = ω

k
n̂
n0

. (6.66)
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Electron Pressure
Force
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Electrostatic Plasma Waves
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Particle Conservation

Momentum Dynamics
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Electrostatic Plasma Waves

Electron Pressure
Force

6.5 Electrostatic Waves 153

For eliminating the potential fluctuations, we use Poisson’s equation ∂2φ/∂x2 =
(q/ε0)(ne − ni) in Fourier notation, and insert the linearized electron density with
the result

− k2φ̂ = q
ε0

n̂ . (6.67)

Combining (6.64), (6.66) and (6.67), we obtain

ω =
(
ω2

pe + 3
2

k2v2
Te

)1/2

= ωpe

(
1 + 3k2λ2

De

)1/2
(6.68)

with the characteristic electron thermal speed vTe = (2kBTe/me)
1/2. This is the

dispersion relation for electron acoustic waves in a warm plasma, which were first
described by David Bohm (1917–1992) and Eugene P. Gross (1926–) [110, 111].

We will see in Sect. 9.3.3 that the electron acoustic waves experience damping
by kinetic effects (which are not contained in this fluid model) as soon as kλDe ≈ 1.
Therefore, weakly damped waves are only found in the long wavelength limit. The
dispersion relation is displayed in Fig. 9.8 of Sect. 9.3.2.

6.5.3 Ion-Acoustic Waves

When we allow that the ions can take part in the wave motion, there is a second
electrostatic wave in a plasma with warm electrons. This is possible for wave fre-
quencies much smaller than the electron plasma frequency. Note that the plasma
cut-off was a feature of the transverse electromagnetic mode and does not affect the
existence of low-frequency electrostatic modes.

When we consider low-frequency modes, the electron motion is only governed
by pressure forces and inertial forces can be neglected. On the other hand, we can
treat the ions as a fluid that is governed by the interplay of electric field force, ion
inertia and ion pressure. It is wise to allow for different equilibrium densities of
electrons and ions. While a two-component plasma of electrons and positive ions
has ne0 = ni0 because of quasineutrality, we will consider a more general case,
where the difference of the densities is caused by the presence of a third negative
species. These can either be negative ions or negatively charged dust.

The equation of motion for electrons and ions reads in Fourier notation

− iωmiv̂i = eÊ − ik
ni0

(γikBTi)n̂i (6.69)

0 = −eÊ − ik
ne0

(kBTe)n̂e . (6.70)

Electron Pressure
Force

13



Electrostatic Ion Sound Waves

Electron Pressure
Force

Ion Pressure
Force

6.5 Electrostatic Waves 153

For eliminating the potential fluctuations, we use Poisson’s equation ∂2φ/∂x2 =
(q/ε0)(ne − ni) in Fourier notation, and insert the linearized electron density with
the result

− k2φ̂ = q
ε0

n̂ . (6.67)

Combining (6.64), (6.66) and (6.67), we obtain

ω =
(
ω2

pe + 3
2

k2v2
Te

)1/2

= ωpe

(
1 + 3k2λ2

De

)1/2
(6.68)

with the characteristic electron thermal speed vTe = (2kBTe/me)
1/2. This is the

dispersion relation for electron acoustic waves in a warm plasma, which were first
described by David Bohm (1917–1992) and Eugene P. Gross (1926–) [110, 111].

We will see in Sect. 9.3.3 that the electron acoustic waves experience damping
by kinetic effects (which are not contained in this fluid model) as soon as kλDe ≈ 1.
Therefore, weakly damped waves are only found in the long wavelength limit. The
dispersion relation is displayed in Fig. 9.8 of Sect. 9.3.2.

6.5.3 Ion-Acoustic Waves

When we allow that the ions can take part in the wave motion, there is a second
electrostatic wave in a plasma with warm electrons. This is possible for wave fre-
quencies much smaller than the electron plasma frequency. Note that the plasma
cut-off was a feature of the transverse electromagnetic mode and does not affect the
existence of low-frequency electrostatic modes.

