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The equations for particle drift orbits are given in a new magnetic coordinate system. This form of the
equations separates the fast motion along the magnetic field lines from the slow motion across the lines.
In addition, less information is required about the magnetic field structure than in alternative forms of

the drift equations.

I. INTRODUCTION

The close relation between particle drift orbits and
transport in high temperature plasmas is well known.
However, the evaluation of the drift orbits is not easily
accomplished, even computationally, if there are no
symmetry directions. Even in ideally symmetric sys-
tems, like the tokamak, small symmetry breaking
terms which occur in real devices have significant
transport effects. These effects are larger and often
more subtle in nonsymmetric systems like the stella-
rator.

In this paper a simple form for the drift velocity in
steady-state fields is given. A new magnetic coordinate
system is developed and the drift orbit equations are
given in this system. These drift orbit equations not
only separate the slow and fast particle motion, but al-
so require minimal information about the magnetic
field.

ll. DRIFT VELOCITY

The expression for the drift velocity across a steady-
state magnetic field is well known

v, =(cB/eB?) X (uVB+ eV®+muvl b+ Vh), (1)

with §=B/B a unit vector along the magnetic field B.
The electric potential is ®, u is the magnetic moment,
and v, is the velocity of the particle along the magnetic
field. In a steady-state field, energy conservation

E=3mui+uB+ed (2)

permits the drift velocity to be written in a simple and
often more useful form.

To derive the desired expression, we note that
V(uB+e®)=-Vim? (3)

with the energy of the particle E taken to be a constant.
The expression b X (B-Vl;) can be rewritten using a vec-
tor identity for unit vectors,

b.vh=—bx(vxbh) (4)
and

VYXxB=BYxb-5bxXVB, (5)
to yield

bx(5-vh)=B'6xVB+B(VXB),. (6)

It is then simple algebra to show
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cB 1 c
V== oy X (mv,,Vv” - mut 5 VB) +mu? SE (VxB),

= (v,/B)[V % (0, B)], (M
with
Py E‘WICU"/QB . (8)

To obtain an expression for the drift velocity of a
particle, we must add a parallel component to the ex-
pression for the perpendicular drift velocity. It is
tempting to write the parallel component as v,B/B, but
this is not quite consistent with the use of v in drift
kinetic theory. Consider the ideal drift kinetic equation
with the distribution function depending only on the con-
stants of motion E and p, then for a valid expression
for v

v-VF=0. (9)

This is just a statement that constants of motion are in-
deed constants of the motion. For v to be valid, Eq.

{9) must also predict particle conservation, which, for
f depending only on E and u, just implies that the di-
vergence of the particle flux is zero

V-(fvfd%) - 0.

To make Eq. (10) meaningful, d3 must be transformed
to the velocity coordinates of drift kinetic theory, E
and p, and to the particle phase ¢, in its cyclotron mo-
tion. This transformation gives a Jacobian with
d*v=JdEdud®,. Under the assumptions of drift kinetic
theory, fis independent of ¢, as is v, so the integration
over ¢, can be performed to give d*»=27(J)dEdu. An
expression is derived in the Appendix for the average
of J, {J), which is valid through first order in the
gyroradius

(Jy=(1/m?XB/v,X1+p, b-Vxb).

(10)

(11)

Since Eq. (10) must be valid for arbitrary f(E, u) it im-

plies
v-(SHv)=0.

The fact that (J) v is divergence-free, which is essen-
tially Liouville’s theorem, is closely connected with
other conservation laws as will be shown,

(12)

The exact expression one uses for the Jacobian (J) is
generally not important in drift kinetic theory. The
point is that {J) is a dividing factor throughout the drift
kinetic equation, v-Vf=C(f), for time independent
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problems. Equation (12) implies that this is true for
the left-hand side of the drift kinetic equation. The
particle conserving feature of the collision operator
implies that (J)C(f) is the fundamental operator. Since
the exact expression for J, in practice, is not impor-
tant, we use only the zeroth-order expression to obtain

v=(v,/B)[B+V x (p,B)]. (13)

This expression for the drift velocity satisfies Egs. (7),
(9), and (12). However, the neglect of the first-order
term in {J) does cause Eq. (13) to give an incorrect
first-order correction to v-b. A discussion of Eq. (13)
with a comparison to other work is given in the Appen-
dix. Expressions for the drift velocity similar to Eq.
(13) have been given by several authors'™ for VX B=0.
However, the divergence condition on a physically rea-
sonable v and its implications in the form for the drift
velocity appear to be new.

