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the deuterons from B10 (a,d)C12 and the protons from 
B10 (a,p)C12* (Q=0.981 Mev and Q=0.391 Mev) were 
hardly resolved in the backward direction, 1Jc.m.>90°. 
In Fig. 2 the theoretical angular distributions calculated 
from a simple stripping equation derived by Bhatia 
et al.3 are compared with the experiment, the theory 
being assumed to be applicable to the (a,d) reaction. 
We have calculated only Jj2 (KR) J2, considering the 
form factor nearly constant. In order to fit the calcu
lated functions to the experiment, it is necessary to 
assume ld= 2, R= 5.4X 10-13 em. The value required 
for R is a reasonable one that is used for interpreting 
the (d,p) stripping reaction.4 The fact that good agree
ment is found between the calculated distribution and 
the experimental one in the forward direction provides 
strong support for a direct process. The increase of in
tensity in the backward direction suggests that heavy
particle stripping may exist. Although the absolute 
differential cross-section measurements are not highly 
precise, it is to be noted that their magnitudes are 
fairly large and comparable with the largest values in 
B1D(a,p)C12 reactions. 

The angular distribution of the inverse reaction, 
Cl2(d,a)B10, has been measured at IJ<60° by El Bedewi 

3 Bhatia, Huang, Huby, and Newns, Phil. Mag. 43, 485 (1953). 
4 R. Huby, in Progress in Nuclear Physics, edited by 0. R. 

Frisch (Academic Press, New York, 1953), Vol. 3, p. 206. 

and Hussein6 at relatively high-deuteron bombarding 
energy of 8.9 Mev. The forward peak can approxi
mately be fitted to I j2(KR) j 2 with &-..-sx lQ--13 em, 
which is somewhat larger than the value employed for 
the B10(a,d)Cl2 reaction. The difference in the values of 
R between the two reactions may be due to the differ
ence in the bombarding energies employed and to in
completeness of the calculation. 

In conclusion, the results obtained in the present 
work indicate that the Bl0(a,d)C12 reaction at our rela
tively low bombarding energy proceeds mostly by a 
direct process as in the case of (a,p) and (a,a') reactions 
at high bombarding energy. The results also suggest 
that the probabilities of finding a deuteron and an 
alpha particle at the nuclear radii in B10 and C12, re
spectively, are fairly large. These features are very 
interesting in terms of a nuclear model, especially a 
cluster model in a light nucleus. 

A more detailed report is in preparation and will be 
published in the Journal of the Physical Society of Japan. 
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Stability of the Adiabatic Motion of Charged Particles in the Earth's Field* 
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The motion of charged particles in a magnetic field such as that of the earth or that of a magnetic mirror 
machine is discussed. It is shown that during the motion and drift of a relativistic particle, not only the 
magnetic moment, but also a longitudinal invariant and an additional flux invariant are adiabatically con
served. These conservation laws lead to retention of the particles in the field. The derivation of the adiabatic 
invariants leads to a set of equations of motion which describe the average drift of the particles from one 
force line to the other, and which also describe the changes that occur in the energies and periods associated 
with the motion. In the absence of scattering, loss of particles from the magnetic field will be due to the 
violation of the adiabatic laws. 

I. THE PROBLEM 

M OTION of charged particles outside the atmos
phere in the geomagnetic field has received 

recently increased attention because of the discovery 
of the Van Allen radiation belts and also because of the 
artificial temporary generation of exceedingly low 
intensity belts of this kind by small nuclear explosions.l 

*Work was performed under auspices of the U. S. Atomic 
Energy Commission. 

1 These experiments have become known under the code name, 
Argus. For description and results see, for example: N. C. Chris
tofilos, University of California Radiation Laboratory Report 
UCRL-5548 (to be published). Also, see the Proceedings of the 

It follows from the simplest considerations of the 
motion of particles in magnetic fields that many 
charged particles will oscillate between the north and 
south polar regions along magnetic lines and that they 
will be reflected by the mirrors formed by the stronger 
magnetic fields in high latitudes. It is also well known 
that due to the inhomogeneity of the earth's magnetic 
field electrons will drift from west to east and positive 
ions from east to west, giving rise in this manner to a 
corpuscular radiation belt. 

Argus Symposium held at the National Academy of Sciences, 
April 29, 1959 (to be published). 
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If one assumes that the earth's magnetic field 
possesses azimuthal symmetry and is independent of 
time, then it is obvious that after a circuit of the earth 
each particle returns to its original magnetic field line 
and will therefore not get lost by drifting away from 
the earth or else by drifting toward the atmosphere 
where it would be absorbed. In fact, however, the 
earth's magnetic field is not symmetrical about any 
axis. Furthermore since the field varies with time, the 
reason for the continued existence of a radiation belt is 
less obvious. 

Similar questions arise in connection with the mirror 
machines which have been used in an attempt to 
confine plasmas for the purpose of generating controlled 
thermonuclear power. The lines of force of a mirror 
machine having azimuthal symmetry about Z are 
shown in Fig. 1. Long containment times have been 
found2 for charged particles in such a laboratory-size 
mirror machine, and this containment time does not 
change when small azimuthal asymmetries are 
introduced. 

We shall show in this paper that long containment 
times are indeed to be expected, provided that the 
variation of the magnetic field with position and time 
is sufficiently slow. 

II. THE ADIABATIC MOTION OF 
CHARGED PARTICLES 

The concepts of guiding center motion and of 
adiabatic invariants are very useful in predicting the 
motion of a particle in a slowly varying field. In a 
magnetic field with time and space variations small 
compared to the period and radius of gyration of the 
particle, the particle moves approximately in a circle 
with a center moving rapidly along a line of force and 
drifting slowly at right angles to the line. 

