More Practice Problems

AP 6101

Practice for Quiz \#1
From Fitzpatrick, and Gurnett and Bhattacharjee

Dielectric of a Magnetized Plasma

2. A quasi-neutral slab of cold (i.e., $\lambda_{D} \rightarrow 0$) plasma whose bounding surfaces are normal to the x-axis consists of electrons of mass m_{e}, charge $-e$, and mean number density n_{e}, as well as ions of mass m_{i}, charge e, and mean number density n_{e}. The slab is fully magnetized by a uniform y-directed magnetic field of magnitude B. The slab is then subject to an externally generated, uniform, x-directed electric field that is gradually ramped up to a final magnitude E_{0}. Show that, as a consequence of ion polarization drift, the final magnitude of the electric field inside the plasma is

$$
E_{1} \simeq \frac{E_{0}}{\epsilon}
$$

where

$$
\epsilon=1+\frac{c^{2}}{V_{A}^{2}}
$$

and $V_{A}=B / \sqrt{\mu_{0} n_{e} m_{i}}$ is the so-called Alfvén velocity.

Thermal Equilibrium

5. A uniform isothermal quasi-neutral plasma with singly-charged ions is placed in a relatively weak gravitational field of acceleration $\mathbf{g}=-g \mathbf{e}_{z}$. Assuming, first, that both species are distributed according to the Maxwell-Boltzmann statistics; second, that the perturbed electrostatic potential is a function of z only; and, third, that the electric field is zero at $z=0$ (and well behaved as $z \rightarrow \infty$), demonstrate that the electric field in the region $z>0$ takes the form $\mathbf{E}=E_{z} \mathbf{e}_{z}$, where

$$
E_{z}(z)=E_{0}\left[1-\exp \left(\frac{\sqrt{2} z}{\lambda_{D}}\right)\right],
$$

and

$$
E_{0}=\frac{m_{i} g}{2 e} .
$$

Here, λ_{D} is the Debye length, e the magnitude of the electron charge, and m_{i} the ion mass.

Adiabatic Invariants

6. A particle of charge e, mass m, and energy \mathcal{E}, is trapped in a one-dimensional magnetic well of the form

$$
B(x, t)=B_{0}\left(1+k^{2} x^{2}\right),
$$

where B_{0} is constant, and $k(t)$ is a very slowly increasing function of time. Suppose that the particle's mirror points lie at $x= \pm x_{m}(t)$, and that its bounce time is $\tau_{b}(t)$. Demonstrate that, as a consequence of the conservation of the first and second adiabatic invariants,

$$
\begin{aligned}
x_{m}(t) & =x_{m}(0)\left[\frac{k(0)}{k(t)}\right]^{1 / 2}, \\
\tau_{b}(t) & =\tau_{b}(0)\left[\frac{k(0)}{k(t)}\right], \\
\mathcal{E}(t) & =\mathcal{E}_{0 \perp}+\left[\frac{k(t)}{k(0)}\right] \mathcal{E}_{0 \|} .
\end{aligned}
$$

Here, $\mathcal{E}_{0 \perp}$ is the perpendicular energy [i.e., (1/2) $m v_{\perp}^{2}$], and $\mathcal{E}_{0 \|}$ is the parallel energy [i.e., ($1 / 2$) $m v_{\|}^{2}$], both evaluated at $x=0$ and $t=0$. Assume that the particle's gyroradius is relatively small, and that the electric field-strength is negligible.