When we consider low-frequency modes, the electron motion is only governed
by pressure forces and inertial forces can be neglected. On the other hand, we can
treat the ions as a fluid that is governed by the interplay of electric field force, ion
inertia and ion pressure. It is wise to allow for different equilibrium densities of
electrons and ions. While a two-component plasma of electrons and positive ions
has ne0 = ni0 because of quasineutrality, we will consider a more general case,
where the difference of the densities is caused by the presence of a third negative
species. These can either be negative ions or negatively charged dust.

The equation of motion for electrons and ions reads in Fourier notation

− iωmiv̂i = eÊ − ik
ni0

(γikBTi)n̂i (6.69)

0 = −eÊ − ik
ne0

(kBTe)n̂e . (6.70)
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Eliminating the ion velocity fluctuations by means of the continuity (6.66), we
obtain the density fluctuations of electrons and ions for a given wave field Ê as

n̂i = ek
−iω2mi + ik2γikBTi

Ê (6.71)

n̂e = −e
ikkBTe

Ê , (6.72)

where we have assumed that the electron gas experiences an isothermal compression
while the ion compression is adiabatic. This assumption is justified because the
electrons move across many wavelengths during one cycle of this low-frequency
wave, which justifies to consider the electron gas as a heat reservoir for the wave.
The latter aspect also justifies to neglect temperature fluctuations of the electrons.
The ions, on the other hand, are slow and do not move far from their starting position
during one wave period.

At last, Poisson’s equation becomes

ik Ê = e
ε0

(n̂i − n̂e) (6.73)

and defines the condition for the consistency of the fluctuating field with the space
charges. We then obtain

ik Ê =
(

ni0e2

ε0mi

)
k

−iω2 + ik2γikBTi/mi
Ê +

(
ne0e2

ε0kBTe

)
1
ik

Ê . (6.74)

Introducing the ion plasma frequency ωpi = (ni0e2/ε0mi)
1/2 and the electron Debye

length λDe = (ne0e2/ε0kBTe)
1/2, we find the following dielectric function

ε(k,ω) = 1 −
ω2

pi

ω2 − k2γikBTi/mi
+ 1

k2λ2
De

. (6.75)

The dispersion relation of the electrostatic wave is again given by ε(k,ω) = 0 and
can be solved for ω2

ω2 = k2

(
γ ikBTi

mi
+

ω2
piλ

2
De

1 + k2λ2
De

)

. (6.76)

Here Cs = ωpiλDe is the ion sound speed and we call this wave mode the ion
acoustic wave.

In most gas discharge plasmas Te " Ti. In that limit the first term in the paren-
theses can be dropped and we find

ω ≈ k Cs√
1 + k2λ2

De

. (6.77)

Look!
No electron acceleration

154 6 Plasma Waves

Eliminating the ion velocity fluctuations by means of the continuity (6.66), we
obtain the density fluctuations of electrons and ions for a given wave field Ê as
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Ê (6.71)

n̂e = −e
ikkBTe
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Ê , (6.72)

where we have assumed that the electron gas experiences an isothermal compression
while the ion compression is adiabatic. This assumption is justified because the
electrons move across many wavelengths during one cycle of this low-frequency
wave, which justifies to consider the electron gas as a heat reservoir for the wave.
The latter aspect also justifies to neglect temperature fluctuations of the electrons.
The ions, on the other hand, are slow and do not move far from their starting position
during one wave period.

At last, Poisson’s equation becomes

ik Ê = e
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Fig. 6.10 Ion-acoustic wave
(solid line) and
dust-ion-acoustic wave
(dashed line). The acoustic
limits of the IAW and DIAW
dispersion are indicated by
dotted lines. The DIAW has
an increased phase velocity

For small wavenumbers (k2λ2
De ! 1) this wave has acoustic dispersion ω = kCs

(see the asymptotes in Fig. 6.10). In the opposite case of large wavenumbers, the
wave frequency approaches ωpi.

