Lecture10: Plasma Physics 1

APPH E6101x Columbia University

- Conservation principles in magnetized plasma ("frozen-in" and conservation of particles/flux tubes)
- Alfvén waves (without plasma pressure)

Last Lecture

- Quiz 1: Wednesday
- Introduction to plasma waves
 - Basic review of electromagnetic waves in various media (conducting, dielectric, gyrotropic, ...)
 - Basic waves concepts (especially plane waves)
- Electromagnetic waves in *unmagnetized* plasma
- Electrostatic waves in *unmagnetized* plasma

This Lecture

More Practice Problems

AP 6101 Practice for Quiz #1 *From Fitzpatrick, and Gurnett and Bhattacharjee*

Dielectric of a Magnetized Plasma

the electric field inside the plasma is

where

 ϵ

and $V_A = B/\sqrt{\mu_0 n_e m_i}$ is the so-called Alfvén velocity.

2. A quasi-neutral slab of cold (i.e., $\lambda_D \rightarrow 0$) plasma whose bounding surfaces are normal to the x-axis consists of electrons of mass m_e , charge -e, and mean number density n_e , as well as ions of mass m_i , charge e, and mean number density n_e . The slab is fully magnetized by a uniform *y*-directed magnetic field of magnitude B. The slab is then subject to an externally generated, uniform, x-directed electric field that is gradually ramped up to a final magnitude E_0 . Show that, as a consequence of ion polarization drift, the final magnitude of

$$E_1 \simeq \frac{E_0}{\epsilon},$$

$$= 1 + \frac{c^2}{V_A^2},$$

 $\mathbf{E} = E_{z} \mathbf{e}_{z}$, where

 $E_{z}(z) = E_{0}$

and

E

Here, λ_D is the Debye length, e the magnitude of the electron charge, and m_i the ion mass.

Thermal Equilibrium

5. A uniform isothermal quasi-neutral plasma with singly-charged ions is placed in a relatively weak gravitational field of acceleration $\mathbf{g} = -g \mathbf{e}_z$. Assuming, first, that both species are distributed according to the Maxwell-Boltzmann statistics; second, that the perturbed electrostatic potential is a function of zonly; and, third, that the electric field is zero at z = 0 (and well behaved as $z \to \infty$), demonstrate that the electric field in the region z > 0 takes the form

$$\int \left[1 - \exp\left(\frac{\sqrt{2}z}{\lambda_D}\right)\right],$$

$$E_0 = \frac{m_i g}{2 e}.$$

Adiabatic Invariants

magnetic well of the form

B(x,t)

where B_0 is constant, and k(t) is a very slowly increasing function of time. Suppose that the particle's mirror points lie at $x = \pm x_m(t)$, and that its bounce time is $\tau_b(t)$. Demonstrate that, as a consequence of the conservation of the first and second adiabatic invariants,

$$x_m(t) =$$

$$\tau_b(t) =$$

$$\mathcal{E}(t) = \mathcal{E}(t)$$

Here, $\mathcal{E}_{0\perp}$ is the perpendicular energy [i.e., $(1/2) m v_{\perp}^2$], and $\mathcal{E}_{0\parallel}$ is the parallel energy [i.e., $(1/2) m v_{\parallel}^2$], both evaluated at x = 0 and t = 0. Assume that the particle's gyroradius is relatively small, and that the electric field-strength is negligible.

6. A particle of charge e, mass m, and energy \mathcal{E} , is trapped in a one-dimensional

$$= B_0 \, (1 + k^2 \, x^2),$$

$$x_m(0) \left[\frac{k(0)}{k(t)} \right]^{1/2},$$

$$\tau_b(0) \left[\frac{k(0)}{k(t)} \right],$$

$$\mathcal{E}_{0\perp} + \left[\frac{k(t)}{k(0)} \right] \mathcal{E}_{0\parallel}.$$

