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Dielectric of a Magnetized Plasma

38 ⌅ Plasma Physics: An Introduction (2nd Edition)

The invariance of  has interesting consequences for charged particle dynamics
in the Earth’s inner magnetosphere. Suppose, for instance, that the strength of the
solar wind were to increase slowly (that is, on timescales significantly longer than
the drift period), thereby, compressing the Earth’s magnetic field. The invariance
of  would cause the charged particles that constitute the Van Allen belts to move
radially inwards, toward the Earth, in order to conserve the magnetic flux enclosed
by their drift orbits. Likewise, a slow decrease in the strength of the solar wind would
cause an outward radial motion of the Van Allen belts.

2.14 EXERCISES
1. Given that ⇢ = ⇢ (� cos � e1 + sin � e2), and u = ⌦ ⇢ ⇥ b, where ⇢ = u?/⌦,

and e1, e2, b ⌘ B/B are a right-handed set of mutually perpendicular unit basis
vectors, demonstrate that:

(a)

h⇢ ⇢i =
u2
?

2⌦2 (I � b b) .

(b)
e hu ⇥ (⇢ · r) Bi = �µrB.

(c)

e hu · (⇢ · r) Ei = µ @B
@t
.

(d)
e hu · (⇢ · r) Ai = �µ B.

Here, µ = m u2
?/(2 B), and h· · · i ⌘

H
(· · · ) d�/2⇡.

2. A quasi-neutral slab of cold (i.e., �D ! 0) plasma whose bounding surfaces
are normal to the x-axis consists of electrons of mass me, charge �e, and mean
number density ne, as well as ions of mass mi, charge e, and mean number
density ne. The slab is fully magnetized by a uniform y-directed magnetic field
of magnitude B. The slab is then subject to an externally generated, uniform,
x-directed electric field that is gradually ramped up to a final magnitude E0.
Show that, as a consequence of ion polarization drift, the final magnitude of
the electric field inside the plasma is

E1 '
E0

✏
,

where

✏ = 1 +
c2

V2
A
,

and VA = B/pµ0 ne mi is the so-called Alfvén velocity.
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and that the net shielding charge contained within a sphere of radius r, centered
on the origin, is

Q(r) = �q
2
666641 �
0
BBBB@1 +

p
2 r
�D

1
CCCCA exp

0
BBBB@�
p

2 r
�D

1
CCCCA
3
77775 .

3. A quasi-neutral slab of cold (i.e., �D ! 0) plasma whose bounding surfaces
are normal to the x-axis consists of electrons of mass me, charge �e, and mean
number density ne, as well as ions of charge e, and mean number density ne.
The ions can e↵ectively be treated as stationary. The slab is placed in an ex-
ternally generated, x-directed electric field that oscillates sinusoidally at the
angular frequency !. By generalizing the analysis of Section 1.4, show that
the relative dielectric constant of the plasma is

✏ = 1 �
⇧2

!2 ,

where ⇧ = (e2 ne/✏0 me)1/2.

4. A capacitor consists of two parallel plates of cross-sectional area A and spacing
d ⌧

p
A. The region between the capacitors is filled with a uniform hot plasma

of Deybe length �D. By generalizing the analysis of Section 1.5, show that the
d.c. capacitance of the device is

C =
✏0 A

d
(d/
p

2 �D)
tanh(d/

p
2 �D)

.

5. A uniform isothermal quasi-neutral plasma with singly-charged ions is placed
in a relatively weak gravitational field of acceleration g = �g ez. Assuming,
first, that both species are distributed according to the Maxwell-Boltzmann
statistics; second, that the perturbed electrostatic potential is a function of z
only; and, third, that the electric field is zero at z = 0 (and well behaved as
z ! 1), demonstrate that the electric field in the region z > 0 takes the form
E = Ez ez, where

Ez(z) = E0

2
666641 � exp

0
BBBB@
p

2 z
�D

1
CCCCA
3
77775 ,

and
E0 =

mi g

2 e
.

Here, �D is the Debye length, e the magnitude of the electron charge, and mi
the ion mass.

6. Consider a charge sheet of charge density � immersed in a plasma of unper-
turbed particle number density n0, ion temperature Ti, and electron tempera-
ture Te. Suppose that the charge sheet coincides with the y-z plane. Assuming
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6. A particle of charge e, mass m, and energy E, is trapped in a one-dimensional
magnetic well of the form

B(x, t) = B0 (1 + k2 x2),

where B0 is constant, and k(t) is a very slowly increasing function of time.
Suppose that the particle’s mirror points lie at x = ±xm(t), and that its bounce
time is ⌧b(t). Demonstrate that, as a consequence of the conservation of the
first and second adiabatic invariants,

xm(t) = xm(0)
"
k(0)
k(t)

#1/2

,

⌧b(t) = ⌧b(0)
"
k(0)
k(t)

#
,

E(t) = E0? +

"
k(t)
k(0)

#
E0 k.

Here, E0? is the perpendicular energy [i.e., (1/2) m v2?], and E0 k is the parallel
energy [i.e., (1/2) m v2

k
], both evaluated at x = 0 and t = 0. Assume that the

particle’s gyroradius is relatively small, and that the electric field-strength is
negligible.