In a plasma with ne0 "= ni0, the ion-sound speed can be rewritten as

Cs =
(

ni0kBTe

ne0mi

)1/2

. (6.78)

When ne0 = ni0, one is tempted to interpret the ion-acoustic wave as the interplay
of a pressure force associated with the electrons and an inertia residing in the ions,
as we have in ordinary sound waves in a neutral gas

cs =
(
γ p
ρ

)1/2

. (6.79)

This interpretation is obviously wrong, when we notice that the numerator in (6.78)
is ni0kBTe rather than ne0kBTe, as we would need for the electron pressure. The same
problem arises in the denominator with the ion mass density. Hence, the picture of
the mechanism behind the ion-acoustic wave must be revised. The apparent paradox
can be resolved by considering the electrons not as a gas that exerts a pressure but
rather as a fluid of the opposite charge that shields the electric repulsion between the
ions. Therefore, the phase velocity increases, when the electron density is reduced,
which means that the interaction between the ions is approaching their naked repul-
sion. This effect is well known from negative ion plasmas as can be read from the
increase of the phase velocity with increasing ratio n+/ne, see Fig. 6.10b. Likewise,
the ion-acoustic wave in a dusty plasma has a higher phase velocity than in the
absence of dust, see Fig. 6.10a.
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Energy Density for Electrostatic Waves
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Damping and Dispersion
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Slowly-Varying Wave 
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Electrostatic Wave Energy Conservation
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Electrostatic Wave Energy Conservation

(This is an important slide.)
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John Malmberg and Chuck Wharton

The first experimental measurement of Landau Damping
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John Malmberg 
(obit, Nov 1992)

Prof. Malmberg joined UCSD from General Atomics in 1969 as a professor of physics. Much of his work revolved 
around theoretical and experimental investigations of fully ionized gases or plasmas. The field could offer insights 
into how stars work and how to ignite and control thermonuclear reactions to produce fusion energy--the power 
that drives the sun.


A plasma is the fourth state of matter, with solids, liquids and gases making up the other three. Most of the matter 
in the Universe is in the plasma state; for example, the matter of stars is composed of plasmas.


In recent years, Prof. Malmberg had been experimenting with pure electron plasmas that were trapped in a 
magnetic bottle. By contrast with electrically neutral plasmas that contain an equal number of positive and negative 
electrons, pure electron plasmas are rare in nature.


Before joining UCSD, Prof. Malmberg was director of the Plasma Turbulence group at General Atomics, where he 
carried out some of the first and most important experiments to test the basic principals of plasma physics. Perhaps 
his most important experiment involved the confirmation of the phenomenon called "Landau damping," where 
electrons surf on a plasma wave, stealing energy from the wave and causing it to damp (decrease in amplitude).


For his pioneering work in testing the basic principals of plasma, and for his more recent work with electron 
plasmas, Prof. Malmberg was named the recipient of the American Physical Society's James Clerk Maxwell Prize in 
Plasma Physics in 1985.
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Chuck Wharton 
(emeritus, Cornell)

25



26



548 PRINCiPLES OF PLASMA PHYSICS 

4 Movable 
Probes 

Magnetic Mirror 
K Gauss 

Coils Charged Plale 
(Eleclroslalic 
Eleclron Reflector) 

1----1---- 266 em ---+---,'-i 

Plasma Diameter V 
[

I Supressor Grid 

LDuoPlosmolron c V P to aCuum ump 
He Supply 
FIGURE 10.8,4 

Electron 
Gun 

Schematic of experiment used to investigate plasma wave echoes. [After j, H. 
Malmberg, et al., Proceedings of Conference on Phenomenes d'ionization dans les 
Gaz, 4; 229 (1963).1 

If L is large compared with the Landau damping length, and if w,/(w, - WI) 
is of order unity, this third electric field, which is the spatial plasma echo, appears 
at a position well separated from the first two electric field excitation positions. 
The experiment used by Malmberg et al. 1 to study the spatial plasma wave echoes 
is depicted schematically in Fig. 10.8.4. The plasma column is 180 cm long and 
5 cm in diameter, with a central density of 1.5 x 108 cm- 3. The axial magnetic 
field is 300 G and can be regarded as infinite for the purposes of the experiment. 
The plasma has a temperature of 9.4 eV and a Debye length of 2 mm. The 
electron mean free path is 105 cm for electron-ion collisions and 4 x 104 cm for 
electron-neutral collisions. The plasma column is surrounded by a 5.2-cm-
radius cylinder that acts as a waveguide beyond cutoff and reduces the stray 
electromagnetic coupling between the excitation and detection probes. 

