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The reduced description in terms of drifts and adiabatic invariants of the 
motion of a charged particle in a strong magnetic field is derived. The demon~ 
strati on employs systematically two time scales and an iteration scheme for 
each quasiperiodicity. This leads to a particularly expeditious derivation, as 
well as the details of the rapid oscillations at each stage. Moreover the 
motivation of each part is clear, as is the relation to simple problems in dyna
mics. The small parameters, the existence of which underlines the method, are 
displayed explicitly. 

Introduction 

A central problem in plasma physics is the derivation of a tractable 
description of the motion of a charged particle in a strong magnetic field. 
This task was initiated by Alfven (I) on a physical basis, and carried to a high 
degree of mathematical sophistication by Kruskal (2). The formal con
siderations of the latter author provide a constructive technique for the 
development of a so.,.called "reduced description" of the motion in powers of 
an appropriate small parameter. The method applies to all dynamical 
system that exhibit one or more, almost periodic motions. A partial summary 
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312 THE MOTION OF A CHARGED PARTICLE 

of both points of view has been given by Northrup (3), who combines several 
points of view. The basic notion underlying all treatments is that of the 
existence for each almost periodic motion of two time scales, one of which 
describes the rapid periodic aspect, and the other any slow perturbation of 
this. When this notion is applied systematically to the problem of the motion 
of a charged particle in a strong magnetic field, coupled with an appropriate 
iteration scheme, it is possible to derive, in a very efficient manner, all of the 
well-known results and, in addition, indicate explicitly what are the small 
parameters and the details of the reduced description. 

Section 1 is devoted to developing the guiding-center description and the 
associated approximate constant of the motion or adiabatic invariant, the 
~magnetic moment, to the lowest significant order. Section II is concerned with 
'. ''the derivation of the reduced description when the motion of the guiding 
center along the lines of force is periodic and the particle does not move much 
perpendicular to the line in one period. The second adiabatic invariant, the so
called longitudinal invariant, is found to the lowest significant order in this 
second small parameter, as well as a description of the rapid oscillation. In 
Section Ill, a final reduction is affected in the description when the energy 
of the guiding-center particle changes but little in the time required to 
circulate once on a magnetic surface. Here, in addition to a third adiabatic 
invariant the magnetic flux, the details of the motion in the constant flux 
surface are found. 

The derivations presented here have the virtue of considerable analytical 
simplicity and conceptual unity. It is also clear from them explicitly what the 
small parameter in question is, and also how to proceed tq the next order. 
Moreover, at all stages the treatment is simply related to a familiar problem 
in classical mechanics. 

I. The Gyrating Particle and the Magnetic Moment Adiabatic Invariant 

The equation of motion of a particle of charge q and mass m acted on by 
an electric field E(r,t), a magnetic field B(r,t) and a gravitational potential 
G(r,t) is 

r=a-nxr (1-1) 

where 

a(r,t) = qE(r,t)/m- VG(r,t) (1-2) 

O(r,t) = qB(r,t)fmc (1-3) 
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When a and n are constant in space and time, the solution of eq. 1-1 can be 
written (4): 

where 

r=R+ p 

R(t) = R(O) + bb · [R(O)t + .J: at 2
] + b x a t/f! 

p(t) = [e2 cos (r:!t + </>) + e1 sin (nt + ¢)]wjn 

(1-4) 

(1-5) 

(1-6) 

T n the above expressions the perpendicular speed w and the phase q, are 
constants, and we have introduced 

n = qBfmc 

b = B/B 

(1-7) 

(1-8) 

and the orthonormal right-handed set of Cartesian unit vectors, e1 , e2 , and 
e3 =b. Clearly, 

R(t) = bb • [R(O) + at] + b x a;n (1-9) 

p = w[ -e2 sin (nt + ¢) + e1 cos (nt + ¢)] (1-10) 

=-!1 X p 

The solution is readily verified by substitution in eq. 1-1. The vector R(t) 
describes the trajectory of the so-called guiding center; the term in brackets in 
cq. 1-5 arises from the accelerated motion in the direction of the magnetic 
field; the term b x ajn is designated the drift velocity perpendicular to the 
magnetic field. 

Consider the case in which a and n depend on space and time but do not 
change much in a distance wjn or a time 1/f!, where w is the magnitude of the 
component of the velocity of the particle orthogonal to the magnetic field 
measured relative to the drift velocity, and n is the value of the gyration 
frequency that prevails at the point in question on the trajectory of the 
particle. It then seems plausible that the solution of the equation of motion 
will be very much like that given in eqs. l-4 to l-6. If this is so, one is led to 
seek a solution effectively in powers of the small parameter 

B =In-·(~+ R. v) In aBI + j(wfr:!)V lnaBJ (1-11) 

This is the program adopted by Kruskal (2) and leads to an asymptotic 
representation. 