The expression for the drift velocity can be written as
(14)

in some sense a “real” magnetic field, that is, V.-H=0.
The field H does have the unfortunate feature of being
singular at turning points (y, =0). At these points, the
H field with », >0 is to be joined to the H field with

v, <0 to obtain the drift orbit. The H field does allow

a simple evaluation of constants of the drift motion in
symmetric fields. Let ¢ be a vector pointing in the di-
rection of symmetry chosen so that V.{=0. Then, if
the curl of ¢ is of the form Vx £=y ¢, the magnetic
field and its vector potential can be written in the form

B=gt+{xVy, A=—yt+a, (15)

with a defined so {-a=0. The vector H can, of course,
be written in a similar form with its vector potential
A, =-9,t+a,. Using the definition of H, one finds

zp*:d)-gpn' (16)

Since H-Vy, =0, ¢, is a constant of the motion, In
toroidal symmetry, ¢{=V¢=¢/R and b, conservation
is essentially p, conservation. In helical symmetry,

_ hrb+lz
S ER

v=(y,/B)H, with H=B+Vx(p,B)

(17)

11l. MAGNETIC GEOMETRY

When solving the drift orbit equations, it is clearly
advantageous to go to a magnetic coordinate system.
By a magnetic coordinate system we mean one in which
magnetic field lines serve as coordinate lines. In this
coordinate system the rapid particle motion along the
lines is separated from the slow motion across the
lines. The magnetic coordinates used in this paper are
a, ¥, and x, which are three functions of position cho-
sen so that the magnetic field can be written in a con-
travariant and a covariant form

B=Vax vy, (18)
(19)

The first or contravariant form for B is well-known as
the Clebsch representation and can be used to describe
any divergence-free field. The second or covariant

B=9Vx+ AVi+ Vo,
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form is not so familiar, but is completely general so
long as Vx+(Va X Vi), the inverse of the Jacobian, is
not zero. The inverse of the Jacobian of the «, ¥, and
x coordinates is especially simple

Uy« (Vo x Vi) =B2, (20)

When there is a scalar pressure, the physical inter-
pretation of ¥, x, and « is simple. The coordinate ¥
labels the constant pressure surfaces and is essentially
the magnetic flux within a surface. The coordinate « is
an angle within a pressure surface labeling the various
field lines, and x is, in some sense, the distance along
a line. Actually, the differential distance along a field
line is dx/B.

The equations for the guiding center drift orbits can
be simply expressed for the general magnetic field.
However, the equations are simpler and the covariant
form of the magnetic field has an interesting structure
in the scalar pressure case

VP=c*(jxB). (21)

Since B* VP =0, one can always choose ¥ so that the
pressure is a function of ¥ alone. This choice of ¥ will
be assumed. Using j.VP =0, it is easy to show that one
can redefine g8 and y so that ¥=0. The current density
in a plasma with a scalar pressure is then

=S yxB=-LX (28 28
]-4”VxB_4n (B aa-—(Vlb"VX) ax), (22)
which implies

BB _A4m g

3¢ ¢ B (23)

with j, the parallel current density. Evaluating j X B
using the contravariant form of B, Eq. (18), one finds

88 _4n dP
;)Z = E‘f E . (24)
There is some arbitrariness in the definition of g and x
which can be eliminated by the boundary condition

B(a=0, 3, x=0)=0. (25)

With this boundary condition, B=Vy when the magnetic
field is curl-free on a constant ¥ surface.

