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The lowest-order drift equations are given in a canonical magnetic coordinate form for time-
dependent magnetic and electric fields. The advantages of the canonical Hamiltonian form are

also discussed.

I. INTRODUCTION

The evaluation of transport coefficients for a low colli-
sionality, asymmetric plasma requires complex particle tra-
jectory integrations. In the simplest class of such calcula-
tions, the particles move in given magnetic and electric
fields. Even in this case, it is not practical to solve for the
particle motion for the required length of time. A charged
particle moves rapidly on a nearly circular orbit about a
magnetic field line and only slowly drifts from one field line
to another. The disparate time scales make exact trajectory
integrations difficult, but suggest the use of an asymptotic
analysis, the guiding center theory.

The original work on the evaluation of guiding center
motion was done by Alfvén' in 1940. Alfvén’s expression for
the particle drift velocity is essentially

Vi = ¢g/eB>X (VB + mvjbVb — ¢E). (1)

The magnetic and electric fields are B and E with B = |B|
and b = B/B. The particle velocity is resolved into the com-
ponents parallel to the magnetic field, v, and perpendicular,
v, . The particle mass is m, the charge is e, and ¢ is the speed
of light. The most subtle concept in Alfvén’s expression is the
adiabatically conserved, magnetic moment 4,

pu~i(mvi/B). (2)

Kruskal® later showed that the magnetic moment is con-
served to all orders inp /L withp, = mcv, /eB, the parallel
gyroradius, and L the system size. Landau and Lifshitz have
argued® that adiabatic invariants are conserved to exponen-
tial accuracy in a small parameter like p, /L.

Alfvén’s expression became known as “the drift veloc-
ity” to plasma physicists and has been the basis for much of
the understanding on that subject. Nonetheless, Alfvén’s
expression has certain fundamental problems since it cannot
be put into Hamiltonian form for nonzero parallel current.
An example of such a problem is that a toroidal canonical
momentum is not conserved by Alfvén’s expression in toroi-
dal symmetry for nonzero parallel currents.* In Sec. II a
heuristic discussion of Hamiltonian guiding center theory is
given.

To have a simple and intuitive set of equations for the
guiding center trajectories, the coordinate system must be
chosen carefully. Since the plasma structure is generally
dominated by the magnetic field, a coordinate system deter-
mined by this field provides the simplest description of the
particle trajectories. At least as important a reason for
choosing magnetic coordinates is that these coordinates can
be selected so that they are essentially the canonical coordi-
nates of the drift Hamiltonian. Although one can use non-
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canonical variables in a Hamiltonian drift theory,® canonical
variables allow one to construct simple Hamiltonian models
or approximations. With approximate fields, preservation of
the Hamiltonian structure of the drift motion is subtle in
noncanonical formulations. A description of the appropriate
magnetic coordinates is given in Sec. III.

Previous papers have given a drift Hamiltonian in mag-
netic coordinates for a time-independent, curl-free magnetic
field with perfect surfaces* and for a time-independent mag-
netic field with arbitrary curl and with stochastic regions.®
In this paper the method is extended to include time-depen-
dent magnetic and electric fields. In addition, a simpler set of
canonical variables is introduced. This Hamiltonian system
is given in Sec. IV and its relation to Alfvén’s drift velocity is
discussed. In Sec. V a derivation of this Hamiltonian is given
using Taylor’s drift Lagrangian.” The paper is summarized
in Sec. VL

Il. GUIDING CENTER THEORY

Fundamentally, the evaluation of particle trajectories
using guiding center theory is based on the adiabatic invar-
iance of the magnetic moment, u. If 4 were an exact invar-
iant instead of an adiabatic invariant, its canonically conju-
gate coordinate, the gyrophase, would not appear in the
Hamiltonian. That is, a canonical transformation could re-
duce the problem of a particle in magnetic field from six
canonical variables to only four. One of the canonical varia-
bles, the gyrophase, could be eliminated altogether and an-
other canonical variable, the magnetic moment, would be an
isolating constant not a variable. In actuality, one can con-
struct the invariant u and eliminate the gyrophase only by
calculating order by order in the gyroradius to system size
p) /L. The usual presumption is that the Hamiltonian con-
structed in this way® is only asymptotically correct and may,
therefore, most accurately represent the exact particle tra-
Jjectories in some finite order. Let H,, the drift Hamiltonian,
be the Hamiltonian with only four canonical variables,
which most accurately describes the true particle trajector-
ies. An important question, which has very limited treat-
ment in the literature, is how the trajectories of H, relate to
the true particle trajectories over long times with a small but
finite p| /L.