An alternative method that is more expeditious for obtaining lowest 
significant order results consists in the introduction of an auxiliary variable 
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0 contrived to describe the rapid gyration indicated in eq. 1-6 for the constant 
field case and a suitable iteration scheme. We shall require periodicity in 8 and 
choose the period to be unity, so that 8 has the character of an angle variable 
in Hamilton Jacobi theory. For the case of constant fields one sees from 
eq. 1-6 that 0 = ntj2n is an appropriate choice. For the general case we write 

r = R(t) + p(8,t) 

whence if we denote partial derivatives by subscripts and set il = v(t), 

r = R(t) + v(t) p,(O,t) + p,(O,t) 
Presumably, 

V
2Po 2 ~ p/ 

and we expect that in the order of magnitude v ~ 0/2rr. 

(1-12) 

(1-13) 

In dealing with the equation of motion, since we anticipate that p2 = 
w'/02

, we are led to expand r!(r,l) and a(r,t) in powers of p because this is 
effectively an expansion in powers of the small parameter e of eq. I-ll. Thus 
one writes 

a(R + p,l) = a(R,t) + p · Va(R,t) + 1PP: VVa(R,t) + · · · (I-14) 

and a parallel expansion for n. When these expansions and the time deriva
tive of eq. l-!3 are employed in the equation of motion 1-1, we obtain 
the result, 
•. 2 . 
R + v p60 + 2vp., + vp8 + p, =a+ p · Va + 1pp: VVa + · · · 

- n x il.- p · (V!l.) x il. -1pp:(VVn) x il. 

- vr! X Po - vp · (V!l.) X Po -tv pp; (VV!l.) x Po 

- 0 x p, - p · (V!l.) X p,- !pp;(VV!l.) X p, 

(1-15) 

Note that in eq. 1-15 8 occurs only in p and its derivative, a= a(R,I), !l. = 
!l.(R,I), and V denotes the gradient with respect toR. We shall require that p 
be periodic in 0 with period unity and the average of p over one period in 8 
vanish. That is, following Kruskal, one can write the Fourier series: 

00 

p(O,t) = L [p<•l(t)e12
'"

0 + p<•>'(t)e- 12" 0] (1-16) 
11"'1 

Thus, if we integrate eq. 1-15 over one period of 8, we obtain 
1 

R = a + v J dO p0 x [p · (V!l.)] - !l. x R + · · · 
0 

(1-17) 

j 
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As will be shown later, the dependence of p on 8 to the lowest significant 
order is given by eq. 1-6 with 2n0 replacing 01. Thns, if one carries out 
integrations over one period in fJ, the integral of any quantity cubic in p or its 
derivatives will vanish to the lowest significant order. In particular, it 
follows from this observation that the terms indicated by dots above are 
smaller by a factor of the order e2 than the largest term retained explicitly. 

When eq. 1-17 is subtracted from eq. 1-15, on regrouping terms and 
recognizing that R is not a function of R but depends only on t, we find that 

(v 2p0 + v!l. xp)0 = -2vp,- vp0 + p · V(a + R x !l.) +p, x !l. 
1 

+ vp, X ((l' V!l.)- Jo dO ''Pox (p · V!l.) + ··· (1-18) 

The terms indicated by dots on the right-hand side of eq. 1-18 are smaller by a 
factor of order e than these indicated explicitly on the right. These latter in 
turn are smaller by a factor of the order ethan those written on the left-hand 
side of eq. 1-18. Thus, to the lowest significant order, we require that the 
left-hand side above vanish, whence on integration in 0 

v2p, + vn X p = W) (1-19) 

where ~(t) is the constant of integration. If one Integrates eq. 1~19 over one 
period in 0, it follows that the left-hand side vanishes because ofeq. 1-16. Thus 
~ = 0, and if we resolve eq. 1-19 in the Cartesian coordinate system associated 
with the unit vectors introduced prior to eq. 1-19, we obtain the result: 

n 
p,+-p,=O 

v 

p,= 0 

(1-20) 

(1-21) 

(1-22) 

It follows from eq. 1-22 and the requirement that p have no part constant 
in 0 that p3 = 0. Moreover, if one adds i times eq. 1-21 to eq. 1-20, 

n 
(p, + ip,)o = - i- (p1 + ip,) (1-23) 

v 
whence 

p 1 + ip 2 = ip(t)e[- i(~ 0 + cp(t))] 
112 

(1-24) 

where we have introduced the real constants of integration, p(t) and cjJ(t). 
In order that p, as determined from eq. 1-24, be periodic in 8 with period 

unity, we must require that 

v(t) = 0(R(t),t)/2rr (1-25) 

,,, ,, 
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'hus, on rewriting these results in vector form, to the lowest significant order 
1 E, we obtain 

p(B,t) = p[e2 cos (2n0 + ¢) + e1 sin (2n0 + ¢)] (1-26) 

vhere p, ¢, e1 , and e2 all depend on time. Clearly eq. 1-26 reduces to eq. 1-6 
'or the case of constant fields. The time dependence of 0 is now determined 
'rom 

O(t) = f dt D(R(t),t)f2n (1-27) 

\late, however, that to this order in n, p, and </> arc not yet determined as 
·unctions of time. 