The equations for this guiding center motion have 
been given by Spitzer3 and by Alfven4 and are written 
here in a form which remains valid for particles with 
relativistic5 energy. The rapid motion along the line 
~s given by 

dPn M iJB 
--= ---+eE·n, (1) 
dt 'Y as 

where B and E are the magnetic and electric fields, 
M=P12/2m0B is the well-known magnetic moment, 
P1 and P 11 are the components of the particle's rela-

2 G. Gibson and E. Lauer, Bull. Am. Phys. Soc. 3, 412 (1958). 
3 L. Spitzer, Astrophys. J. 116, 299 (1952). 
4 H. Alfven, Cosmical Electrodynamics (Clarendon Press, 

Oxford, 1950), Chap. II. 
6 If electric fields are absent, particle energy is constant, and 

the trajectory of a relativistic particle can be obtained from the 
nonrelativistic equation of motion for a particle of the same 
velocity and same total mass. 

tivistic momentum P perpendicular and parallel to B, 
and mo is the rest mass. The quantity 'Y equals total 
mass divided by m0 ; n is the unit vector B/ B along the 
line of force, and s is the distance along the line of 
force. 

The drift velocity Ua which moves the guiding center 
to a neighboring line is given by 

n ( M c c P n2 an) 
ud=-X -cE+-V'B+--- . 

B ')'e ')'e mo os 
(2) 

The first term of Ua is the velocity of a frame of reference 
in which the component of the electric field perpen
dicular to B is eliminated. The second term comes 
from the variation in the magnetic field over the circle 
of gyration. The third term is the drift due to the 
centrifugal force affecting a particle of velocity nvn. 

For Eq. (1) to be valid, the parallel electric force 
eE·n must not dominate the magnetic force term 
(Mh)(oB/os). If the parallel electric force is not 
small, the change in the magnetic field in one period 
of gyration is large and the guiding center concept is 
not valid. In addition, the magnetic moment M, which 
has been extensively studied by Kruskal, 6 will not be an 
adiabatic invariant. Also the derivation of (1) requires 
that the component of E perpendicular to B be small. 

Equation (2) is valid only if the three terms on the 
right-hand side are small compared to v, the velocity 
of the particle. If the first term is not small, the guiding 
center concept and invariance of M are still valid, but 
there are additional drift terms coming, for example, 
from the acceleration (d/ dt) (cEXn/ B), which are 
comparable to the V'B and on/os terms. In this paper 
we assume that E is small. 7 

Invariance of M predicts that, at a field of magnitude 
BT=P2/2Mm0, P 11 will vanish and that the particle 
will be reflected. If there are no electric fields, kinetic 
energy, hence P2, are constants of the motion and the 
particle will always reflect at the same magnitude of 
magnetic field, B= BT. The surfaces of constant B for 
the earth's field have the general shape shown in Fig. 2. 
The field is intentionally shown as nonazimuthally 
symmetric. 

The statements made so far (conservation of M and 
P2, constancy of BT) do not lead to the conclusion that 
a particle, after drifting around the earth, must return 
to the line of force from which it started. Actually 
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FIG. 2. Surfaces of con
stant magnetic field. 
strength and lines of force 
about the earth. 

6 M. Kruskal, Princeton University, Project Matterhorn 
Report PM-S-33 (NY0-7903), March, 1958 (unpublished). 

7 Or following Kruskal, E is assumed to go to zero as mole=•· 
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STABILITY OF ADIABATIC MOTION 217 

in the absence of azimuthal symmetry, there are field 
gradients and components of line curvature in the 
azimuthal direction, and by Eq. (2) these give drifts in 
a generally radial direction. In a static field it is never
theless true that the particle returns to its original line 
so long as the second or longitudinal adiabatic 
invariant, 8 

1= fP11ds, (3) 

is conserved. Here ds is the element of length of the line 
of force. The integral is taken over a complete oscil
lation along the line. In the next section we will prove 
that 1 is an adiabatic invariant if during a period of 
oscillation T the effects of the drift ua and the fractional 
change of B due to time dependence a,re small. The 
quantity 1 is the action variable for the parallel 
equation of motion {1) and it seems plausible that the 
number of quanta of action should be conserved in a 
slow process. But because of the slow drift off the line 
there is no strict analogy with one-dimensional motion 
and the proof in the next section seems necessary. Also 
the proof gives insight into the mechanism by which 
the particle drifts conserve 1 and supplies us with 
equations of motion for the average drift. But first we 
shall discuss consequences of the invariance of 1. 

In a static field invariance of 1 makes it unnecessary 
to integrate the guiding center equations of motion (1) 
and (2) to locate the particle after it has drifted once 
around the earth. If a particle starting from an interior 
line Q returned to line R of Fig. 2, it would have a 
larger 1 than if it returned to Q. In a dipole field 1 
increases faster than the first power of ro, where ro is the 
distance at the equator from the dipole to the line of 
force. The first power of r0 comes from the scaling of ds 
in j) P11ds. The "faster than" arises because P 11 is 
somewhat larger on R than on Q at a given latitude, 
since in the absence of electric fields, P 11 =P(l-B/BT)t 
and B is less on R. For the actual nonazimuthally 
symmetric field a qualitatively similar situation is 
encountered. Therefore, as has been pointed out 
previously,9 the particle must return to line Q after a 
circuit of the earth. As the particle drifts in longitude 
it sweeps out a "longitudinal invariant surface." Such 
an invariant surface is sketched in Fig. 3. 

The five quantities Pl, Pu, and the coordinates of 
position r at some time t are sufficient to specify the 
motion of a guiding center and therefore to specify the 
invariant surface on which it moves. The perpendicular 
momentum Pl can be replaced by M, and 1 can be used 
in place of Pu. Therefore 1, M, and rare also sufficient 
to specify a surface. In specifying a surface the position 
of the particle between reflection points on a give~ line 

8 According to Chew, Goldberger, and Low, Los Alamos 
Scientific Laboratory Report LA-2055 (unpublished), the existence 
of J was initially suggested by Rosenbluth. 

9 E. Teller, University of California Radiation Laboratory 
Report UCRL-5257, July 3, 1958 (unpublished). 

FrG. 3. A longitudinal 
invariant surface. '---+--EARTH 

LONGITUDINAL 
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is not of interest, nor is the particular line on the surface. 
Thus two of the five quantities are unnecessary and we 
expect the invariant surfaces to form in general a. 
three-parameter family, two of the parameters being 1 
andM. 