7

Drift Velocity w Collisions

8. Consider a spatially uniform, unmagnetized plasma in which both species have zero mean flow velocity. Let n_e and T_e be the electron number density and temperature, respectively. Let **E** be the ambient electric field. The electron distribution function f_e satisfies the simplified kinetic equation

$$-\frac{e}{m_e}\mathbf{E}\cdot\nabla_v f_e = C_e.$$

We can crudely approximate the electron collision operator as

$$C_e = -\nu_e \left(f_e - f_0 \right)$$

where v_e is the effective electron-ion collision frequency, and

$$f_0 = \frac{n_e}{\pi^{3/2} v_{te}^3} \exp\left(-\frac{v^2}{v_{te}^2}\right).$$

Here, $v_{te} = \sqrt{2} T_e/m_e$. Suppose that $E \ll m_e v_e v_{te}/e$. Demonstrate that it is a good approximation to write

$$f_e = f_0 + \frac{e}{m_e \, \nu_e} \, \mathbf{E} \cdot \nabla_v f_0.$$

Hence, show that

$$\mathbf{j} = \boldsymbol{\sigma} \mathbf{E},$$

where

$$\sigma = \frac{e^2 n_e}{m_e v_e}$$

Static MHD Equilibrium

 $\mathbf{B} = \nabla P$ can be written

$$\frac{\partial}{\partial\rho} \left(P + \frac{B_{\phi}^2}{2\mu_0} \right)$$

Show that $[(\mathbf{B} \cdot \nabla)\mathbf{B}]_{\rho} = -B_{\phi}^2/\rho$. $(\nabla \times \mathbf{G}).$

7.6. For a force-balanced MHD equilibrium in a cylindrical geometry with $\mathbf{B} =$ $[0, B_{\phi}(\rho), B_{z}(\rho)]$ the radial component of the pressure balance condition J ×

$$+ \frac{B_z^2}{2\mu_0} \bigg) = [(\mathbf{B} \cdot \nabla)\mathbf{B}]_{\rho}.$$

Hint: Use the identity $\nabla(\mathbf{F} \cdot \mathbf{G}) = (\mathbf{F} \cdot \nabla)\mathbf{G} + (\mathbf{G} \cdot \nabla)\mathbf{F} + \mathbf{F} \times (\nabla \times \mathbf{G}) + \mathbf{G} \times \mathbf{G}$

Alfvén Waves with Collisions/Viscosity

1. We can add viscous effects to the MHD momentum equation by including a term $\mu \nabla^2 \mathbf{V}$, where μ is the dynamic viscosity, so that

$$\rho \, \frac{d\mathbf{V}}{dt} = \mathbf{j} \times \mathbf{b} - \nabla p + \mu \, \nabla^2 \mathbf{V}.$$

Likewise, we can add finite conductivity effects to the Ohm's law by including the term $(1/\mu_0 \sigma) \nabla^2 \mathbf{B}$, to give

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{V} \times \mathbf{B}) + \frac{1}{\mu_0 \sigma} \nabla^2 \mathbf{B}$$

Show that the modified dispersion relation for Alfvén waves can be obtained from the standard one by multiplying both ω^2 and V_S^2 by a factor

$$[1 + i k^2 / (\mu_0 \sigma \omega)],$$

and ω^2 by an additional factor

$$[1 + i \mu k^2 / (\rho_0 \omega)].$$

If the finite conductivity and viscous corrections are small (i.e., $\sigma \rightarrow \infty$ and $\mu \rightarrow 0$), show that, for parallel ($\theta = 0$) propagation, the dispersion relation for the shear-Alfvén wave reduces to

$$k \simeq \frac{\omega}{V_A} + i \frac{\omega^2}{2 V_A^3} \left(\frac{1}{\mu_0 \sigma} + \frac{\mu}{\rho_0} \right).$$

Wave (Helmholtz) Equation

- $\frac{j^2 f}{j \ell^2} = e^2 \frac{j^2 f}{j \ell^2}$ (with c ~ constant)
 - SOLUTION: $f(x,t) = f(x \pm c \cdot t)$
 - $\frac{2f}{2\epsilon} = \pm c f' \qquad \frac{2f}{2x} = f'$ $\frac{2^{2}f}{2\epsilon} = c^{2} f'' \qquad \frac{2^{2}f}{2x^{2}} = f''$

f(x, E) f(x, E) FOR (SIMPLE) HELAHOLTZ EQ, FOR (SIMPLE) HELAHOLTZ EQ, WAVES MOVE AT CONSTANT WAVES MOVE AT CONSTANT Speen C WITHOUT DISTORTION!