7. Consider the static magnetic field

Bz(y) =

8>>>><
>>>>:

B0 y > a
B0 (y/a) |y| < a
�B0 y < �a

which corresponds to a current sheet such as that found in the Earth’s magneto-
tail. Let the electric field be negligible. Consider the orbits of charged particles
of mass m and charge e whose gyroradii, ⇢, are not necessarily much smaller
than the shear-length, a, of the magnetic field. In this situation, guiding center
theory is inapplicable. The particles’ orbits can only be analyzed by directly
solving their equations of perpendicular motion. It is easily demonstrated that
some orbits do not cross the neutral plane (y = 0) and resemble conventional
magnetized particle orbits, whereas others meander across the neutral plane
and are quite di↵erent from conventional orbits.

(a) Consider a particle orbit that does not cross the neutral plane, but is in-
stead confined to the region y+ � y � y�, where a > y+ > y� > 0.
Demonstrate that the mean drift velocity of the particle in the x-direction
can be written

hvxi = �

 
⌦0

4 a

!
(y2
+ + y

2
�) (1 � ↵),

where ⌦0 = e B0/m, and

↵ =

R 1
�1(1 +  ⇣)1/2 (1 � ⇣2)�1/2 d⇣

R 1
�1(1 +  ⇣)�1/2 (1 � ⇣2)�1/2 d⇣

,
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than the typical variation lengthscale of equilibrium quantities (such as n, T ,
and V). Demonstrate that it is a good approximation to write

f = f0 � ⌫�1 v · r f0.

(a) Suppose that n and T are uniform, but that V = Vy(x) ey. Demonstrate
that the only nonzero components of the viscosity tensor are

⇡xy = ⇡yx = �⌘
dVy
dx
,

where
⌘ =

1
2

m n ⌫ l2.

(b) Suppose that n is uniform, and V = 0, but that T = T (x). Demonstrate
that the only nonzero component of the heat flux is

qx = �
dT
dx
,

where
 =

5
2

n ⌫ l2.

(c) Suppose that V = 0, and n = n(x) and T = T (x), but that p = n T is
constant. Demonstrate that the only nonzero component of the heat flux
is

qx = �
dT
dx
,

where
 =

5
4

n ⌫ l2.

8. Consider a spatially uniform, unmagnetized plasma in which both species have
zero mean flow velocity. Let ne and Te be the electron number density and
temperature, respectively. Let E be the ambient electric field. The electron dis-
tribution function fe satisfies the simplified kinetic equation

�
e

me
E · rv fe = Ce.

We can crudely approximate the electron collision operator as

Ce = �⌫e ( fe � f0)

where ⌫e is the e↵ective electron-ion collision frequency, and

f0 =
ne

⇡3/2 v3t e
exp

 
�
v2

v2t e

!
.

116 ⌅ Plasma Physics: An Introduction (2nd Edition)

Here, vt e =
p

2 Te/me. Suppose that E ⌧ me ⌫e vt e/e. Demonstrate that it is a
good approximation to write

fe = f0 +
e

me ⌫e
E · rv f0.

Hence, show that
j = �E,

where

� =
e2 ne

me ⌫e
.
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(b) Make a sketch of Bφ, Bz, and Jz as a function of ρ.
7.3. Show that a time-dependent solution of the force-free (∇ × B = αB) static

equilibrium equation

∂B
∂t
=

1
µ0σ
∇2B

is given by

B = B0 e−t/τ,

where B0 is the solution of the vector Helmholtz equation

∇2B0 +α
2B0 = 0

and τ = (µ0σ)/α2, with α = constant.
Note: Solutions of the vector Helmholtz equation can be found in many
electricity and magnetism books.

7.4. For the “Bennett pinch” type of pressure-balanced equilibrium, the solution
for n(ρ) depends on the conductivity relation. Assuming the thermal
conductivity is so large that the temperature is independent of radius, analyze
the following cases:
(a) Lorentz type conductivity. Using Jz =

e2n
mv Ez show that n(ρ) = n0/[1 +

(ρ/R)2]2, where R is a constant.
(b) Fully ionized gas. Using Jz =σE, whereσ is a constant, show that n(ρ)=

n0(1− ρ2/R2).
7.5. Show that the linear force operator

F(ξ) =
1
µ0

[(∇× {∇× (ξ×B0)})×B0 + (∇×B0)× {∇× (ξ×B0)}]

+∇[ξ ·∇P0 +γ P0(∇ ·ξ)]

is self-adjoint, i.e., if there are two eigenfunctions η1 and η2 satisfying
standard boundary conditions, then

∫

v
η2 ·F(η1) d3x =

∫

v
η1 ·F(η2) d3x.