In this paper we assume that a sufficiently accurate drift
Hamiltonian H, exists. With this assumption an especially
important role is played by the lowest-order, in p, /L, drift
Hamiltonian H. Let g, p stand for the four canonical varia-
bles of the Hamiltonian H. One can then presumably find
canonical variables for the Hamiltonian H,, such that if they
were denoted by g, p, the function V (g, p),
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Vig, p)=H,lq, p) — H(g, p), 3)

would be small when the gyroradius to system size is small.
In other words, the most accurate drift Hamiltonian H, can
be considered to be the lowest-order drift Hamiltonian H
plus a small perturbation V. The KAM theory® demon-
strates that under certain conditions if V is small, then the
trajectories of the Hamiltonian H lie close to those of H,, for
all time. Except in singular circumstances, generally reson-
ances between ¥ and the particle motion, it is plausible that
the Hamiltonian H leads to an estimate of diffusion coeffi-
cients as reliable as H,;. When higher-order terms are re-
quired to break a singularity from the use of H, then presu-
mably only the lowest-order singularity breaking terms in ¥
are required and not all terms of comparable order in gyrora-
dius to system size. An example of a small but important
term is the polarization drift which separates electron and
ion drift motion in an electric potential. For simplicity we
have ignored this drift. However, it could be included by
adding the kinetic energy associated with the EXB drift to
the Hamiltonian.

Of course, the concept of simplicity or lowest order does
not uniquely define H (g, p). The natural division of terms,
which form H (g, p), between H (g, p) and V (g, p), depends
upon the formulation. As long as Vin different formulations
is nonresonant, the choice between formulations can be
based on conceptual or calculational simplicity. This free-
dom will be used to simplify the canonical Hamiltonian for-
mulation and is a real power of this form of the drift equa-
tions.

There is a further subtlety of comparing the trajectories
of the most accurate drift Hamiltonian with the lowest-order
drift Hamiltonian. In standard Hamiltonian mechanics, one
calculates the trajectories in canonical coordinate space g, p.
As plasma physicists, the four quantities we want are not
g, p, but three spatial coordinates, say x, y,z, and a parallel
velocity v, . The four physical variables are functions of the
four canonical variables. The functional form of this rela-
tionship, of course, depends on the order in gyroradius to
system size. However, since one normally needs to know the
position of the trajectory to some accuracy relative to global
plasma dimensions, this change in functional relation
between the physical and canonical variables is of limited
interest.

In general, Alfvén’s drift velocity, Eq. (1), is a non-Ha-
miltonian approximation to the most accurate drift Hamil-
tonian. Consequently, the KAM theory says nothing about
the length of time the Alfvén trajectories remain close to the
most accurate drift trajectories. Indeed, the two sets of tra-
jectories will generally diverge on a time scale of order
(L /p)*(1/@.) with @, = eB /mc the cyclotron frequency.

lll. MAGNETIC COORDINATES

There are two basic reasons for using magnetic coordi-
nates as the spatial coordinate system for drift trajectory
studies. First, since the magnetic field dominates the struc-
ture of many laboratory and astrophysical plasmas, magnet-
ic coordinates simply describe the location of the particle in
the plasma. Second, the magnetic coordinates are essentially
the canonical coordinates of the lowest-order drift Hamil-
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tonian and simplify the information required to evaluate the
trajectories. For toroidal plasmas, the magnetic coordinate
system is especially simple if the plasma is in scalar pressure
equilibrium. Then the pressure P satisfies the relations