AMPLITUDE

FREQUENCY = (3 = 2# Q RAD/SEC (C) = FREQUENCE IN HERTZ

 $\varphi(x+) = \frac{2\pi}{\lambda} (x \pm c+) = PHASE DE WAVE$

"HASE FRONTS" ANE SURFACES OF CONSTANT PHASE

"PHASE FRONTS" NOUR AT SPEEDC C = PHASE VELOCITY

Plane Waves

$\varphi = \mathbf{k} \cdot \mathbf{r} - \omega t$

Wave Eq in Multiple Dimensions

 $\frac{\partial^2 f}{\partial t^2} = c^2 \nabla^2 f$

PLANE WAVES:

 $\overline{\mathbf{h}} = \left(\begin{array}{cc} 2\pi \\ \overline{\mathbf{\lambda}} \\ \end{array}, \begin{array}{c} 2\pi \\ \overline{\mathbf{\lambda}} \\ \end{array} \right)$ WAUE UECTOR

The POINTS IN THE BI

f(x, y, z, t) = A Sin(

OTHEN SOLUTIONS: - Sum or FLANG WANTS

$$\varphi = \mathbf{k} \cdot \mathbf{r} - \omega t$$

$$\varphi = \mathbf{k} \cdot \mathbf{r} - \omega t$$

$$\mathbf{E} = \hat{\mathbf{E}} \exp[i(\mathbf{k} \cdot \mathbf{r} - \mathbf{k})]$$

ωt ωt $\omega t)].$

CYLINDRICH COURDINATES : $\frac{2^{2}f}{2t^{2}} = c^{2} \left[\frac{1}{2} \frac{2}{2} \left(\frac{2f}{2r} \right) + \frac{1}{2^{2}} \frac{2^{2}f}{2y^{2}} + \frac{2^{2}f}{2z^{2}} \right]$

CHUOSE SEPARATION OF VARIABLES

 $f(1, \varphi, z, z) \sim g(1) e e e$ $\frac{2^{2} + 2^{2}}{2 \varphi^{2}} = -m^{2} + \frac{2^{2} + 2^{2}}{2 z^{2}} - \frac{1}{2} + \frac{1}{2} +$ $\frac{2^{2}f}{2t^{2}} = -\omega^{2}f$ So WAUR EQJATION IS:

 $\frac{1}{2} - \frac{23}{2} + \frac{4}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1$

BRSSELS Eduction

CAN BE PUT

INTO

Wave Eq in Cylindrical Coordinates

$$\frac{m^{2}}{n^{2}} - \frac{h^{2}}{2} \int f(n) = 0$$

$$\frac{1}{2} \int \int \left(\sqrt{\frac{m}{c}} \right)^{2} - h^{2} n \int \frac{1}{2} \int \frac{1}{2$$

IF f (4, +) AND f2 (x, +) AND SOLUTIOUS TO HELMHOLTZ EQUATION, THEN f. +f, is ALSO A SOLUTION. (THE EQUATION IS LINEAR!)

 $f(x,t) = f_1(h_1x - \omega_1t) + f_2(h_2x - \omega_2t)$ (For ExAmple) = $S_{in}(h_{i}x - \omega_{i}t) + S_{in}(h_{i}x - \omega_{i}t)$

=
$$2 \cos\left(\frac{h_{1}-h_{2}}{2} \times -\frac{\omega_{1}-\omega_{2}}{2} + \right) \int dx$$

WAUG PHASE FRONTS MOUR AT SPEED

WAR PACKETS MOUR AT SPEED

Wave Packets and **Group Velocity**

C= in = PHASE UELOCITY Cg = Au = group VELOCITY

Wave Dispersion

Score 9 Auss USLOCITY

$$SIN(h+-\omega t) = Re \left\{ e^{i\frac{\pi}{2}} e^{-j(\omega t - hx)} \right\} \qquad PHASON = e^{i\frac{\pi}{2}}$$

$$Cos(hx-\omega t) = Ro \left\{ o^{-j(\omega t - hx)} \right\} \qquad PHASON = 1$$

$$Cos(hx-\omega t) = Re \left\{ o^{i\theta} e^{-j(\omega t - hx)} \right\} \qquad PHASON = e^{i\theta}$$

$$Cos(hx-\omega t + \theta) = Re \left\{ o^{i\theta} e^{-j(\omega t - hx)} \right\} \qquad PHASON = e^{i\theta}$$

$$\int_{0}^{h} \frac{dx}{h} \cos(h_{k} - \omega t) = \int_{0}^{h} \frac{dx}{h} \sin(h_{k} - \omega t) = 0$$