A plasma wave echo obtained with this experiment is shown in the lower 
trace of Fig. 10.8.5. The upper trace is the spatial distribution of the 120-MHz 
signal in the vicinity of the excitation probe at x O. The middle trace is the 
spatial distribution of the l30-MHz signal in the vicinity of the second probe at 

1 J. H. Malmberg, C. B. Wharton, R. W. Gould, and T. M. O'Neil, Phys. Fluids, 
11: 1147 (1968). 

Description of the Experimental Device
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Waves in Magnetized Plasma

156 6 Plasma Waves

6.6 Waves in Magnetized Plasmas

In this Section, we will discuss the influence of a magnetic field on the propagation
of plasma waves. To avoid the entanglement of magnetic field effects and pressure
effects, we restrict the discussion to cold plasmas. This allows us to use the single
particle model. The starting point is again Newton’s equation of motion

∂v(α)

∂t
= qα

mα

(
E1 + v(α) × B0

)
α = e, i . (6.80)

Here, v(α) represents the velocity of particle oscillations, E1 the wave electric field
and B0 = (0, 0, B0) a static magnetic field. The oscillation velocity and the electric
field are considered as small quantities, so we will retain only linear terms contain-
ing these quantities. For the same reason we have neglected the wave magnetic field
B1 because it would form a second-order term v(α) × B1 in the Lorentz force.

6.6.1 The Dielectric Tensor

To reduce the cluttering with subscripts and superscripts, we drop the symbol α for
the particle species in the following and distinguish the particles by their q and m
values. The interesting new effects in the dielectric tensor arise from the particle
motion across the magnetic field

v̂x = i
q
ωm

(Êx + v̂y B0) , v̂y = i
q
ωm

(Êy − v̂x B0) . (6.81)

The ideal way to describe the gyromotion of the particles is using rotating vectors
for the velocities and the electric field

v̂± = v̂x ± iv̂y , Ê± = Êx ± iÊy . (6.82)

In this way we can decouple the particle motion in (6.81)

v̂± = i
q
ωm
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(Ê± ∓ iv̂± B0) . (6.83)

The cyclotron frequencies for electrons and ions are defined as

ωce = eB0

me
ωci = |q|B0

mi
, (6.84)

which results in

v̂± = i
q
m
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Here, s = q/|q| is the sign of the particle charge. Transforming back to Cartesian
coordinates

v̂x = 1
2
(v̂+ + v̂−) , v̂y = 1

2i
(v̂+ − v̂−) , (6.86)

we obtain the matrix relation




v̂x
v̂y
v̂z



 = i
q
ωm





ω2

ω2 − ω2
c

i
sωωc

ω2 − ω2
c

0

−i
sωωc

ω2 − ω2
c

ω2

ω2 − ω2
c

0

0 0 1




·




Êx

Êy

Êz



 . (6.87)

In the last line of this matrix equation we have used the result from the unmagnetized
plasma. Using the definition of the particle oscillating current ĵ = ∑

α
nαqα v̂(α) we

obtain the conductivity tensor as

σ (ω) = iωε0





∑
α

ω2
pα

ω2 − ω2
cα

i
∑
α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω
0

−i
∑
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sα
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ωcα

ω
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0 0
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α

ω2
pα

ω2





(6.88)

and with the aid of (6.14) the dielectric tensor

ε(ω) =




S −iD 0

iD S 0
0 0 P



 , (6.89)

in which we have used the parameters S, P , and D introduced by Thomas H. Stix
[100, 112]

S = 1 −
∑

α

ω2
pα

ω2 − ω2
cα

D =
∑

α

sα
ω2

pα

ω2 − ω2
cα

ωcα

ω

P = 1 −
∑

α

ω2
pα

ω2 . (6.90)
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the electrons will oscillate about their mean position while the much heavier ions
will be immobile. Hence, we are allowed to consider the plasma as a set of dipoles
formed by pairs consisting of an electron oscillating about a corresponding ion at
rest. Such a medium is characterized by the dielectric displacement

D̂(ω) = ε0ε(ω)Ê(ω) . (6.12)

Noting that for a given frequency ω, the displacement current can be considered as
the sum of the vacuum displacement current plus the conduction current,

∂D
∂t

= ε0
∂E
∂t

+ j = ε0ε(ω)
∂E
∂t

. (6.13)

This gives us a relation between the dielectric function ε(ω) and the electric con-
ductivity σ (ω)

ε(ω) = 1 + i
ωε0

σ (ω) . (6.14)

In the following, we will call ε(ω) the dielectric function when the frequency depen-
dence is considered. For a specific value of ω, we will name ε(ω) the dielectric
constant for that frequency.