BVP=0, (4)
and
(VXB)V P=0. (5)

Unless V P is zero over a finite volume, one can show the

magnetic field can be written in two forms>!%:
B=VyXVO + Vé XV, (¢), (6)
and
B =g(y)V¢ +I(Y)V6 + B, (¢,6,6)Vy. (7

The magnetic coordinates ¢, 6, and ¢, as well as the associat-
ed functions of ¢ which are g, 7, and ¢, are interpreted in
Fig. 1. The function 8, will not play a major role in this
paper but is closely related to the Pfirsch—-Schliiter current.'®
To the mathematically inclined, it should be clear that the
coordinates ¥, 6, and ¢ have been chosen to maximize the
simplicity of the contravariant, Eq. (6), and covariant, Eq. (7),
representations of the magnetic field.

To represent more complicated magnetic fields, the re-
presentations, Eqs. (6) and (7), must be generalized. Math-
ematically stated one must have well-behaved transforma-
tion equations x(,6,¢ ) between the magnetic coordinates
and the ordinary Cartesian coordinates. In the case of tensor
pressure equilibria, Eq. (5) no longer holds, but there may be
good magnetic surfaces so that an equivalent to Eq. (4) re-
mains valid. In this case, the covariant representation of the
magnetic field, Eq. (7), must be generalized® to

B =o[g(¥)Vé + I (¥)VE + B, (¥,6,4)V¢], (8)
with o, the permeability, chosen so that

[VX(B/o)}V¢ =0. 9)
For tensor pressure,

o=1+4r[(P, —P))/B?]. (10)

In the absence of magnetic surfaces, the contravariant
representation, Eq. (6), must be generalized®:!! to

B = VYX VO + Vé XV, (0,4 ). (11)
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FIG. 1. Magnetic coordinates. A topologically toroidal constant pressure
surface has two other surfaces associated with it which are the domain of the
toroidal and the poloidal area integrals. The toroidal flux function ¢ and the
“plasma current” I are defined on one such surface. The poloidal flux func-
tion ¢, and the “coil current” g are defined on the other. The pressure, ¢,, g,

and [ are all functions of ¢ alone.
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That is, the poloidal flux function must be made a function
of all three coordinates and not just the toroidal flux func-
tion ¢ alone. It is easy to show that ¥, is the field line Ham-
iltonian in canonical form.!* If the Hamiltonian is integrable,
then its canonical coordinates ¥/, § can be chosen so ¥pisa
function of Y alone, Yp(¥). The toroidal angle ¢ is “time”
in the Hamiltonian formulation. In this paper we assume that
the breaking of the magnetic surfaces is sufficiently weak so
that the { variation along a field line is slow compared to the
0 or ¢ variation .

If the magnetic field is known as a function of ordinary
coordinates, B(x), then one can evaluate the transformation
equations and functions of the magnetic coordinates.''~*?

IV. DRIFT HAMILTONIAN

The time-dependent drift Hamiltonian has a form
which is made plausible by a comparison with the exact par-
ticle Hamiltonian. By a rather long and therefore unenlight-
ening exercise in changing the variables of partial differenti-
ation, one can also show the equivalence of this formulation
to that of Alfvén to lowest order in gyroradius to system
size.® In this section the drift Hamiltonian formulation will
be given and compared to the exact Hamiltonian formula-
tion as well as other statements of the guiding center drift
motion. In the next section, an intuitive but, at least to this
physicist, more enlightening derivation based on Taylor’s
drift Lagrangian will be given.