$$\int_{0}^{h} \frac{dx}{h} \cos^{2}(h_{k} - \omega t) = \int_{0}^{2\pi} \frac{dx}{2\pi} \cos^{2}(\varepsilon - \omega t) = \frac{1}{2}$$

$$\int_{0}^{h} \frac{dx}{h} \cos(h_{k} - \omega t) \cos(h_{k} - \omega t + \theta) = \frac{1}{2} \cos(\theta)$$

$$\int_{0}^{h} \frac{dx}{h} \cos(h_{k} - \omega t) \sin(h_{k} - \omega t) = 0$$

$$\int_{0}^{h} \frac{dx}{h} \cos(h_{k} - \omega t) \sin(h_{k} - \omega t) = 0$$

$$\int_{0}^{h} \frac{dx}{h} \cos(h_{k} - \omega t) \sin(h_{k} - \omega t) = 0$$

$$\int_{0}^{h} \frac{dx}{h} \cos(h_{k} - \omega t) \sin(h_{k} - \omega t) = 0$$

$$\int_{0}^{h} \frac{dx}{h} \cos(h_{k} - \omega t) \sin(h_{k} - \omega t) = 0$$

$$\int_{0}^{h} \frac{dx}{h} \cos(h_{k} - \omega t) \sin(h_{k} - \omega t) = 0$$

$$\int_{0}^{h} \frac{dx}{h} \cos(h_{k} - \omega t) \sin(h_{k} - \omega t) = 0$$

$$\int_{0}^{h} \frac{dx}{h} \cos(h_{k} - \omega t) \sin(h_{k} - \omega t) = 0$$

$$\int_{0}^{h} \frac{dx}{h} \cos(h_{k} - \omega t) \sin(h_{k} - \omega t) = 0$$

$$\int_{0}^{h} \frac{dx}{h} \cos(h_{k} - \omega t) \sin(h_{k} - \omega t) = 0$$

Phasors, Sine, Cosine $\nabla \times \mathbf{E} \to \mathbf{i}\mathbf{k} \times \hat{\mathbf{E}}, \quad \nabla \cdot \mathbf{E} \to \mathbf{i}\mathbf{k} \cdot \hat{\mathbf{E}}, \quad \frac{\partial}{\partial t} \mathbf{E} \to -\mathbf{i}\omega\hat{\mathbf{E}}$

DE's become algebraic!

Review of EM Waves $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ $\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{j} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$ $\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mathbf{j} = \varepsilon_0 \overline{\varepsilon}(\omega) \frac{\partial \mathbf{E}}{\partial t}$ $\mathbf{j}(\omega) = \bar{\sigma}(\omega) \cdot \mathbf{E}(\omega)$ $\mathbf{E}(\omega) = \mathbf{1} + \frac{\mathbf{i}}{\omega \varepsilon_0} \,\overline{\sigma}(\omega)$

Review of EM Waves

$\nabla \times (\nabla \times \mathbf{E}) + \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = -\mu_0 \frac{\partial \mathbf{j}}{\partial t}$ $i\mathbf{k} \times \hat{\mathbf{E}} = i\omega \hat{\mathbf{B}}$ $\mathbf{i}\mathbf{k} \times \hat{\mathbf{B}} = -\mathbf{i}\omega\varepsilon_0\mu_0\hat{\mathbf{E}} + \mu_0\hat{\mathbf{j}}_0$ $\mathbf{k} \times (\mathbf{k} \times \hat{\mathbf{E}}) = (\mathbf{k}\mathbf{k} - k^2 \mathbf{I})\hat{\mathbf{E}}$

Normal Modes ("Dispersion Relation:)

 $\begin{pmatrix} k_x k_x - k^2 + \frac{\omega^2}{c^2} \varepsilon_{xx} & k_x k_y + \frac{\omega^2}{c^2} \varepsilon_{xy} & k_x k_z + \frac{\omega^2}{c^2} \varepsilon_{xz} \\ k_y k_x + \frac{\omega^2}{c^2} \varepsilon_{yx} & k_y k_y - k^2 + \frac{\omega^2}{c^2} \varepsilon_{yy} & k_y k_z + \frac{\omega^2}{c^2} \varepsilon_{yz} \\ k_z k_x + \frac{\omega^2}{c^2} \varepsilon_{zx} & k_z k_y + \frac{\omega^2}{c^2} \varepsilon_{zy} & k_z k_z - k^2 + \frac{\omega^2}{c^2} \varepsilon_{zz} \end{pmatrix} \cdot \begin{pmatrix} \hat{E}_x \\ \hat{E}_y \\ \hat{E}_z \end{pmatrix} = 0.$

$$\left[\mathbf{k}\mathbf{k}-k^{2}\boldsymbol{I}+\frac{\omega^{2}}{c^{2}}\boldsymbol{\varepsilon}(\omega)\right].$$