7.6. For a force-balanced MHD equilibrium in a cylindrical geometry with B =
[0, Bφ(ρ), Bz(ρ)] the radial component of the pressure balance condition J×
B =∇P can be written

∂

∂ρ


P+

B2
φ

2µ0
+

B2
z

2µ0


 = [(B ·∇)B]ρ.
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Show that [(B ·∇)B]ρ = −B2
φ/ρ.

Hint: Use the identity ∇(F ·G) = (F ·∇)G + (G ·∇)F + F × (∇ ×G) +G×
(∇×G).

7.7. Assuming that the magnetohydrodynamic equilibrium profiles depend
only on the radial coordinate ρ, show from Eqs. (7.2.1)–(7.2.6) that the
magnetic and velocity fields can be written in the form [0, Bφ(ρ), Bz(ρ)] and
[0, Uφ(ρ), Uz(ρ)] and that the equilibrium condition is given by Eq. (7.2.7).
Check that under these conditions all of Eqs. (7.2.1)–(7.2.6) are satisfied
identically.

7.8. Show by direct substitution that the equilibrium profiles, given by
Eqs. (7.2.10)–(7.2.15), satisfy Eq. (7.2.7).

7.9. Derive the dispersion relation for the magnetorotational instability (7.4.6)
from the linearized equation of motion (7.4.5).

7.10. (a) Derive the dispersion relation (7.4.10) from the more general dispersion
relation (7.4.6) for the MRI in the incompressible limit.

(b) Derive the MRI stability condition (7.4.11) from the dispersion relation
(7.4.10).

(c) Obtain the largest growth rate for the instability, and show that it is
independent of the magnitude of the magnetic field.

7.11. For the Harris sheet, Eq. (7.5.17) permits an exact solution. Obtain this
solution, and demonstrate that the tearing stability parameter is given by
Eq. (7.5.10).
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shock−front

plasma flow

Switch−on Switch−off

Figure 8.9 Characteristic plasma flow patterns across switch-on and switch-o↵
shocks in the de Ho↵mann-Teller frame.

v21 = 0, (8.226)

v21 = 0. (8.227)

The first of these roots is clearly a fast shock, and is identical to the perpendicular
shock discussed in Section 8.16, except that there is no plasma flow across the shock
front in this case. The fact that the two other roots are zero indicates that, like the
corresponding MHD waves, slow and intermediate MHD shocks do not propagate
perpendicular to the magnetic field.

MHD shocks have been observed in a large variety of situations. For instance,
shocks are known to be formed by supernova explosions, by strong stellar winds, by
solar flares, and by the solar wind upstream of planetary magnetospheres (Gurnett
and Bhattacharjee 2005).

8.18 EXERCISES
1. We can add viscous e↵ects to the MHD momentum equation by including a

term µr2V, where µ is the dynamic viscosity, so that

⇢
dV
dt
= j ⇥ b � rp + µr2V.

Likewise, we can add finite conductivity e↵ects to the Ohm’s law by including
the term (1/µ0 �)r2B, to give

@B
@t
= r ⇥ (V ⇥ B) +

1
µ0 �

r
2B,

238 ⌅ Plasma Physics: An Introduction (2nd Edition)

Show that the modified dispersion relation for Alfvén waves can be obtained
from the standard one by multiplying both !2 and V2

S by a factor

[1 + i k2/(µ0 �!)],

and !2 by an additional factor

[1 + i µ k2/(⇢0 !)].

If the finite conductivity and viscous corrections are small (i.e., � ! 1 and
µ ! 0), show that, for parallel (✓ = 0) propagation, the dispersion relation for
the shear-Alfvén wave reduces to

k '
!

VA
+ i
!2

2 V3
A

 
1
µ0 �

+
µ

⇢0

!
.

2. Demonstrate that V+ > VS cos ✓, and V� < VS cos ✓, where V+ and V� are
defined in Equation (8.45).

3. Demonstrate that Equation (8.65) can be rearranged to give

du2

dr

 
1 �

u2
c

u2

!
=

4 u2
c

r

✓
1 �

rc

r

◆
,

Show that this expression can be integrated to give
 

u
uc

!2

� ln
 

u
uc

!2

= 4 ln
 

r
rc

!
+ 4

rc

r
+C,

where C is a constant.

Let r/rc = 1+ x. Demonstrate that, in the limit |x| ⌧ 1, the previous expression
yields either

u2 = u2
c

h
1 ± 2 x + O(x2)

i

or

u2 = u2
0

2
666641 +

2 u2
c x2

u2
0 � u2

c
+ O(x3)

3
77775 ,

where u0 , uc is an arbitrary constant. Deduce that the former solution with the
plus sign is such that u is a monotonically increasing function of r with u 7 uc
as r 7 rc (this is a Class 2 solution); that the former solution with the minus
sign is such that u is a monotonically decreasing function of r with u ? uc as
r 7 rc (this is a Class 3 solution); that the latter solution with u0 < uc is such
that u < uc for all r (this is a Class 1 solution); and that the latter solution with
u0 > uc is such that u > uc for all r (this is a Class 4 solution).

4. Derive expression (8.111) from Equations (8.107)–(8.110).
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