Jf one wishes to calculate to the next order in e, it is adequate to drop the 
:erms indicated by dots in eq. 1-18. Rather than solve the resulting equation 
;ompletely, we shall be content to derive an approximate constant of motion, 
oorrect to that order in e corresponding to dropping the dots in eq. 1-18. The 
derivation proceeds by forming the scalar product ofeq. 1-18 with p0 , after 
deleting the terms indicated by dots: 

G V
2Po') 0 + (vpo'), =PoP: V(a + R X D)+ Po X p, ·!1- Po. f:dOvpo X (p· vn) 

(1-28) 

If we integrate eq. 1-28 over one period in 0, we obtain 

( 

1 ) I I J dOvpo' = J d0p0 p:V(a + :R x n) + J d0p0 x p, · n 
0 t 0 0 

(1-29) 

The integration over 0 has removed the nominally large terms in eq. 1-28, and 
it is adequate to use the lowest significant order approximation eq. 1-26 in 
eq. 1-29. Thus 

1 I 

Jo dOpo' = 4n 2 p2 Jo d0[cos2 (2n0 + ¢) + sin2 (2n0 + ¢)] 

= 4nlpl (1-30) 
and 

J1 II ' d0p0 p = 2np 2 dO[- e2 sin (2n0 + ¢) + e1 cos (2n0 + ¢)] 
0 0 

· [e2 cos(2n0 + ¢) + e sin (2n0 + ¢)] 

1 

= 2np 2 fo dO{(e1e1 - e2 e2) sin (2n0 +¢)cos (2n0 + ¢) 

+ e1e2 cos2 (2n0 + ¢)- e2 e1 sin 2 (2n0 + ¢)) 
-

= np2(e 1e2 - e2 e1) (1-31) 

J 
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In order conveniently to reduce the remaining integral, we note that on 
combining eqs. 1-19 and 1-25 we can write 

p0 = -2n b x p (1-32) 

But substituting bin eq, 1-32, and using the result eq. of 1-26 that b · p = 0, we 
find that 

Thus 
b x p0 = 2np 

1 I J d0p0 x p, · n = n J dOb x Po · p, 
0 0 

1 

= 2nD f dOp · p, 
0 

8 J1 
1 = 2nD- dO- p2 

8t o 2 

8 2 
= nD- p 

81 

(1-33) 

(1-34) 

since p2 = p 2 is independent ofO. These results permit one to write eq. 1-29 as 

(2nDp2
), = np 2(e 1e2 • V- e2 e1 • V) ·(a+ R x n) + nD(p 2

) 1 

= -np2[(el X e,) X V] '(a+ R X n) + (nDp 2
), - np'D, (1-35) 

On using eqs. 1-2 and 1-3 on the right-hand side above, after transposing the 
term that is a multiple of that on the left-hand side, we obtain the result, 
since e1 x e2 = b, 

(n11p 2
), = -np2 {(b XV). (a+ R X !1) + n,) 

= -np2 {b ·V X (a+ R xn) +D,} 

= -np2
;, (b · V x [E+ ~ R x B] + ~ B,) (1-36) 

In eq. 1-36, B, is to be interpreted as a time derivative holding 0 fixed, i.e., a 
convective derivative following the guiding-center motion characterized by 
R, namely, 

8B 
B =-+R·VB 

' 8t 

But from the Maxwell equation, 

8B 
cV x E= -at 

(1-37) 

.(1-38) 
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it follows, since V · B = 0 and VR = 0, that 

an 
B =-+R·VB ' at 

Thus 

= - cV x [ E + ~ R x B J + B · VR + RV · B - BV · R 

= - cV x [ E + ~ R x B] 

[ 
1 J 1 1 1 b·Vx E+-RxB +-B,= --b·B +-B 
c c c t c t 

= - ~ B · B + ~ (B') 
cB 1 c 2 1 

=0 

(1-39) 

(1-40) 

Note that E + 1/c (R x B) is just the electric field seen by an observer moving 
with the guiding center. 

We can now conclude from eq. 1-36 that 

whence 
(nnp'), = o 

q n q 
J1 =-- np 2 =- vnp 2 

""" 
c 2n c 

the so-called magnetic moment, is an approximate constant of the motion. 
Such an approximate constant is conventionally termed an adiabatic invariant. 