In an unmagnetized plasma, σ (ω) and ε(ω) are simple scalar functions of the
wave frequency ω. A magnetized plasma, however, is anisotropic because of the
different motion along and across the magnetic field. Therefore, dielectric function
and conductivity then become tensors, see Sect. 3.2 of Appendix.

εω = I + i
ωε0

σω . (6.15)

Here, I is the unit tensor. This means that the electric field vector E and the electric
current vector j may be no longer parallel to each other. Moreover, collisions of the
plasma particles make the plasma a lossy dielectric medium and ε(ω) is in general
a complex function.

In conclusion, there are two different views of the plasma medium. For weak
losses, the plasma behaves mostly as a dielectric and is described by a dielectric
function (or tensor) ε(ω), in which the real part is dominant over the imaginary part.
When the collisions are frequent, the plasma behaves mainly as a conductor and is
described by a complex conductivity σ (ω), in which the imaginary part represents
phase shifts resulting from inertial effects. In the following, we will be mostly inter-
ested in cases, where the plasma waves are weakly damped. Then, the dielectric
tensor elements are mostly real quantities. Therefore, we will prefer the dielectric
description of a plasma.
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Êz



 . (6.87)

In the last line of this matrix equation we have used the result from the unmagnetized
plasma. Using the definition of the particle oscillating current ĵ = ∑
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nαqα v̂(α) we
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and with the aid of (6.14) the dielectric tensor

ε(ω) =




S −iD 0

iD S 0
0 0 P



 , (6.89)

in which we have used the parameters S, P , and D introduced by Thomas H. Stix
[100, 112]
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http://www.nytimes.com/2001/04/18/nyregion/thomas-h-stix-plasma-physicist-dies-at-76.html

Working both in the laboratory and with theoretical calculations, he found many ways to 
put waves to work in fusion research in succeeding decades, and his 1962 book, ''The 
Theory of Plasma Waves,'' codified the subject in mathematical form for the first time.
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Introducing further the refractive index N = kc/ω and the angle ψ between wave
vector and magnetic field direction, the wave (6.35) takes the form




S − N 2 cos2 ψ −iD N 2 cosψ sinψ

iD S − N 2 0
N 2 cosψ sinψ 0 P − N 2 sin2 ψ



 ·




Êx

Êy

Êz



 = 0 . (6.91)

Because of the rotational symmetry of the problem about the direction of the
magnetic field, we could arbitrarily choose the wave vector in the x-z plane,
k = (k sinψ, 0, k cosψ). Equation (6.91) is now defining the refractive index
N (ω, k,ψ), which we will start discussing for the principal directions ψ = 0
and ψ = π/2.

6.6.2 Circularly Polarized Modes and the Faraday Effect

We begin with studying the wave propagation along the magnetic field (ψ = 0).
Then the wave equation has the particular form




S − N 2 −iD 0

iD S − N 2 0
0 0 P



 ·




Êx

Êy

Êz



 = 0 . (6.92)

Here, we have to distinguish two cases:

1. Êx = Êy = 0 und Êz "= 0. This is a longitudinal wave that is described by
the dispersion relation P = 1 − (ω2

pe + ω2
pi)/ω

2 = 0. In fact, we find the
plasma oscillations again, which appeared in the unmagnetized case. Obviously,
the magnetic field has no effect on the wave because the oscillations are aligned
with the magnetic field and the Lorentz force vanishes.

