More Practice Problems

AP 6101 Practice for Quiz #1 *From Fitzpatrick, and Gurnett and Bhattacharjee*

Dielectric of a Magnetized Plasma

the electric field inside the plasma is

where

 ϵ

and $V_A = B/\sqrt{\mu_0 n_e m_i}$ is the so-called Alfvén velocity.

2. A quasi-neutral slab of cold (i.e., $\lambda_D \rightarrow 0$) plasma whose bounding surfaces are normal to the x-axis consists of electrons of mass m_e , charge -e, and mean number density n_e , as well as ions of mass m_i , charge e, and mean number density n_e . The slab is fully magnetized by a uniform *y*-directed magnetic field of magnitude B. The slab is then subject to an externally generated, uniform, x-directed electric field that is gradually ramped up to a final magnitude E_0 . Show that, as a consequence of ion polarization drift, the final magnitude of

$$E_1 \simeq \frac{E_0}{\epsilon},$$

$$= 1 + \frac{c^2}{V_A^2},$$

 $\mathbf{E} = E_{z} \mathbf{e}_{z}$, where

 $E_{z}(z) = E_{0}$

and

E

Here, λ_D is the Debye length, e the magnitude of the electron charge, and m_i the ion mass.

Thermal Equilibrium

5. A uniform isothermal quasi-neutral plasma with singly-charged ions is placed in a relatively weak gravitational field of acceleration $\mathbf{g} = -g \mathbf{e}_z$. Assuming, first, that both species are distributed according to the Maxwell-Boltzmann statistics; second, that the perturbed electrostatic potential is a function of zonly; and, third, that the electric field is zero at z = 0 (and well behaved as $z \to \infty$), demonstrate that the electric field in the region z > 0 takes the form

$$\int \left[1 - \exp\left(\frac{\sqrt{2}z}{\lambda_D}\right)\right],$$

$$Z_0 = \frac{m_i g}{2 e}.$$

Adiabatic Invariants

6. A particle of charge *e*, mass *m*, an magnetic well of the form

B(x,t)

where B_0 is constant, and k(t) is a very slowly increasing function of time. Suppose that the particle's mirror points lie at $x = \pm x_m(t)$, and that its bounce time is $\tau_b(t)$. Demonstrate that, as a consequence of the conservation of the first and second adiabatic invariants,

$$x_m(t) =$$

$$\tau_b(t) =$$

$$\mathcal{E}(t) = 0$$

Here, $\mathcal{E}_{0\perp}$ is the perpendicular energy [i.e., $(1/2) m v_{\perp}^2$], and $\mathcal{E}_{0\parallel}$ is the parallel energy [i.e., $(1/2) m v_{\parallel}^2$], both evaluated at x = 0 and t = 0. Assume that the particle's gyroradius is relatively small, and that the electric field-strength is negligible.

6. A particle of charge e, mass m, and energy \mathcal{E} , is trapped in a one-dimensional

$$= B_0 \, (1 + k^2 \, x^2),$$

$$x_m(0) \left[\frac{k(0)}{k(t)} \right]^{1/2},$$

$$\tau_b(0) \left[\frac{k(0)}{k(t)} \right],$$

$$\mathcal{E}_{0\perp} + \left[\frac{k(t)}{k(0)} \right] \mathcal{E}_{0\parallel}.$$

Drift Velocity w Collisions

8. Consider a spatially uniform, unmagnetized plasma in which both species have zero mean flow velocity. Let n_e and T_e be the electron number density and temperature, respectively. Let **E** be the ambient electric field. The electron distribution function f_e satisfies the simplified kinetic equation

$$-\frac{e}{m_e}\mathbf{E}\cdot\nabla_v f_e = C_e.$$

We can crudely approximate the electron collision operator as

$$C_e = -\nu_e \left(f_e - f_0 \right)$$

where v_e is the effective electron-ion collision frequency, and

$$f_0 = \frac{n_e}{\pi^{3/2} v_{te}^3} \exp\left(-\frac{v^2}{v_{te}^2}\right).$$

Here, $v_{te} = \sqrt{2} T_e/m_e$. Suppose that $E \ll m_e v_e v_{te}/e$. Demonstrate that it is a good approximation to write

$$f_e = f_0 + \frac{e}{m_e \, \nu_e} \, \mathbf{E} \cdot \nabla_v f_0.$$

Hence, show that

$$\mathbf{j} = \boldsymbol{\sigma} \mathbf{E},$$

where

$$\sigma = \frac{e^2 n_e}{m_e v_e}$$

Static MHD Equilibrium

 $\mathbf{B} = \nabla P$ can be written

$$\frac{\partial}{\partial\rho} \left(P + \frac{B_{\phi}^2}{2\mu_0} \right)$$

Show that $[(\mathbf{B} \cdot \nabla)\mathbf{B}]_{\rho} = -B_{\phi}^2/\rho$. $(\nabla \times \mathbf{G}).$

7.6. For a force-balanced MHD equilibrium in a cylindrical geometry with $\mathbf{B} =$ $[0, B_{\phi}(\rho), B_{z}(\rho)]$ the radial component of the pressure balance condition J ×

$$+ \frac{B_z^2}{2\mu_0} \bigg) = [(\mathbf{B} \cdot \nabla)\mathbf{B}]_{\rho}.$$

Hint: Use the identity $\nabla(\mathbf{F} \cdot \mathbf{G}) = (\mathbf{F} \cdot \nabla)\mathbf{G} + (\mathbf{G} \cdot \nabla)\mathbf{F} + \mathbf{F} \times (\nabla \times \mathbf{G}) + \mathbf{G} \times \mathbf{G}$

Alfvén Waves with Collisions/Viscosity

1. We can add viscous effects to the MHD momentum equation by including a term $\mu \nabla^2 \mathbf{V}$, where μ is the dynamic viscosity, so that

$$\rho \, \frac{d\mathbf{V}}{dt} = \mathbf{j} \times \mathbf{b} - \nabla p + \mu \, \nabla^2 \mathbf{V}.$$

Likewise, we can add finite conductivity effects to the Ohm's law by including the term $(1/\mu_0 \sigma) \nabla^2 \mathbf{B}$, to give

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{V} \times \mathbf{B}) + \frac{1}{\mu_0 \sigma} \nabla^2 \mathbf{B}$$

Show that the modified dispersion relation for Alfvén waves can be obtained from the standard one by multiplying both ω^2 and V_S^2 by a factor

$$[1 + i k^2 / (\mu_0 \sigma \omega)],$$

and ω^2 by an additional factor

$$[1 + i \mu k^2 / (\rho_0 \omega)].$$

If the finite conductivity and viscous corrections are small (i.e., $\sigma \rightarrow \infty$ and $\mu \rightarrow 0$), show that, for parallel ($\theta = 0$) propagation, the dispersion relation for the shear-Alfvén wave reduces to

$$k \simeq \frac{\omega}{V_A} + i \frac{\omega^2}{2 V_A^3} \left(\frac{1}{\mu_0 \sigma} + \frac{\mu}{\rho_0} \right)$$