21

Waves in Unmagnetized Plasma Collisionless Collisional (reactive)

$$m\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = q\hat{\mathbf{E}}\mathrm{e}^{\mathrm{i}(\mathbf{k}\cdot\mathbf{r}-\omega t)}$$

90° out of phase

$$\hat{\mathbf{j}} = nq\hat{\mathbf{v}} = i\frac{ne^2}{\omega m}\hat{\mathbf{E}}$$

$$\sigma_{xx} = \sigma_{yy} = \sigma_{zz} = i \frac{ne^2}{\omega m}$$

$$\varepsilon_{xx} = \varepsilon_{yy} = \varepsilon_{zz} = 1 + \frac{i}{\omega\varepsilon_0}\sigma_{yy} = 1 - \frac{\omega_{pe}^2}{\omega^2}$$

(resistive)

 $m (-i\omega + v_m) \hat{v} = q \hat{E}$

$$\hat{v} = \begin{bmatrix} \frac{v_{\rm m}}{\omega^2 + v_{\rm m}^2} + \frac{i\omega}{\omega^2 + v_{\rm m}^2} \end{bmatrix} \frac{q}{m} \hat{E}$$
In phase
low-frequency)

$$\omega_{\rm pe} = \left(\frac{ne^2}{\varepsilon_0 m_{\rm e}}\right)^{1/2}$$

2

Waves in Unm

 $0 = D(\omega, \mathbf{k}) = \mathbf{d}$

agnetized Plasma
et
$$\begin{bmatrix} \mathbf{k}\mathbf{k} - k^{2}\mathbf{I} + \frac{\omega^{2}}{c^{2}}\boldsymbol{\epsilon}(\omega) \end{bmatrix}$$
 $\mathbf{k} = \{k_{x}, 0, 0\}$
 $\begin{pmatrix} 0 & 0 \\ k^{2} + \frac{\omega^{2}}{c^{2}}\left(1 - \frac{\omega_{pe}^{2}}{\omega^{2}}\right) & 0 \\ 0 & -k^{2} + \frac{\omega^{2}}{c^{2}}\left(1 - \frac{\omega_{pe}^{2}}{\omega^{2}}\right) \end{pmatrix} \cdot \begin{pmatrix} \hat{E}_{x} \\ \hat{E}_{y} \\ \hat{E}_{z} \end{pmatrix} = 0.$
(6.35)
 $v_{\varphi} = \left(\frac{\omega_{pe}^{2}}{k^{2}} + c^{2}\right)^{1/2}$
 $v_{gr} = \frac{kc^{2}}{\left(\omega_{pe}^{2} + k^{2}c^{2}\right)^{1/2}}$

Waves in Unmagnetized Plasma

Interferometry

tially reflecting mirror is the directional coupler for microwaves

Fig. 6.5 (a) Laser interferometer in Mach-Zehnder arrangement, (b) microwave interferometer. The optical arrangement uses partially-reflecting and fully-reflecting mirrors. The analog to a par-

Interferometry $\Delta \varphi = \frac{2\pi}{\lambda} \int \left[\mathcal{N}(x) - 1 \right] \mathrm{d}x$ $\mathcal{N} = \sqrt{1 - \omega_{\rm pe}^2 / \omega^2} \approx 1 - \frac{1}{2} \frac{\omega_{\rm pe}^2}{\omega^2} = 1 - \frac{1}{2} \frac{n}{n_{\rm co}}$

Table 6.1 Cut-off densities for microwave and laser interferometers

	Wavelength	Frequency	Cut-off-density
Source	λ	f	$n_{\rm co}({\rm m}^{-3})$
Microwave	3 cm	10 GHz	1.2×10^{18}
	8 mm	37 GHz	1.7×10^{19}
	4 mm	75 GHz	7.0×10^{19}
HCN-laser	337 µm	890 GHz	9.8×10^{21}
CO ₂ laser	10.6 µm	28 THz	9.9×10^{24}
He-Ne laser	3.39 µm	88 THz	9.7×10^{25}
	$0.633\mu m$	474 THz	2.8×10^{27}

density by counting interferometer *fringes*

Fig. 6.6 (a) Interferogram in a pulsed gas discharge. (b) Reconstruction of the decaying electron