(V. DRIFT ORBIT EQUATIONS

The expressions derived in the last two sections for
the magnetic field and the drift velocity permit a very
simple derivation of the drift orbit equations. These
equations are expressions for da/dt, dy/dt, and dx/dt
along the drift trajectory of a particle and are derived
using da/dt=v-Va, dp/dt=v.-Vy, and dx/dt=v Vx.

To derive the drift orbit equations, we note that the
drift velocity, Eq. (13), can be expressed as

v=(v,/B)[Pa X Vy+ V% (p, VX + Bp, VI+ V0, Va)], (26)

using Eqgs. (18) and (19) for the magnetic field. Expres-
sions like ¥ X (p,Vx) are rewritten as

x(p,9X)=~(VxxVa) S - (Tyx W) L. (21)
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Then with repeated use of Vy«(Va X V¢) = B?, one finds

da _, p(2m _ 280,

a (ad)" dx ) ’ (28)
ay _ o _ 2rpy

E;-_v”B(Ba - ax ) ’ (29)
ax _ oypy . 98Py

at (_811)+8a)° (30)

These equations determine the drift orbit of a particle
of given energy E and magnetic moment u once the
four functions of @, ¥, and X are specified. These func-
tions are B, 8, v, and ®.

At first there appear to be a number of difficulties
with integrating Eqgs. (28)-(30) in order to obtain drift
orbits, due to the question of the sign of », and the
singular nature of its derivatives at the turning points.
Actually, these problems can easily be dealt with. The
problem of the sign of v, is of importance only in the
equation for dx/dt and then only near turning points.
This problem comes from evaluating v, using energy
conservation (Eq. (2)] and is avoided by evaluating v, ,
at least near turning points, using a differential equa-
tion for dv,/dt. It is simpler to use the differential
equation for dp,/dt which clearly serves the same pur-
pose (p, =mcv,/eB)

g&:v-Vp”:v”B[ﬂ)'—' p(ap"fﬁ_%._a_ﬁ_)

dt ay 8x 9x 9x 9«
o0, By _ 2p, 3y 31
P (azp ax 8y aw) ’ (31)

This expression is especially simple in the curl-free
field case with dp,/dt=v,B(9p,/3x) of a form similar to
the other orbit equations. The problem of singular de-
rivatives of v, at turning points is of no fundamental.
importance to the drift orbit equations since derivatives
of », are always multiplied by a », factor which gives a
finite product. The following easily derived, but useful,
expression illustrates this with £ equal to «, ¥, or x:

3p, _ e (_c_ eB 8B
vwBgE =5t (e * e M) oE

In symmetric systems, the drift equations conserve
4 =¥ - gp, as demonstrated in Sec. II. The relation
between this conservation law and Eqgs. (28)-(30) is
quite fascinating in the scalar pressure case. Remem-
bering that { is a vector in the symmetry direction and
£Vy=0, one has {-B=¢ Vx using Eq. (19) for B. Us-
ing Eq. (18) for B, one obtains ¢XB=-({Va)Vy. Fi-
nally, using Eq. (15) for B, one finds {-B=gt® and
¢ XB=-{?V). These results imply {-Vx=gt+Va or if
f is any function such that £-Vf =0, then

of _ _ O
ralr el (33)

(32)

The conservation of , means dg,/dt=v-Vy,=0, but
evaluating dy,/dt one finds

dy 3p, (Bg 38 BB) 8p, 3g
J.:. — — ———
at ”"Bp"[ g ax \ow ¥y T oa) T8 By oy
8g g ap g
- (e 52+ 28)- 2. (34)
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This expression must be zero for any p, which cbeys
the symmetry (¢-Vp,=0), which in turn implies that g
is only a function of » alone and

dg 3B 3B _

aw¥ox toa” (35)
This is equivalent to

. dg g dpP

Ju= = B b -C T . (36)

These results appear quite remarkable. The symmetry
conditions applied to the drift orbit equations give us
information about the magnetic field rather than the
other way around. Actually, the results are not so
amazing if one looks at the formal operations involved.
The result comes from being able to write any diver-
gence-free field as B=g{ + X Vy. Consequently,
H=B+V x(p,B) can be written in this form with the
only condition on p, being £-vp,=0.

