Problems

- **5.1** (a) Consider the pressure equilibrium in a Z-pinch that has been compressed by its self-generated magnetic field to a radius of $100 \,\mu\text{m}$. What is the magnetic pressure at the surface of the pinch, when the total current amounts to $10 \,\text{kA}$? How compares this to atmospheric pressure?
- (b) Assume that the plasma inside the pinch is homogeneous and has $T_e = T_i$ and density $n_e = 10^{24}$ m⁻³. What is the temperature inside this plasma that is necessary to balance the magnetic pressure by gas kinetic pressure?
- **5.2** Calculate the magnetic field B that is necessary to produce a magnetic pressure at the surface of a magnetically confined fusion that is 4 times the kinetic pressure in the plasma center, when the central density is $n_e = 2 \times 10^{20} \,\mathrm{m}^{-3}$ and the temperature $T = 20 \,\mathrm{keV}$. This corresponds to $\beta = 25\%$.
- **5.3** What is the Alfvén speed in a fusion plasma with deuterium ions of $n_i = 10^{20} \,\mathrm{m}^{-3}$ density at a typical magnetic field of $B = 3 \,\mathrm{T}$?
- **5.4** The ionospheric F-layer has a plasma density of $n = 10^{12} \,\mathrm{m}^{-3}$ and consists mainly of O⁺-ions.
- (a) What is the Alfvén speed at a typical magnetic field of $B = 3 \cdot 10^{-5} \,\mathrm{T}$?
- (b) Compare this result with the ion sound speed at a temperature $T_e = T_i = 3000 \,\mathrm{K}$.
- **5.5** For the Parker spiral, draw a log-log plot of the normalized magnetic field $B(r)/B_0$ and its components, B_r/B_0 and B_{φ}/B_0 , vs. the normalized radial position r/r_{\odot} . Assume $u_r = 4 \times 10^5 \, \mathrm{m \, s^{-1}}$ and a solar rotation period of 27 d. Mark the position of the Earth's orbit in this plot.
- **5.6** A method to determine the temperature of a hot magnetized plasma column is based on measuring the change in magnetic flux when the plasma is switched off. This can be done by a *diamagnetic loop* of N windings, which is wound around the (non-conducting) cylindrical vessel of radius R that is assumed to contain the plasma column. Faraday's induction law gives $\Delta \Phi_{\rm mag} = -N \int U_{\rm ind} \, dt$. Hence, the time integral of the voltage pulse from the diamagnetic loop gives the change in magnetic flux. To derive a relation between plasma temperature and integrated loop voltage, we assume that $T_{\rm e} = T_{\rm i} = {\rm const.}$ The density profile is approximated by a Gaussian $n(r) = n_0 \exp[-(r/a)^2]$ with $a^2 \ll R^2$. Use the pressure equilibrium $p_{\rm kin}(0) + p_{\rm mag}(0) = p_{\rm mag}(R)$ and calculate the total change in magnetic flux $\Delta \Phi_{\rm mag}$ from its vacuum value. Show that $\Delta \Phi_{\rm mag} \approx -\frac{1}{2}\pi a^2 n_0 B_0 \beta$ in the limit $\beta \ll 1$ with β from (5.51).