In static fields, the total energy K = (.P2c2+mo2c4) t+ eif> 
is constant and constitutes the third parameter, if> being 
the electrostatic potential. Then the longitudinal in
variant is given by 

f[( K-et/>)2 ]l 
1= . -c- -mi·c2-2MmoB ds. (4) 

The three constants of the motion 1, M, and K are 
then the three parameters which specify an invariant 
surface. 

If there are no electric fields, the system of surfaces 
is degenerate. For if if>=O, the momentum Pis constant 
and ( 4) reduces to 

1/P= f (1-B/BT)ids. (5) 

The two parameters 1/P and BT=P2/2Mm0 are then 
sufficient to specify a surface. Varying .P2 while holding 
.?2/M and 1/P constant changes the speed with which 
the particle traverses the same surface. For in the 
absence of electric fields, Eq. (2) can be written 

n P2c ["VB ( B )a"] Ua=-X-- --+2 1-- -. 
B 2')'emo BT BT os 

(6) 

It is apparent that the drift velocity is proportional to 
P2/'Y for a given BT. 

In the presence of static fields an infinite number of 
invariant surfaces intersect along a finite length of a 
line of force. Consider a particle as it rapidly oscillates 
between reflection points and drifts slowly at right 
angles to the line with velocity ua. The time average 
of the drift over a period T gives the adjacent line on 
which the particle is to be found at the end of the period. 
In the next section we prove that this time average 
of the drift conserves the longitudinal invariant 1. If 
two particles with the same M and K are started at 
different points on the same line, they will be on the 
same adjacent line one period later, but not at times in 
between. For only after one complete period have both 
particles experienced the same drifts (although in 
different time sequence). They have the same average 
drift and by Eq. (4) they have the same 1. But suppose 
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the two particles have different M or K. They then 
have different reflection points and different periods of 
oscillation. They do not experience the same drifts and 
their average drifts do not carry them to the same 
adjacent line. They therefore must be on different 
invariant surfaces. This conclusion is again in agreement 
with (4), since the J integral along a given line is a 
function of M and K. After each particle has drifted all 
the way around the earth, it will return to its original 
line. 

If a collection of particles with a distribution of M 
and K is injected along a line of force by an Argus-type 
explosion, then when the particles have drifted around 
on their respective surfaces there will be a layer of zero 
thickness at the injection longitude, but of greater 
thickness at other longitudes. We have estimated the 
maximum layer thickness to be of the order of the 
radius of the earth times the fractional azimuthal 
asymmetry of the magnetic field, or approximately 
300 km. 

To treat the case of the time-dependent field, the 
third or flux invariant <I> is needed, where <I> is the flux 
of B inside the invariant surface on which the particle 
is located. In Sec. V it will be proved that if the field 
varies slowly compared to the time for the particle 
to drift around the invariant surface then d<I>/dt=O. 
Although J and Mare also constants, their invariance 
is not sufficient to prescribe the particle motion, 
because K is no longer a constant. However if the 
variation is slow enough, <I> replaces K as a constant. 

To illustrate the use of the third invariant, consider 
an initially static field which undergoes slow changes 
and then at some later time returns to its original 
configuration. All the magnetic surfaces obviously 
return to their original geometry and any particle will 
be back on its original surface provided its K returns 
to its original value. But unless K has returned to its 
original value, <I> will be different since <I> is a function 
of J, M, and K. An example is furnished by the earth's 
rotation coupled with the azimuthal asymmetry of the 
field about the geographic axis. In a nonrotating frame 
an observer sees a time-dependent B field and an E 
field due to aBjat. The time scale of the variation is 
"-'24 hours. A particle which drifts around the earth in a 
fraction of an hour might satisfy the requirement for 
the invariance of <I>. The particle will then appear to 
move rapidly around a surface like that of Fig. 3, and 
the surface rotates slowly and rigidly with the earth. 

If time fluctuations are comparable to the drift 
time around the earth, but slow compared to T, then 
<I> is lost as an invariant, but J and Mare retained and 
may furnish useful information. If the fluctuations are 
comparable to T but slow compared to the gyration 
frequency, only M is invariant. One would therefore 
expect that, of the three invariants, M should be the 
most difficult to destroy. 

III. THE LONGITUDINAL INVARIANT, J=,rj'P11ds 

The particle (i.e., guiding center) motion has a 
component nvu along the line of force on which the 
particle is instantaneously located, and a perpendicular 
drift ud towards an adjacent line. Because J is an 
integral along the line, it is not changed by the parallel 
motion, but is changed by ud. It will be shown that 
dJ /dt does not in general vanish, but that the quantity 

<dJ) 1 f dsdJ 
dt = T ;;. dt 

does vanish,10 where the integral is to be evaluated 
along the line of force. 

In Fig. 4 is shown the line of force L 0 on which the 
particle is located at some instant of time. The particle 
is assumed to be on the arc element ds and drifting 
towards the adjacent line L1 with velocity ud. On L1 
the element of arc which is opposite ds will have a 
different length than ds because of the curvature. Also 
Pu will be different on the adjacent arc element because 
of Y' B and because of electric fields. The gradient of B 
changes the distribution of J>2 between P 112 and pJ.2 

without changing J>2 itself during the drift to the 
adjacent line. Electric fields change J>2. Both the change 
in Pu and in ds affect J. Since J on the adjacent line is 
an integral along that line, one must calculate the 
variation in Pu and arc length not only fords, but for all 
other arcs ds' on Lo between the reflection points. At 
any other arc ds' let V(s,s') be the velocity which 
carries a point from Lo to L1 in the same time that the 
actual particle on ds goes from Lo to L1• It is this 
velocity V, not the drift velocity ui at s', that is 
needed to compute dJ / dt at the instant the particle is at 
s. The velocities V (s,s') and u/ are not even in the same 
direction, except for the special case where the particle 
always drifts towards the same adjacent line at all 
points of its rapid motion along L 0• When the particle 
actually arrives at s', it will not be drifting towards L1, 

but towards some other line L2. However in the follow
ing analysis it will be shown that: The change in J due 
to ds' while the particle is on ds and drifting towards L 1 

just cancels the change in J due to ds while the particle 
is on ds' and drifting towards L2. This cancellation 
applies to all pairs of arc elements on L 0 and is the de
tailed mechanism by which the drifts make the net 
change in J between reflections vanish. 