2. Êx "= 0 "= Êy und Êz = 0. In this case we have transverse electromagnetic
waves that are described by a 2 × 2 system of equations

(
S − N 2 −iD

−iD S − N 2

)
·
(

Êx

Êy

)
= 0 . (6.93)

Introducing again the rotating electric field Ê± with (6.82)—this corresponds to a
circular polarization of the wave—the two equations are decoupled:

(S − D − N 2)Ê+ + (S + D − N 2)Ê− = 0 . (6.94)

When Ê+ "= 0 und Ê− = 0, we have a left-handed circularly polarized wave
(L-wave) with a refractive index NL = √

S − D. In the other case, Ê+ = 0 und
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circular polarization of the wave—the two equations are decoupled:

(S − D − N 2)Ê+ + (S + D − N 2)Ê− = 0 . (6.94)

When Ê+ "= 0 und Ê− = 0, we have a left-handed circularly polarized wave
(L-wave) with a refractive index NL = √

S − D. In the other case, Ê+ = 0 und

Good places to start:
Propagation along B (ψ = 0)
Propagation ⊥ to B (ψ = π/2)
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Introducing further the refractive index N = kc/ω and the angle ψ between wave
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iD S − N 2 0
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Ê− "= 0, the wave is a right-handed circularly polarized (R-mode), and the refrac-
tive index is NR = √

S + D.
Using the definitions of the parameters S and D we obtain

NR =
(

1 −
ω2

pe

ω(ω − ωce)
−

ω2
pi

ω(ω + ωci)

)1/2

(6.95)

NL =
(

1 −
ω2

pe

ω(ω + ωce)
−

ω2
pi

ω(ω − ωci)

)1/2

. (6.96)

For ω = ωce the refractive index of the R-mode approaches NR → ∞. The R-
mode is said to have a resonance at the electron cyclotron frequency. This resonance
becomes immediately evident when we see that the sense of rotation of the wave
vector and the electron are the same (Fig. 6.11). In the rotating frame of reference the
electron experiences a DC electric field and can gain energy indefinitely. The same
consideration applies to the L-mode, which has a resonance at the ion cyclotron
frequency.

Fig. 6.11 The sense of
rotation for the R-mode and
L-mode compared to the
gyromotion of electrons and
positive ions

E–= ER E+= EL

B

Fig. 6.12 The square of the refractive index for wave propagation along the magnetic field as a
function of frequency. For clarity, an artificial mass ratio me/mi = 0.4 was chosen. The R-mode
has a resonance, N 2 → ∞, at the electron cyclotron frequency whereas the L-wave shows a
resonance at (the lower) ion cyclotron frequency. In the high density limit ω2

pe & ω2
ce considered

here, only the R-wave is propagating between ion and electron cyclotron frequency while the L-
wave is in the cut-off, N 2 < 0
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The extraordinary mode or X-mode has E ⊥ B0 and is described by the 2 × 2
system of equations

(
S −iD

iD (S − N 2)

)
·
(

Êx

Êy

)
= 0 . (6.101)

Again, non-vanishing solutions for E are found when the determinant of the matrix
becomes zero, yielding a refractive index given by

NX =
(

S2 − D2

S

)1/2

. (6.102)

Resonances appear when the Stix parameter S vanishes (S = 0). In the case of very
high frequencies, we can neglect the ion contributions in S, and find the so-called
upper-hybrid resonance frequency

ωuh = (ω2
ce + ω2

pe)
1/2 . (6.103)

For intermediate frequencies, there is a second zero of S, which defines the lower
hybrid resonance frequency

ωlh =
(

ω2
ci +

ω2
piω

2
ce

ω2
pe + ω2

ce

)1/2

. (6.104)

In the limit of high electron density,ω2
pe $ ω2

ce, the lower hybrid frequency becomes
ωlh ≈ (ωciωce)

1/2 The behavior of the refractive index for the X-mode and O-mode
as a function of wave frequency is shown in Fig. 6.15.