The longitudinal adiabatic invariant J is, of course,
conserved by Eqs. (28)-(30) provided that the parallel
motion is fast enough compared with the cross-field
drifts. To prove this, let us construct a function f such
that v-vf=0. We let f=f,+f,,++++ with the subscripts
representing orders in the small parameter p,. The
zeroth order is

v Vf,=v,B ];0# ’ (37)

In first order

and fo= fo(a, ).

U(ot0) L (t_Ta) Moy

du ay
The consistency condition on this equation for trapped
particles is

kL ) E&:( § 20 4y) Lo 39
(fﬁ 20 ™) 20 X By (39)
with the loop integral implying an integral at constant «

and ¥ from a point where p,=0 to another where p,=0
and back, but

2 o2 f i S o€ 2
fazp dx-ad) p,dx= m v, dl = " (40)

with J the longitudinal invariant (we used dl =dx/B). It
is then obvious that f,= fo(J) so J is conserved at least
to lowest order.

V. CONCLUSION

In a reactor grade plasma, even thermal particles
can travel 10 km between collisions, the ratio of the
cross field to the parallel velocity can be 107, and a
particle can have 107 cyclotron orbits per collision.
These parameters imply that a brute force technique
may not be sufficiently accurate to calculate particle
orbits. In this paper a method of finding particle orbits
has been developed which is based on the drift kinetic
equation and magnetic field line coordinates. This sys-
tem has a number of advantages. First, the fast par-
ticle motion along the field lines is separated from the
slow drift across the lines. Second, less information
is required about the magnetic field than in other for-
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mulations, Third, if there is a scalar pressure, the
constant pressure surfaces can be used as a coordinate.
Since the transport is determined by the distance par-
ticles stray from the constant pressure surfaces,

the use of these surfaces as a coordinate greatly sim-
plifies the interpretation of the results.

Although the drift equations are given in the paper for
an arbitrary magnetic field, the most important case
is the locally curl-free field due to its simplicity. For
this case the magnetic field can be written

B=VaxVy=Vy.

Using o, ¥, and x as coordinates, the particle equa-
tions of motion are

da 8d (c , £B 2)83

’E=-Ca—¢- 'é# e P Ta’q]’
408 (2,, S8 p) 0B
dat “vat\e meP) 3a
dy _ e 2

dt—mcp” y

dp, _ 8% fc eB .\ 8B
at c ax e H e P 3y °

In these equations ®{a, ¥, x) is the electric potential,
B(a, $, x) is the magnetic field strength, and ¢, m, and
u are the charge, mass, and magnetic moment of the
particle. The quantity p,=mcv,/eB. Actually, the
equations for a curl-free field can be stated more ele-
gantly by defining a Hamiltonian as

1 ,eB*> uc
H(pu:ailp,X):_ipﬁm'F?B*'c@;
then
dy _OH dp,_ H dy_®H da_ ?H
dt  ep,’ dt ax ' dt da’ dt T oy’

The adiabatic invariance of J,

J='§ fplldxzfmvlldl!

then follows from the standard classical mechanics*
treatment. The Hamiltonian is just the energy E times
¢/e and it is conserved.
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APPENDIX

A number of questions have been raised relative to
Eq. (13) and its relation to the work of Northrop and
Rome® and Hazeltine.® These questions actually turn
out to involve higher-order corrections in gyroradius
to system size, Although these higher-order correc-
tions were not in the original scope of the work, they
are, nonetheless, of interest,

To calculate to higher order in the gyroradius, a
more accurate expression is required for the magnetic
moment. Northrop and Rome give expressions for the
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higher-order effects and we follow their results, In
their expression for the magnetic moment, they use a
hybrid velocity u with «, the parallel drift velocity v,
and with u, the perpendicular particle velocity V,. They
give

[(*6 +uu,) *(uxb - vB)

+u,(VXB) - (3ulb + 2u,u,)] . (A1)

The phase average of u turns out to play an important
role. This is

() =pol-p,d v xb)

with o =mV?%/2B, the lowest-order magnetic moment,
and p,=v,(eB/mc)™,

(A2)