There is a convenient way to describe the divergence
free field Band its vector potential A. One sets A=aY'{J, 
where a and fJ are two appropriate functions of r and t. 
Then B=Y'XA=Y'aXY'fJ. The flux of B through a 
surface is §A· dl around the boundary of the surface, 

10 What is actually proved is that (dJ/dt)=O+O(t?), so that 
times of order 1/.? are required for J to change. Then J is constant 
for times of order 1/•, which is the time to drift around the earth. 
If EJ. did not go to zero as •, the drift off the line would not be 
negligible and T(dJ /dt) would not approximate the change in J 
per period. 
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FrG. 4. Particle at ds on line of force Lo drifts towards L1• 

and this becomes §aV{3·dl=§ad{3. This can also be 
written as f f dad/3 over the surface, and dad/3 then 
represents the flux through a surface element. 

In order to determine the effect of the motion of the 
particle at s on the contribution at s' to the J integral, 
it is convenient to use a quantity which is conserved 
by the motion along a line of force. If the field is static, 
the total energy K is such a quantity. We shall show 
that in the nonstatic case K can be generalized to 

(7) 

where~= (ajc)(of3/ot). To verify that this is the suitable 
generalization, we calculate the rate of change of K due 
to the guiding center motion 

MoB 
K=e(vun+ua)·E+--+e(v,,n+ua) 

'Y at 
a 

· V(<t>+~)+e-(<t>+~). (8) 
at 

The first term in (8) is the change in the energy term 
(P2c2+m02c4)! due to work done by the electric field 
on the guiding center. A static magnetic field has no 
effect on the energy; however, the induction effect of a 
time-dependent field gives rise to the second term, 
which is proportional to aBjat and is due to the curiE 
acting on the gyrating particle. The last two terms are 
the total rate of change of e(<t>+~). The two terms 
containing Vu in (8) cancel, since 

( 1 aA ) 
n·E=-n· --+V<t> 

c at 

a (a o/3 ) a = -- - -+<!> = --(<!>+~). 
as cat as 

(9) 

Because the vu terms cancel, we conclude that oK/os 
must be zero. Thus K is not affected by the rapid 
particle motion along the line. Actually K can be 
considered as the energy integral of the parallel equation 
of motion (1). After cancellation of the vu terms, K 
becomes 

K=e~(<t>+~+ M B)+~ud· (o/3 Va- oa Vf3). 
at 'Ye c at at 

(10) 

The quantity [(a{3jat)Va- (oa/ot)Vf3] will appear fre
quently and will be denoted by w. 

With the generalized definition of K in (7), 

J=J(a,f3,K,M,t) is given by 

(11) 

where the radical is P 11 • At the instant the particle is at 
s, dJ /dt is 

dJjdt= f [P11 (s')ds'+P11 (s')d8'], (12) 

where the dots mean the time derivative including 
terms due to the velocity V(s,s'). It is easily seen 
geometrically that if 5x is a displacement along the 
radius of curvature of the field line, then the change 
in arc length is 

o(ds') = -ox(ds'/R), (13) 

where R is the radius of curvature and equals I on/os 1-1• 

Therefore 
d8' =-V ·(on/ ds')ds'. (14) 

In obtaining Pu (s'), the value of Kat s must be used. 
If we solve (7) for P 112, replace P 12 by 2Mm0B, and 
differentiate with respect to tim~, we obtain 

. 1 { K -e(<t>+~)' 
P"(s')=- -----

P"' c2~ .i 

X[K(s)-e(~+f)']-MmoB' }• (15) 

where the primes mean evaluated at s'. Here B' 
= (oB/ot),,+ V ·(VB),, and similarly for 1/t' and~'. Now 
[K-e(<t>+~)']/c2=mo'Y', so that [K-e(<t>+~)']/P11 'c2 
= 1/v"'· Substitution of (14) and (15) into (12) gives 

dJ f ds'{ a ( MB)' -= - K(s)-e- <t>+~+-
dt Vu 1 ot 'Ye 

-V·[ev(<t>+~+ :B )+v"P"::Jl (16) 

where the prime on any quantity means evaluated at 
s'. The vector V must now be evaluated explicitly. 
Since V is perpendicular to n and is defined so that a 
and~ at s' are the same as at s, we have 

a(s) = (aajat+ud· Va).= (aajat+ V · Va),,, 

~(s) = (af3/at+ud· Vf3).= (of3/at+ V · V/3).,, (17) 

O=n'· V. 

We will now verify that the solution of (17) for Vis 

V=[(aVf3'-~Va')+w']Xn'/B'. (18) 

The scalar product of (18) with Va' is [after substi
tuting w'= (o/3'/ot)Va'- (aa'/ot)V/3'] 

( oa')Vf3'Xn' 
V·Va'= a-- ---·Va'. 

at B' 
(19) 
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But because B'=Va'XV,B', the factor (V.B'Xn'IB') 
·'Va'=1, and the first equation of (17) is verified. 
Similarly, multiplication by 'V,B' verifies the second 
equation (17). The third equation is satisfied since the 
right-hand side of (18) is perpendicular ton'. 

Let us now return to expression (16) for dJ I dt and 
eliminate '\7(41+1/1) in terms of E. 