Fig. 6.15 The square of the
refractive index for wave
propagation perpendicular to
the magnetic field as a
function of frequency. An
artificial mass ratio
me/mi = 0.4 is chosen. The
X-mode has resonances at the
lower hybrid frequency ωlh
and the upper hybrid
frequency ωuh
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The transverse waves are twofold degenerate corresponding to the two possible
directions of polarization in y or z-direction. The case of longitudinal waves will
be postponed to Sect. 6.5.1. Here, we will focus on the transverse waves. For this
purpose we set Êx = 0 and retain only the middle line in the set of (6.35),

(

−k2 +
ω2 − ω2

pe

c2

)

Êy = 0 . (6.36)

Since Êy "= 0 we conclude that the factor in parantheses must vanish, yielding

ω2 = ω2
pe + k2c2 . (6.37)

The same result is obtained from the last line of (6.35) because of the degeneracy.
The explicit form of the dispersion relation for the transverse wave becomes

ω =
(
ω2

pe + k2c2
)1/2

. (6.38)

Since we have k in x-direction and Ê in y-direction the vector product k × Ê
is nonzero and the induction law (6.10) gives an associated wave magnetic field.
Therefore, the transverse wave is an electromagnetic mode. When we consider the
limit of vanishing electron density, the electron plasma frequency goes to zero and
the wave dispersion takes the limiting form ω = kc, which is the light wave in
vacuum. The transverse mode in an unmagnetized plasma is therefore the light wave
modified by the presence of the plasma as a dielectric medium.

The wave dispersion of the electromagnetic wave is shown in Fig. 6.3. The
transverse wave is only propagating for ω > ωpe. Therefore, we call the electron
plasma frequency the cut-off frequency for the electromagnetic mode. In the limit
of very high frequencies the dispersion approaches the light wave in vacuum. This
case is different from the limit of vanishing plasma density because, with increasing

Fig. 6.3 Dispersion relation
for electromagnetic waves in
an unmagnetized plasma.
Wave propagation is only
possible for frequencies
larger than the plasma
frequency. For ω $ ωpe the
wave dispersion approaches
the light wave in vacuum
ω = kc
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Next Lectures

• Chapter 6: Problems 

• Seeking volunteers… 

• Chapter 7: “Plasma Boundaries” 

• Probes (!)
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Ch 6 Wave Problems

6.7 Resonance Cones 173

• Electrostatic waves are longitudinal, k||Ê, and are found in two frequency
regimes: Bohm–Gross modes for ω > ωpe and ion-acoustic waves for ω <

ωpi. The ion-acoustic speed is Cs = (kBTe/m i)
1/2.

• In magnetized plasma, the fundamental modes for propagation along the
magnetic field line have circular polarization. The refractive index of the R-
wave and L-wave are different. This leads to Faraday rotation of a linearly
polarized wave. The R-wave (L-wave) has a resonance at the electron (ion)
cyclotron frequency.

• Resonances correspond toN 2 → ∞, cut-offs to N 2 → 0.
• Waves propagating perpendicular to a magnetic field are the O-mode
(E||B0), which is unaffected by the magnetic field, and the X-mode, which
has resonances at the upper hybrid frequency ωuh = (ω2

pe + ω2
ce)

1/2 and
lower hybrid frequency ωlh ≈ (ωceωci)

1/2.

Problems

6.1 In the limit Ti $ Te the ion-acoustic wave has the dispersion relation

ω(k) = ωpiλDe k

(1+ k2λ2
De)

1/2

(a) Derive an expression for the phase velocity vϕ(k) and group velocity vg(k) as a
function of the wave number k.
(b) Discuss the result with respect to “acoustic behavior” at kλDe $ 1.

6.2 Assume that in a dielectric medium the relation vϕ · vg = c2 holds. What is the
general shape of the dispersion relation ω(k) for this case?

6.3 (a) Show that forω2
pe % ω2

ce % ω2 the refractive index forWhistler waves takes
the limiting form

N = ωpe

(ωωce)1/2

(b) Calculate phase and group velocity and show that vgr = 2vϕ .

6.4 Determine the minimum plasma density at which a He-Ne Laser at λ = 633nm
wavelength will be reflected.

6.5 Consider an electron-positron plasma with ne = np. What is the cut-off fre-
quency for electromagnetic waves in this system?

6.6 The plasma of the ionospheric F-layer has a density ne ≈ 2 × 1012 m−3. The
typical magnetic field at mid-latitude is B = 50µT. Calculate the electron plasma
frequency fpe, electron cyclotron frequency fce and the upper hybrid frequency fuh.

6.7 Prove that vϕ = vgr requires ω = vϕ k.

—— —— 6.1

—— —— 6.2

—— —— 6.3
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—— —— 6.5
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