The drift Hamiltonian should be the particle energy and
should depend on four canonical variables 6, p,, ¢, and p,.
Based on the relation between the lowest-order expression
for the magnetic moment g and the perpendicular kinetic
energy, Eq. (2), the lowest-order drift Hamiltonian is

H(0,po.$, py) =imv} + p B + e®, (12)
with @ the electric potential. The two canonical coordinates
are 0 and ¢, which are the poloidal and toroidal magnetic
coordinate angles discussed in Sec. III. The momenta conju-
gate to these coordinates are

Po = (ol /B)my; + (e/c)y, (13)
and

Py = (08/B)myv; — (e/c)¥,. (14)

The particle trajectories are determined by Hamiltonian’s
equations:

po=—H 5 _ _H , OH ,_ OH
? a6’ ** EYS pe’ Py
(15)

Now let us compare the exact and the drift Hamilto-
nians. Both the exact and the drift Hamiltonian are the ener-
gy, and the poloidal and toroidal angles can be used as ca-
nonical coordinates for both. In toroidal symmetry, the
toroidal canonical momentum of the exact Hamiltonian is

P, = (0g/B,)mv, — (e/c)¥,, (16)
since one can show og/B, is the major radius. Consequently,
the relation between the exact and approximate toroidal ca-

nonical momentum is just the replacement of v, by
(B4/B v, a very intuitive result. Equivalent statements can,

2443 Phys. Fluids, Vol. 27, No. 10, October 1984

of course, be made about the poloidal canonical momentum.
There are six canonical coordinates in the exact Hamiltonian
formulation. Specifically, ¥ and P, are required. However,
even in the exact problem, four canonical variables 6, P, ¢,
and P, locate the particle within a gyroradius and determine
the parallel velocity to within the gyroradius to system size.

The relation between the drift Hamiltonian of this pa-
per and an earlier drift Hamiltonian® is more subtle than one
might suppose. In a globally steady-state magnetic field, the
guiding center velocity can be written*>

Y 1

*~ B 1+p,BVXB)/B (B +VXpB) 17
withp| (E, p1,x) the parallel gyroradius, mcv /eB, taken to be
a function of energy, magnetic moment, and position. This
velocity is consistent with a Hamiltonian, and a canonical
Hamiltonian formulation has been given.® However, for 8,
not equal to zero [see Eq. (8)], the Hamiltonian formulation
of this paper is not exactly equivalent to Eq. (17). To under-
stand the difference, we note that the drift velocity Eq. (17)
consists of two factors. The last factor

H=B+VXxp B (18)
determines the trajectory. The first factor, which is a velocity
space Jacobian,* determines how long a particle takes to cov-
er the different parts of its trajectory. The first factor must be
chosen appropriately to make the drift velocity Hamilton-
ian. The vector H for the Hamiltonian of this paper can be
shown to be

H =B+ VX[ p/B—0B,VY)]. (19)
In the Appendix it is shown that the difference between H'
and H just leads to an order gyroradius to system size correc-
tion to the & and ¢ position of a particle and can therefore be
ignored in the lowest-order drift Hamiltonian. As noted in
the introduction, such nonresonant differences between Ha-
miltonian formulations are not important for determining
which formulation is better.

V. LAGRANGIAN DERIVATION

The behavior of particles in a time-dependent magnetic
field is clarified by studying the exact particle Lagrangian.
The importance of the Lagrangian is that the form of La-
grange’s equations is independent of the spatial coordinate
system. Therefore, using the Lagrangian, one can transform
from inertial Cartesian to the noninertial magnetic coordi-
nates of a time-dependent magnetic field. That is, the exact
particle Lagrangian can be written in a coordinate system
tied to the magnetic field lines. This Lagrangian leads intu-
itively to a drift Lagrangian first given by Taylor which in
turn yields the Hamiltonian equations of the last section.

First consider the exact Lagrangian in a stationary
frame of reference,

L=imV?+ (e/c)AV — ed,. (20)
If the magnetic field is time dependent, then the exact parti-
cle velocity V = dx/dt can be written, using the transforma-
tion equations x(1,0,¢,t), as

6x :
V= — 4+ @ 21
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with £ '=9,*=6,£° = §,and e, = Ix/I& ® The expres-
sion

ox
Vy, = — 22
2= (22)
is the velocity of the magnetic field, and
v=eé” (23)

is the velocity of the particle relative to the field in contravar-
iant form. The exact Lagrangian can, therefore, be written

L, = imy* + (e/clay — e®, (24)
with
a=A+(mc/e)Vy, @=D ~Avg/c—im/e)V3.
(25)