1 a 
E= -- -(a'\7,8)- '\741 

c at 
w 

=- '\7(41+1/1)+-. 
c 

Using (20) to eliminate '\7(41+1/1) from (16) gives 

dJ f ds'{ a { M )' -= - K(s)-e- 41+1/1+-B 
dt Vu 1 at ')'e 

e[ Me c an ]'} -V·- -cE+-VB+-vuPu-+w . 
c ')'e e as 

(20) 

(21) 

The first three terms in the square bracket occur in the 
drift velocity (2), and when expression (18) for V is 
substituted and the dot and cross interchanged, one 
obtains 

dJ ds' { a ( M ) ' -=f- K(s)-e- 41+1/1+-B 
dt Vu1 at ')'e 

Then by use of VaX'V,B=B and the definition of w the 
result is 

dJ f ds' { [ a ( M ) e ]' -= - K(s)- e- 41+1/1+-B +-ua·W 
dt Vu 1 at ')'e C 

-~a(ua· V.B+ a,a)'+~~(ua· Va+ aa)' }· (22) 
c ru c ru 

Here the quantities a and~ are evaluated at s. These 
quantities are multiplied by factors which contai11 the 
drift velocities and therefore these factors are a and ~ 
evaluated at s'. The expression in the brackets in (22) 
is according to (10) equal to K(s'), so that 

dJ =f ds'{K(s)-K(s') 
dt Vu 1 

+~[ti(s)a(s')-a(s)~(s')]} 

=f dt'{K(s)-K(s') 

+~[~(s)a(s')-a(s),B(s')] }. (23) 

where dt' is the time element ds'lvu' spent in ds'. We 
see that the integrand is antisymmetric in s and s'. 
Equation (23) can also be written 

dJ . . eT . . 
-=T[K-(K)]--[a(,8)-,8(a)] (24) 
dt c 

where the average ( · · ·) means §dslv11 ( ···).There is 
no reason for dJ ldt to vanish in general. However, 

<dJ> ff dsds'{ - = --, K(s)-K(s') 
dt v11v11 

e . } +~[.B(s)a(s')-a(s),B(s')] =0. (25) 

The average rate of change of J thus vanishes because 
of the antisymmetry of the integrand of (25), and it is 
because of this antisymmetry that the contributions of 
ds and ds' to the change in J cahcel over a period T. 

IV. EQUATIONS OF MOTION FOR THE 
AVERAGE DRIFT 

Equation (2) gives the instantaneous value of the 
drift velocity. In case the oscillation along a line of force 
is fast compared to the effects of the drift, one will be 
primarily interested in the line on which the particle 
finds itself and what energy it possesses. One is therefore 
interested in the average drift which transfers the 
particle from line to line (i.e., the change in a and ,8), 
and in the change of the kinetic energy, derivable from 
the· quantity K. Equation (22) permits one to obtain 
the motion of a particle in the a, ,8, K space. By differ
entiating J=J(a,,B,K,M,t) with respect to time we get 

dJ aJ . aJ aJ aJ . 
-=-K +-+-a+----:.8. · 
dt aK at aa a,a 

(26) 

Comparison of this dJ I dt wit.\1 (24), which also holds 
at all places and times, gives 

c aJ 
(a)=- -(a,,B,K,M,t), 

eT a,a 

. c aJ 
(.8)=---, 

eT aa 

. 1 aJ 
(K)=---, 

Tat 

1 aJ 
1=_:_-. 

Tc!K 

(27) 

The last of these four is obvious from Eq. (11). The 
first three are the required equations of motion with the 
longitudinal motion eliminated. 
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On the average the particle drifts towards that 
adjacent line on which J is unchanged. In the special 
case of a static field, K=O; if in addition a/~= (a)/(~) 
at all points of the motion along the line, then all 
instantaneous drifts will be directed toward that same 
lineanddl/dt=O, byEq. (24). 

The equations in (27) for the rate of change of a and 
{3 can be written in vector form. Suppose (V) 
= (1/T)§(ds/vu)V(s,s') is calculated. Physically (V) 
is the average drift at s'. Substitution of (18) for V into 
the integral defining (V) gives 

(V)=[(a:)V'/3'-(~)V'a'+w']Xn'/B'. (28). 

Substituting (a:) and (~) from (27) and dropping the 
primes gives 

c wXn 
(V)=-V'JXn+-

eBT B 
(29) 

as the average velocity at any point.11 The vector V'J 
is to be obtained at fixed values of K, M, and t. 

The equations of motion can be expressed differently. 
The equation f=J(a,{3,K,M,t) can be rewritten as 
K = K (a,{3,J,M,t). By implicit differentiation we obtain 
iJJ ja{3=- (aKja{3)j(aKjiJJ), etc. Then 

ciJK 
(ri:)= -- -(a,{3,f,M,t), 

e iJ(3 

. ciJK 
(/3)=--, 

e oa 

(K)=iJKjat, 

1 = T(iJKjaJ). 

(30) 

These equations are of canonical form, where a and {3 
play the roles of momentum and spatial coordinate, 
respectively, and cK/ e plays the role of Hamiltonian. 
The Eqs. (27) are not of canonical form because the 
factor Tis a function of (a,{3,K,M,t). 

In terms of K the average velocity can be expressed as 

(V)= (c/eB)nXV'K+(wXn)/B. (31) 

The second term in (31) may be considered as the 
velocity of the line of force. In fact if an observer moves 
with this velocity, then the label a will change at the 
rate 

da/dt=aajat+[(wXn/B} V'a. 

By the definition of w this is zero. The same holds for 
{3. If we adopt this interpretation of the second term, 
then the first term in (31) gives the average drift of the 
particle with respect to the moving line. One should 

11 B. B. Kadomtsev has derived the first two equations of (27) 
for the case of static fields. See Plasma Physics and the Problem 
of Controlled Thermonuclear Reactions (Akad. Nauk USSR, 1958), 
Vol. III, p. 285. In the present paper we have given a proof for 
the more general case of relativistic particles in nonstatic fields, 
and the results are contained in Eqs. (27) and (28). 

SURFACE OF 
P11 "0 

FIG. 5. Flux tubes defined by a collection of particles 
at two different times. 

realize of course that the velocity of a line of force is 
arbitrary except for the requirement that the velocity 
field must lead to the correct fluxes12 and therefore to 
the correct values of B. 