The derivation of the first-order Jacobian for the
transformation from particle velocity coordinates V
toE, u, ¢, coordinates goes as follows: First, we
note that d*V =d(V,)V,dV,d¢, with (V,) the phase aver-
aged parallel velocity., We use the result of Northrop
and Rome

(‘{J:vn-(#o/m)a‘vxg (A3)
to show 4%V =4%, or
d3V=(B/m)dQ)"dpod¢”. {A4)

The next transformation is to E, ¢, ¢, coordinates
Wwith E =3 mol+ uB +e®. If one lets 1 =po/(1 +¢), one
finds

- e, ple
J"_rr—ﬂ_,'._<1+e+“a + BBE)’ (A5)
s0 the gyrophase averaged Jacobian is
(Jy=(B/m*v, 1 +p,b -V xb). (46)

A comparison can now be made between Eq. (13) and
the results of Northrop and Rome. Rewriting Eq. (13)
using the first-order gyrophase averaged Jacobian, we
have

Uu 1

=%—W(B +Vxp,B) (A7)

and v '5=v.., which is the result of Northrop and Rome.
For the perpendicular particle drift, they give an ex-
pression which can be written as

v, =(cB/eB* x (uVB +mv?b * vb)

+p[(VXV), =V, D+ VX D] +W, (A8)
with W, depending on the definition of the guiding center.
This expression without W, would agree with Eq. (A7) if
we replace p,B=mcv,/e by mev/e. A plausible argu-
ment on this replacement is given at the end of the
Appendix. Clearly, the results of this paper are in
close agreement with the work of Northrop and Rome.

Hazeltine has derived a drift-kinetic equation in
which the steady-state case can be written as

v vf+ U-O'Uus * V(p"B : VB)%{—:C(I‘) .
0

(A9)
His parallel velocity was written in the paper as (V)
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+(p,0/m)8 *(Vxb), but as shown by Northrop and Rome
this is just v,. The term in Hazeltine’s equation which
goes as 8f/8, arises from his use of the lowest-order
magnetic moment as the velocity coordinate rather
than the exact magnetic moment . To show this, one
notes

2
V9= Ty T (410)
In a gyrophase averaged equation, only the gyrophase
average correction to p is important, so
(V'vuu)u :J“U-OUHB ) V(p,,I;'VB). (A11)
Consequently, his result agrees with ours.

Finally, we will give an interesting derivation of the
drift kinetic equation which illustrates the fundamental
nature of Eq. (13). The exact particle velocity obeys

dv e

m —CVxB—erb. (A12)
Suppose, instead of using time as the independent
variable, we use position; so

2

WV _vow=vLi _vxwxv). (A13)

dt 2
One can then write

i—Vx(B +-’Z—Cv xV) =V<—;—mv2+e®). (A14)

If we describe V by the position of the particle, energy,
exact magnetic moment, and gyrophase at a definite
position, we have

Vxh=0, h=B+(mc/e)VxV. (A15)

Consequently, V is always parallel to h, that is, V
=)h. By particle conservation arguments like those

of the paper, one can show that Ao 1/J with J the Jaco-
bian of the transformation to the new velocity coordin-
ates E, u, and ¢,. The exact kinetic equation is

V- vf=C(f).

Let us spatially average this equation after division by

(A16)
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2. By a spatial average of F(X), we mean

Fe)= [ sx-pFE)dly (a17)

with s(x) constant for |x|<l, zero for |x|>1, and

fs(x)d3x=1. (A18)

The scale ! is the smoothing scale which we assume is
large compared to gyroradii, but small compared with
the system size. One finds

AC(f N =(hvry,
Al N =v iy .

If f is slowly varying compared with the gyroradius
scale,

(A19)

iy = [ sx=y)hyy ()

2f @) [ sx=yy)dy ; (420)

S0 one can write (hf) ~Hf with H=(h). Now (VXV)
=V x(V) so letting v=(V), we have

H=B +(mc/e)Vxv, (A21)
and

H-9f =Q7C(f ).

Identifying v with the drift velocity, one has the drift
kinetic equation.

(A22)
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