The total field VXa, which is the sum of the magnetic and
the vorticity field, is usually indistinguishable from the mag-
netic field in plasma problems. The point is

‘ mch _ VB P

eA |7 vV L
with p the gyroradius and L a typical plasma dimension. In
plasmas, both ¥ /V and p/L are generally quite small. Con-
sequently, we will not distinguish between a and A, although
technically one should. This distinction is important for Ga-
lilean invariance. Similarly, the potential @ can be consid-
ered to obey @ = @, — A-V,/c, which is just the Lorentz
transformed potential. The term A-V /¢ contains the so-
called ExXB motion of the field lines.

If the distinction between a and A were ignored, the

canonical momentum of the exact particle motion,
P, = 3L,/ °, would be

= [mv + (e/c)A])-e,, (26)

and the exact Hamiltonian would be H, =P &% —L,,
which gives

H,=(1/2m)[ P, —(e/c)4,])8°" [ Ps

—(e/c)dg] +e®.
(27)
The adiabatic conservation of the magnetic moment
p~mv? /2B suggests that the kinetic energy associated with
the perpendicular motion behaves as potential energy uB.
This substitution would follow from standard mechanics if i«
were an exact invariant. This assumption together with the

identification of a with A implies that the Lagrangian, Eq.

(24), can be written in a form first given by Taylor,’

L = imv} + (e/c)Asv — uB — e®. (28)
The Taylor Lagrangian depends in principle on six variables,
three spatial coordinates, and their time derivatives.

To proceed we need the Taylor Lagrangian in magnetic
coordinates. Using Eq. (8) for B and Eq. (23) for v, one finds

v, =(0/B \gp + 18), (29)

with the neglect of the term 8, 1, which a posteriori is small
because of the smallness of ¢ in comparison to either 8 or é.
The vector potential of the magnetic field, as given in Eq.
(11),1s

A=yvo— ¥, V4, (30)

which implies
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Av=1yb— ¥, (31)

The lowest-order Taylor Lagrangian in magnetic coordi-
nates is then

L =1m(o/BY(gd + 18 + (e/c)\yd — ¥,4) — . B — e®.
(32)
Although the Taylor Lagrangian is, in principle, a func-
tion of six variables, an important feature of magnetic co-
ordinates is that only five variables explicitly appear. That is,
¢ is absent. The generalized momenta are given by the par-
tial derivatives of L with respect to 1// 8, and #. The momen-
tum p,, is identically zero while p, and p, agree with Egs.
(13) and (14). The Hamiltonian is defined by

H=p,0+p,0 +p,6— L. (33)
Since p,, is identically zero, dH /dp,, is ill defined, and the
equation for the time derivative of p,, which is — dH /dy,
vanishes. This just means 6, ¢, p,, and p, specify ¥, which is
obvious from the functional form of p, and p,, and give a
complete description of the mechanics problem. A simple
calculation demonstrates that the Hamiltonian of Eq. (33)
agrees with that of Eq. (12).

V1. SUMMARY

The lowest-order drift Hamiltonian can be expressed
simply and intuitively in a canonical, magnetic coordinate
representation. In this representation, three functions of the
three magnetic coordinates ¥, 8, and ¢ determine the parti-
cle behavior. The cross-field magnetic drifts are determined
by B (¢,0,¢ ), the magnetic field strength. The structure of the
magnetic field is determined by the poloidal flux function
¥,(¥,0,4 ), which is also the Hamiltonian of the magnetic
field lines. The rapid radial or ¥ motion of passing particles
in stochastic magnetic fields'® is determined by ¥,. The time
derivation of ¥,, with the magnetic coordinates held fixed, is
proportional to the loop voltage.'® The electric potential
P (¢,6,4 ) is a function of ¢ alone in the simplest models of
toroidal plasmas with good surfaces. However, electrostatic
instabilities can give @ a complex structure.