Two flux conservation laws follow from (27) and (30). 
Suppose we observe a collection of particles with the 
same J and M distributed on a bundle of magnetic 
lines of force which form a finite flux tube (Fig. 5). 
These particles will have different K, since they will 
have different a and {3, and each will drift according 
to Eqs. (27) or (30). At any later time the particles will 
be found within a new flux tube. It will now be shown 
that the flux of B is the same at the later time. The 
rate of change of the flux of any divergence free vector 
U through a closed curve whose boundary moves at a 
velocity (V) is given by13 

!_ f D·dS=f[aU -V'X((V)XU)]·dS. (32) 
dtJsurface at 

The aUjat term gives the change in the integral due to 
the change with time of U at all points within the loop. 
The second term, which comes from the distortion of 
the shape of the loop with time, is observed by applying 
Stokes' theorem to the loop integral of (V) XU. We set 
U=B, and (V) is given by (31); then (32) reduces to 

!_JB·dS= J { aB 
dt at 

[ c wXn ]} 
-V'X eB(nXV'K)XnB+BXnB ·dS, 

and since n·V'K=aKjas=O, the integral becomes 

d J J{ aB c - B·dS= ---V'XV'K 
dt iJt e 

( a{3 iJa ) } +VX -V'a--V'/3 ·dS. 
at at 

(33) 

12 W. Newcomb, Ann. of Phys. 3, 347 (1958). 
1a M. Abraham and R. Becker, The Classical Theory of Elec

tricity and Magnetism (Biackie and Son, Ltd., London, 1950), 
second edition, p. 40. 
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The first and third terms of the integrand cancel 
because B=VaXVP, and the second term is zero, thus 
proving the theorem. 

The flux of the vector TB is conserved by the motion 
in a static field of a collection of particles having the 
same magnetic moment M and energy K and distributed 
on a flux tube of finite size. These particles will have 
different a and p, hence different J, in contrast to the 
case above, where they all had the same J but different 
K. In a static field K is a constant of the motion, so 
that if the particles initially have the same K, they 
always have. The proof is similar to that above for the 
flux of B. However, first it must be established that 
TB has no divergence, and that it indeed is a property 
of a tube of force. This is true, since V · (TB) = B · VT 
+TV·B and B·VT=B(aTjas)=O. In this case w=O, 
and if the velocity (V) from (29) is substituted into 
(32), then 

;tf TB·dS=- f VX((V)XTB)·dS 

=-J vx[~(VJXn)xn}as· 

which vanishes. 
A Liouville theorem exists in (a,p,J,M) space, since 

the equations of motion (30) are canonical. Let 
Q(a,{J,J,M,t) be the particle density in this space at 
time t. Each point in the space represents a particle 
somewhere on the line (a,p) at time t with magnetic 
moment M and longitudinal invariant J. The equation 
of continuity in this space is, since j and M vanish, 

aQ a a . 
-+-(Q(a))+-(Q(tl))=O. (34) 
at aa ap 

By (30), (ajaa)(a)+(ajap)(~)=O, so that 

dQ aQ aQ . aQ 
-=-+(a)-+(!3)-=0, (35) 
dt at aa at~ 

and Q is conserved under the velocity (a), (~). 
Physically, QdadP is the number of particles of 

moment M and longitudinal invariant J in the flux 
tube dif>=dadp at time t. Suppose now there is a 
steady-state particle distribution in the (a,p,J,M) 
space, so that aQjat=O. This will occur if we have a 
steady-state in configuration space, with static fields. 
Then (35) becomes, after eliminating (a) and (~) by 
(30) 

a(Q,K)ja(a,(3)=0. (36) 

Since this Jacobian vanishes, Q is a function of the 
constants of the motion J, M, and K in the steady 

state, a familiar result for a canonical system. Then Q 
is constant on a longitudinal invariant surface-i.e., 
on a surface of fixed J, M, and K. 

Next let us consider the particle density in configura
tion space. Let n(r,K,M,t) be the density at point r 
of particles with energy K and magnetic moment M. 
If a steady state exists along a given line of force, we 
can write 

n=X(B/vu). (37) 

It is obvious that n should vary inversely as vu along 
a line; the factor B corresponds to the inverse depend
ence of n on the cross-sectional area of the flux tube. 
The quantity X, which is independent of distance along 
the line, can be evaluated by integrating (37) between 
reflection points with respect to distance s. 

f !!'_ds=xj ds = XT. 
B Vu 2 

(38) 

Since dad(3 is the element of flux, we have dad(3 
=BdV1/ds, where dV1 is the volume element in the 
flux tube and dV 1/ ds is therefore the cross-sectional 
area. Then (38) becomes 

J ndV!=dad(3(XT/2). (39) 

The left-hand side is the total number of particles of 
moment M and energy K in dadp. Let this total number 
be denoted by N(a,(3,K,M,t)dadp. Then X=2N/T and 
(37) becomes 

n= (2B/vu) (N /T). (40) 

The quantities Nand Q are related by NdK=QdJ, or 
N=QaJjaK. By Eq. (27), T=aJjaK, so thatN/T=Q. 
Then (40) becomes 

n= (2B/vu)Q. (41) 

Because Q is constant on a longitudinal invariant 
surface in a steady state, Eq. (41) says that in a steady 
state, the density n is a constant times B/vu on an 
invariant surface. In the special case where electric fields 
are absent, vu= (1/mo-y)[([(2-mo2cl)/c2-2Mm0B]i and 
n becomes a function of B for a given J, M, and K. 
In a steady state with no electric fields present, contours of 
constant B on an invariant surface are also contours of 
constant particle density n. 

V. THIRD ADIABATIC THEORY AND THE 
THIRD OR FLUX INVARIANT cfl 

The equation of motion of a charged particle gives 
the guiding center equations of motion (1) and (2) and 
the adiabatic invariant M after an average has been 
taken over the rapid gyration around the field line. In 
the previous section it was shown how the guiding 
center equations of motion and the invariance of M 
lead to the equations of motion (30) in a, (3, and K, and 
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FrG. 6. The representation in (a,fJ,s) space of a 
longitudinal invariant surface. 

to the invariant J. An average over the rapid oscillation 
between reflection points was used. In this section it 
will be shown how the (a,(:J,K) equations of motion lead 
to the third invariant <I> by means of an average over 
rapid motion in a and (:3. 