27

Electrostatic Waves

$$nm\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) = nq(\mathbf{E}$$

$$\frac{\partial n}{\partial t} + \frac{\partial}{\partial x}(nv) = 0$$

$$m\dot{v} = -q \frac{d\phi}{dx} - \frac{\gamma}{n} \frac{d(nk_{\rm B}T)}{dx}$$

Electron Pressure
Force
$$+ \mathbf{u} \times \mathbf{B}) - \nabla p .$$

(5.28)

 $\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$ $-\nabla \cdot \nabla \Phi = - \frac{\rho}{\rho}$ ϵ_0 $k^2 \Phi = \frac{\rho}{\epsilon_0} \approx -\frac{e n_e}{\epsilon_0}$

Electrostatic Plasma Waves

$$\frac{\partial n}{\partial t} + \frac{\partial}{\partial x}(nv) = 0$$

 $-i\omega\hat{n} + ikn_0\hat{v} = 0$

$$m\dot{v} = -q\frac{d\phi}{dx} - \frac{\gamma}{n}\frac{d(nk_{\rm B}T)}{dx}$$
$$-i\omega m\hat{v} = -ikq\hat{\phi} - ik\gamma k_{\rm B}T\hat{n}$$
Electron Pressure

29

Force

 $\omega = \left(\omega_{\rm pe}^2 + \frac{3}{2}k^2v_{\rm Te}^2\right)^{1/2} = \omega_{\rm pe}\left(1 + 3k^2\lambda_{\rm De}^2\right)^{1/2}$ Electron Pressure Electron Pressure Force Force

Electrostatic Plasma Waves

Electrostatic Ion Sound Waves

Ion Pressure $-i\omega m_{i}\hat{v}_{i} = e\hat{E} - \frac{ik}{n_{i0}}(\gamma_{i}k_{B}T_{i})n$ $0 = -e\hat{E} - \frac{ik}{n_{e0}}(k_B T_e)$ Look! **Electron Pressure** No electron acceleration Force $k^2 \Phi = -\frac{\rho}{2}$ $ik\hat{E} = \left(\frac{n_{i0}e^2}{\varepsilon_0 m_i}\right) \frac{1}{-i\omega^2 + i}$

$$\hat{n}_{i} \qquad \hat{n}_{i} = \frac{ek}{-i\omega^{2}m_{i} + ik^{2}\gamma_{i}k_{B}T_{i}}\hat{E}$$
$$\hat{n}_{e} = \frac{-e}{ikk_{B}T_{e}}\hat{E},$$

$$\approx \frac{e}{\epsilon_0} \left(n_i - n_e \right)$$
$$\frac{k}{ik^2 \gamma_i k_B T_i / m_i} \hat{E} + \left(\frac{n_{e0} e^2}{\epsilon_0 k_B T_e} \right) \frac{1}{ik} \hat{E}$$

Electrostatic Ion Sound Waves

 $\varepsilon(k,\omega) = 1 - \frac{\omega_{\rm pi}^2}{\omega^2 - k^2 \gamma_{\rm i} k_{\rm B} T_{\rm i}/m_{\rm i}} + \frac{1}{k^2 \lambda_{\rm De}^2}$

$$\omega^2 = k^2 \left(\frac{\gamma_i k_B T_i}{m_i} + \frac{\omega_{pi}^2 \lambda_{De}^2}{1 + k^2 \lambda_{De}^2} \right)$$

$$\omega \approx \frac{k C_{\rm s}}{\sqrt{1 + k^2 \lambda_{\rm De}^2}}$$

Important Wave Concepts

- Linear vs. nonlinear
- Dispersion
- Phase and group velocity
- "Polarization" and wave structure
- Energy & intensity (Poynting's Theorem)
- Inhomogeneity

$$W = \frac{1}{2} \int_{V} dV (\mathbf{H} \cdot \mathbf{B} + \mathbf{E})$$

$$\frac{\partial W}{\partial t} + \int_{S} \mathbf{N} \cdot d\mathbf{S} = -\int_{V} dV \mathbf{J}$$

Quiz 1 Wednesday

- Chapter 6: "Plasma Waves"
 - Waves in magnetized plasma

Next Lecture: Video