KAM theory® implies that a small nonresonant pertur-
bation to a Hamiltonian problem does not produce a large
change in the particle trajectories. Consequently, a Hamil-
tonian problem can be simplified so long as the canonical
structure is maintained and the difference between the sim-
plified and the accurate Hamiltonian is small and nonreson-
ant. This is a justification for the use of lowest-order guiding
center theory since the difference between the most accurate
and the lowest-order drift Hamiltonian is small whenever
the gyroradius to system size is small. In particular prob-
lems, the drift Hamiltonian, Eqgs. (12)—(15), can be further
simplified by the same argument. This feature makes the
canonical representation of the drift problem particularly
attractive.

The most subtle feature of guiding center theory is the
reduction from the six canonical variables required for an
exact Hamiltonian treatment to the four canonical variables
of any drift Hamiltonian. This reduction is accomplished by
finding a canonical variable which is adiabatically con-
served, the magnetic moment 4, and eliminating its canoni-
cally conjugate coordinate, the gyrophase, from the Hamil-
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tonian. The practical limits on this procedure, when the
long-time trajectories are required for transport studies, re-
main obscure.
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APPENDIX: THE 8, CORRECTION TO THE DRIFT

The standard Alfvén guiding center drift equations are
equivalent to the guiding center velocity'®

v, = (v,/B)[B + (VXp,B), ], (Al)

with the perpendicular sign meaning the component orthog-
onal to the magnetic field. In this paper it proved more con-
venient to use an expression for the drift velocity which is
equivalent to adding the velocity

vg = — VX(op, B, V¥) (A2)
to the lowest-order drift velocity. Here we show that the
velocity v, corresponds, in lowest order, to a shift in the
guiding center position which is negligible compared to sys-
tematic drift produced by v, . In other words, there is a cer-
tain arbitrariness as to the location of the guiding center of a
given particle. The presence or absence of the v, drift just
corresponds to a difference choice for the guiding center po-
sition. With either choice the particle stays, in lowest-order
theory, within roughly a gyroradius of its guiding center.

In lowest-order drift theory, the parallel component of
vg is irrelevant. The perpendicular components can be sim-
ply studied in a Clebsch representation of the magnetic field

B=VyXV,. (A3)
In addition to the coordinates 3 and 8, we will use the toroi-
dal angle #. Since v4'V¢ vanishes, vg does not directly
change the ¢ position of a particle. The only important effect
is the change in the 6, position.

The direct effect of the velocity v on the §, position of a
particle is given by

From Egs. (A2) and (A3),
wa — _ YU p, dlopy B)
vg'V8, = 3 B-V¢ _6¢ . (A5)

To zeroth order in the gyroradius to system size, a particle
just moves along the field lines. The first-order perpendicu-
lar displacement of a particle in the 6, direction because v, is
therefore

di

[00]8 = v_ Vﬂ 'voo- (A6)
Il

The differential distance d/ along a field line is
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dl = (B /B-V¢ )d¢. (A7)
Using Eq. (AS) one finds

(6ol = — [opy B ] (A8)
with [--.] meaning the change in the quantity along the trajec-
tory.

In lowest-order guiding center theory, the &, motion
caused by v, is bounded by gp, B, . In practice o is near
unity, and B, is roughly given by

B, =(1/B)d4n/c)J,, (A9)
with J,, for the Pfirsch-Schliiter current.'® Consequently,
op) B, is always smaller than the gyroradius divided by the
system size. The guiding center drift velocity gives a syste-
matic precession of the particle in 6,. That is, v, gives a
larger change in 6, compared to v4. To see this, we assume
the magnetic field is curl free so that

B =gVg, (A10)

with g a constant. The relevant change in 6, is given by
do

(—th)g =V, -VGO.
Using Eqgs. (A1), (A3), and (A 10),
%Py
Y
The arguments used to derive Eq. (A8) then imply

a
[6], =8 E/;Pu dg,

with the integral over the ¢ or parallel motion of the particle.
The integral can also be written

sl

which is trivially transformed into the weil-known action
form for the precession of trapped particles.

(Al1)
Vo, = 2L oBw
Vo= 28 ¢

(A12)

(6], = (A13)
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