This third invariant <I> has been defined as the :flux of 
B enclosed by the invariant surface; the in variance of 
<I> has been used in Sec. II. To prove its invariance, 
consider the representation of longitudinal invariant 
surfaces in (a,(:J,s) space (Fig. 6). Each surface is a 
cylinder of finite length with elements parallel to the s 
axis. At any time t the three parameters (J,M,K) are 
needed to specify a surface. Since the line length 
between reflection points is a function of (a,(:J), the 
elements of the cylinder are not all of equal length. In a 
static field a particle rapidly oscillates between the 
ends of the cylinder and slowly drifts around it. If the 
field is nonstatic with a time dependence slow com
pared to the time to drift around the surface, the 
particle moves slowly from one cylinder to another 
characterized by the same J and M, but different K. 
Then d<P/dt can be found at each instant of the motion 
around the cylinder, and the time average of d<P/dt over 
one circuit of the cylinder can be shown to vanish. This 
is analogous to calculating dJ /dt at each instant of the 
lowest order motion along the line of force and then 
showing that (dJ/dt)=O. 

Since the differential of :flux is d<P=dad(:J, <I> is the 
cross-sectional area of the cylinder, and invariance of <I> 

is equivalent to invariance of the cross-sectional area 
of the cylinder on which the particle is located. Figure 7 
shows the intersection of the cylinder with the (a,(:J) 
plane. Suppose that at some instant of time the particle 
is on dl and drifting slowly at right angles to it while 
moving rapidly around the surface. At any other arc 
element dl' let Y (l') be the velocity which is required 
in order to remain on the same (J,M,K) surface as 
the actual particle during its slow drift off dl. The 
velocity Y (l') is the analog of V (s') for the longitudinal 
invariant. By using K=K(a,(:J,J,M,t) we find that Y 
must satisfy the equation 

(K)z= V.,pK(l') · Y(l')+oK(l')/ot, (42) 

where V.,p means the gradient in the a, (:J plane. Since K 
is constant on the closed curve of Fig. 7, then V.,pK(l') 
is perpendicular to the line element dl', and the rate 
of change of area is (assuming that V.,pK is towards the 

a 

X !l'l 

J,M ,K • CONSTANT ON 
CURVE 

FrG. 7. Cross section of a longitudinal invariant 
surface in (a,fJ,s) space. 

outside of the loop) 

d.P f Y (l') · VapK (l') 
-= dl'-----
dt I VapK(l') I 

f dl' ( aK') - (K)--
- I Va!IK'I {)f 1 

(43) 

where the primes mean evaluated at l'. By (30) oK'/ot 
=(K)', and (c/e)IV.,pK'I=[(a)2+(~)2]i, which is the 
velocity of the particle parallel to the loop at l'. Denote 
this velocity by val· Then 

d<P cf dl' 
-=- -((K)z-(K)z•). 
dt e Val 

(44) 

This is the analog of (24) and does not in general 
vanish. However, 

<d.P> f d.P dl 
dt = dt Vap 

cff dldl' 
=- -,((K)z-(K)z·)=O. 

e Va(JVap 
(45) 

Because of the antisymmetry in l and l' of the inte
grand in (45), it follows that the effects of dl and dl' on 
<I> cancel. This is the analog of the cancellation of the 
effects of ds' and ds on J. 

Equation (44) can be written as 

d.P CT • . 
-=-(((K})-(K)), 
dt e 

(46) 

where ((K}) is the time average of (K) during the 
motion around the surface, and r=fdl/vall is the time 
to drift around the surface. Since <P=.P(J,M,K,t), 

d.P {)<I> • {)<I> 
-=-(K)+-. 
dt oK at 

Comparison of ( 46) and ( 4 7) gives 

e a.P 
r=---(J,M,K,t), 

coK 

e o.P 
((K))=--, 

CT iJt 

(47) 

(48) 
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a 

FIG. 8. Cross section of a 
double-leaved longitudinal 
invariant surf ace. 

as the equations of motion, analogous to those in (27) · 
they can be solved to give K and r as functions of time~ 
The second equation in (48) can also be written as 

((K)) aK(i:fJ,J,M,t)' 

at 
which is the analog of (30). 

VI. CONTAINMENT OF PARTICLES IN THE 
EARTH'S MAGNETIC FIELD 

(49) 

In t~e previous sections we have derived the equations 
of motwn for the drift of particles from line to line and 
we have also discussed the flux inside the invariant 
surfaces in a time-dependent field. We are now pre
pared to discuss the question to what extent the charged 
spiralling particles will be retained by the earth's 
magnetic field. 

In Sec. II we have given reasons that particles are 
retained provided the quantities M, J, and i:fJ, the 
magnetic moment, the longitudinal invariant, and the 
flux through the invariant surface remain time in
de~endent. Because of the rapidity of the spiralling 
action we must expect that M indeed is conserved in 
extremely good approximation. 6 •14 Magnetic disturb
ances probably due to solar activity could have short 
enough periods to interfere with the conservation of the 
longitudinal invariant. On the other hand, the third 
invariant i:fJ requires that time variation should be slow 
compared to the period in which the particle encircles 
the earth. This period lies in the vicinity of a half hour 
for a 1-Mev electron. One will expect that in a magnetic 
storm particles will diffuse from one invariant surface to 
another and may eventually get lost either by diffusing 
away from the earth or diffusing down into the 
atmosphere. 