Drift Velocity w Collisions

8. Consider a spatially uniform, unmagnetized plasma in which both species have zero mean flow velocity. Let n_{e} and T_{e} be the electron number density and temperature, respectively. Let \mathbf{E} be the ambient electric field. The electron distribution function f_{e} satisfies the simplified kinetic equation

$$
-\frac{e}{m_{e}} \mathbf{E} \cdot \nabla_{v} f_{e}=C_{e} .
$$

We can crudely approximate the electron collision operator as

$$
C_{e}=-v_{e}\left(f_{e}-f_{0}\right)
$$

where v_{e} is the effective electron-ion collision frequency, and

$$
f_{0}=\frac{n_{e}}{\pi^{3 / 2} v_{t e}^{3}} \exp \left(-\frac{v^{2}}{v_{t e}^{2}}\right) .
$$

Here, $v_{t e}=\sqrt{2 T_{e} / m_{e}}$. Suppose that $E \ll m_{e} v_{e} v_{t e} / e$. Demonstrate that it is a good approximation to write

$$
f_{e}=f_{0}+\frac{e}{m_{e} v_{e}} \mathbf{E} \cdot \nabla_{v} f_{0}
$$

Hence, show that

$$
\mathbf{j}=\sigma \mathbf{E},
$$

where

$$
\sigma=\frac{e^{2} n_{e}}{m_{e} v_{e}} .
$$

Static MHD Equilibrium

7.6. For a force-balanced MHD equilibrium in a cylindrical geometry with $\mathbf{B}=$ $\left[0, B_{\phi}(\rho), B_{z}(\rho)\right]$ the radial component of the pressure balance condition $\mathbf{J} \times$ $\mathbf{B}=\boldsymbol{\nabla} P$ can be written

$$
\frac{\partial}{\partial \rho}\left(P+\frac{B_{\phi}^{2}}{2 \mu_{0}}+\frac{B_{z}^{2}}{2 \mu_{0}}\right)=[(\mathbf{B} \cdot \nabla) \mathbf{B}]_{\rho}
$$

Show that $[(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{B}]_{\rho}=-B_{\phi}^{2} / \rho$.
Hint: Use the identity $\boldsymbol{\nabla}(\mathbf{F} \cdot \mathbf{G})=(\mathbf{F} \cdot \boldsymbol{\nabla}) \mathbf{G}+(\mathbf{G} \cdot \boldsymbol{\nabla}) \mathbf{F}+\mathbf{F} \times(\boldsymbol{\nabla} \times \mathbf{G})+\mathbf{G} \times$ ($\boldsymbol{\nabla} \times \mathbf{G}$).

Alfvén Waves with Collisions/Viscosity

1. We can add viscous effects to the MHD momentum equation by including a term $\mu \nabla^{2} \mathbf{V}$, where μ is the dynamic viscosity, so that

$$
\rho \frac{d \mathbf{V}}{d t}=\mathbf{j} \times \mathbf{b}-\nabla p+\mu \nabla^{2} \mathbf{V}
$$

Likewise, we can add finite conductivity effects to the Ohm's law by including the term $\left(1 / \mu_{0} \sigma\right) \nabla^{2} \mathbf{B}$, to give

$$
\frac{\partial \mathbf{B}}{\partial t}=\nabla \times(\mathbf{V} \times \mathbf{B})+\frac{1}{\mu_{0} \sigma} \nabla^{2} \mathbf{B}
$$

Show that the modified dispersion relation for Alfvén waves can be obtained from the standard one by multiplying both ω^{2} and V_{S}^{2} by a factor

$$
\left[1+\mathrm{i} k^{2} /\left(\mu_{0} \sigma \omega\right)\right]
$$

and ω^{2} by an additional factor

$$
\left[1+\mathrm{i} \mu k^{2} /\left(\rho_{0} \omega\right)\right]
$$

If the finite conductivity and viscous corrections are small (i.e., $\sigma \rightarrow \infty$ and $\mu \rightarrow 0)$, show that, for parallel $(\theta=0)$ propagation, the dispersion relation for the shear-Alfvén wave reduces to

$$
k \simeq \frac{\omega}{V_{A}}+\mathrm{i} \frac{\omega^{2}}{2 V_{A}^{3}}\left(\frac{1}{\mu_{0} \sigma}+\frac{\mu}{\rho_{0}}\right)
$$