We shall conclude our discussion by considering 
other ways in which the actual situation might differ 
from the simple adiabatic one presented in the previous 
sections, since such differences might conceivably lead 
to a loss of particles. Thus, in the previous discussion we 
ha':e assumed that each invariant surface is a single 
cylmder as shown in Fig. 6. This is not necessarily true. 
For example an invariant surface might be double as 
shown in Fig. 8 in an (a,{3) plane. Neighboring cons;ant 

14 A. Garren et al., University of California Radiation Laboratory 
Report UCRL-80_76, Mar.ch, 1958 (unpublished); and Proceedings 
of the Second f!mted Natwns International Conference on Peaceful 
Uses of Atom~c Energy, Genll'IJa, 1958 (United Nations Geneva 
1958), Paper P /383. ' ' 

+~ Fw. 9. Variation of field strength 
B as a function of s. 

s 

J contours are also represented. The intersections of the 
two surfaces with the same J value, which occur at a 
aJ?-d b, represent lines of stagnation on which (a) and 
({3) must vanish. Because they vanish, the equations of 
motion (27) show that aJ jaa and aJ ja[3 must also 
vanish at a and b. One possibility is that the surface 
J=J(a,{3) has saddle points at a and b; the arrows 
showing particle motion in Fig. 8 have been drawn in a 
manner consistent with such a topology. 

The time for a particle to approach a and b along a 
branch diverges logarithmically. For expansion of J 
about the saddle value ] 0 gives 

(C!.a)2a2Jo a2Jo (C!.{3)2()2Jo 
J""lo+---. -+t!.at!.{3-+----. (SO) 

2 aa2 aa&{3 2 iJ[32 

Then in the vicinity of a or b 

c aJ c ( a2Jo a2Jo) 
(a)=- "'- C!.a-+!!.{3- . 

eT a(3 eT aa2 a(32 
(51) 

Along ~he invariant surface given by J=Jo, C!.a is 
proportwnal to !!.(3, as is seen from Eq. (SO). Therefore 
on this invariant surface, Eq. (51) for (a) takes on the 
form (a)=kt!.a, where k is a constant. By integration, 

t""(1/k) lntla. (52) 

This expression is approximate since higher powers in 
the expansion (SO), as well as the variation of T, have 
been neglected. 

Another assumption which we have tacitly made in 
our earlier discussion is that the field strength B has a 
single minimum as a function of s between the two 
mirror points Br, as illustrated by curve G of Fig. 9. 
Suppose that a particle is initially on a line of this type, 
and suppose that the particle is then brought into a 
configuration corresponding to the line F. This can 
happen in one of two ways, either the magnetic field is 
time dependent and it happens to acquire a maximum 
within the original range of the longitudinal motion 
of the particle or else the particle drifts toward a 
configuration with a maximum. One will offhand 
suspect that when this happens the original orbit of the 
particle will split into two smaller segments s1 and s2 

and that the original value of the longitudinal in
variant J will be replaced by one of two new values J 1 

or l2 where J1+J2=l. If this were the case, there would 
clearly be a reason for a change in the longitudinal 
invariant. Furthermore, one will expect that the dis
appearance of the maximum along the magnetic line 
will lead to a change which is qualitatively the reverse 
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of the change which we have discussed. There exists, 
however, the possibility that the drift along the two 
segments s1 and s2 will have carried particles to two 
different flux lines and that, when the maximum 
vanishes, s1 and s2 will join new flux lines instead of being 
reunited. This indeed could lead to a permanent change 
in J and one might expect that as a consequence a 
significant radial motion in the earth's magnetic field 
might be set up. 

We shall suggest the reason why the types of processes 
which we discussed above may require an infinite time 
in the approximation which has been made throughout 
this paper. 

When an appearance of the maximum in the magnetic 
field is about to sever the longitudinal oscillation into 
two portions, the particle will have a large period of 
oscillation, and in particular it will spend a long time 
near the maximum, at time which tends toward 
logarithmic infinity at the time of severance. However, 
for the time-dependent field case the increase of mag
netic field near the maximum will by its inductive 
effect increase the energy of the particle. Thus a particle 
will not be trapped on either side if it is near the maxi
mum, but will instead acquire enough energy to remain 
above the maximum. Actual trapping is likely to occur 
only if the particle is not near the maximum as severance 
is reached. However, the probability that the particle 
is not near the maximum decreases as severance is 
approached. 

In the case of a static purely magnetic field where 
the particle drifts toward a region where its longi
tudinal orbit could be severed, we shall again find that 
during the drift the particle will spend increasing time 
intervals near the maximum of the magnetic field and 
again the time spent near the maximum will tend 
toward logarithmic infinity. During the proximity of 
the particle to the maximum, its drift due to the 
centrifugal force will approach zero. The drift due to 
the inhomogeneity of the magnetic field will persist 
but will be directed at right angles to the gradient of 
the magnetic field and move the particle at right 
angles to the direction of approach toward a line of 
severance. Again, as in the previous case, the approach 
is likely to depend on the periods that the particle 
spends away from the proximity of the maximum in 

the magnetic field, and again the fraction of time that 
the particle spends in these regions will tend to zero 
as the line of severance is approached. 

We expect that in a more exact and detailed theory 
the processes ·to which we have assigned infinite time 
in the previous two examples will actually be ac
complished in finite but long times. We cannot exclude 
the possibility that near points a and b in Fig. 8, 
particles might be transferred between zones I, II, III, 
and IV, a possibility which does not exist according to· 
the strictly adiabatic theory. Likewise, we must expect 
that in the time-dependent case, the growth of the 
maximum in the magnetic field such as shown in Fig. 9 
will actually give rise to a severance of a longitudinal 
orbit. Our present purpose is only to show that a simple 
application of our equations of motion gives arguments 
against the ready occurrence of these more complex 
patterns of motion. 

The observed radiation around the earth has a 
marked structure/5 with maxima at 10 000 km and 
22 000 km equatorial distances separated by a radiation 
minimum at approximately 15 000 km. It might be 
tempting to assume that these two radiation belts are 
due to some complexity of the earth's magnetic field. 
However, preliminary observations have shown that 
the particle energy spectra differ in the two belts. 
Thus it is likely that the two belts have a different 
physical origin. The discussion which we have given 
here indeed does not open up any simple explanation 
why two such belts should be due to purely kinematic 
causes. 
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