Let us now return to eq.J-17. Note that the term therein involving Vn, on 
using eq. 1-31, can be approximated by 

1 

v J d8 p, X [p · (Vfi)] = vnp 2(e1e2 • V- e2e1 • V) x (qBjmc) 
0 

p 
= -- [(e1 X e2) X Y') X B 

m 

p 
=--(bxV)xB 

m 

p 
= -- [(VB) · b - bY' ·B) 

m 

p 
=--VB 

m (1-43) 

l 
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Thus on dropping the terms indicated by dots, after dotting and substituting 
b, eq. 1-17 yields 

b·R=b·a-~b·VB 
m 

(1-44) 

and 

R~ = b X (R X b) 

= 2 a X b + .£_ b X VB+ _1. b X 1!. n mn n 
ExB 1 p 1 .. 

= c BT""" + Q b x VG + mQ b X VB+ Q b X R (1-45) 

If we define 

u=b·R (1-46) 

we can write eq. 1-44 in the form 

mu = b · [qE - mVG - pV B] + mb · R (1-47) 

since b · b = 0. Clearly, the acceleration along the magnetic field should not 
be so large as to change the magnetic field in a time comparable with n-•; 
otherwise, the theory here developed is invalid. 

Equation 1-45 can be solved by iteration, assuming that the acceleration 
a dominates, namely, to the lowest order, 

and to the next order 

(1-48) 

~<;.J<P ~ 

In order to iterate once again and preserve accuracy, one would have to 
restore the terms indicated by dots in eq. 1-17 and also evaluate p to the next 
order in e. 

The details of the gyration can be fixed, e.g., by choosing 

(1-50) 

in which event 

(1-51) 
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The derivation Of the equation governing the evolution in time of the slowly 
varying phase function ¢(t) can be found by returning to eq. 1-18 and viewing 
it as an inhomogeneous equation for the second approximation. That is, 
one writes eq. 1-16 in the form 

[p, + (fl.jv) x p], = f (1-52) 

where v'f is given by the right-hand side of eq. 1-18 with the terms indicated 
by dots deleted, and p given by eq. 1-26. It is readily seen that f involves 
only the first and second harmonics of 2n0, namely, 

2 
f = L. (f(u)e2trfn0 + f(n)•e-2nfn0) ( 1-53) 

n= 1 

In order that the solution of the homogeneous equation associated with 
eq. 1-52 reproduce eq. 1-26, we must as before select v = 2nj0.. If then, as 
before, we resolve eq. 1-52 in a Cartesian coordinate system defined by the 
orthornormal vectors e1 , e2 , e3 = b, on adding i times the two-component to 
the one-component of eq. 1-52, we obtain 

(p 1 + ip 2 ) 00 + 2ni(p 1 + ip2 ) 0 = / 1 + if2 (1-54) 

We require that p be represented by cq. 1-16, namely, that it be periodic 
in 0 with period one and have no part constant in 0. That is, if we write 

00 

Pl + ipz = L en elnnlO (1-55) 
n= -co 

2 

J, + if, = I: d, e2
"'

18 (1-56) 
11= -2 

where c0 and d0 are both zero, then the insertion of these expressions in 
eq. 1-54 and the equating of the coefficients of like Fourier factors e2'" 18 

yields 

4n2n(n + 1)c, = d, 

Clearly, when n # -1, one has 

c, = - d,/4n 2n(n + 1) 

(1-57) 

(1-58) 

and the C11 vanish for n = ±3, ±4, .... In order that a solution exist for 
n = -1, one must have d. 1 = 0, or equivalently as follows from eq. 1-56 
on multiplication by e2

n
10 and integration over one period in 0, 

l 

d 1 = J dG(/1 + if2)e"" = 0 
0 

(1-59) 

~II. THE SECOND OR LONGITUDINAL ADIABATIC INVARIANT 121 

Equation ]. 59 is equivalent to two real conditions resulting from taking 
the real and imaginary parts. These are effective equations for ¢ and p. On 
judicious combination they yield eq. 1-41. We shall not develop them in 
detail. 

If one is not interested in analyzing the details of the gyration, it suffices 
to consider the equations governing the guiding center R(t): eq. 1-47 which 
gives the time rate of change of the component of the guiding center velocity 
along the magnetic field at the location of the guiding center and eq. 1-49 
which gives the velocity of the guiding center perpendicular to the magnetic 
field at the location of the guiding center. The advantages of these equations 
over eq. 1-1 are twofold: first, they exhibit no fast gyrations on the scale of 
the gyration frequency; second, they constitute a fourth-order system of 
ordinary differential equations as opposed to eq. 1-1 which is a sixth-order 
system. These features are useful both for purposes of numerical calculation, 
and also for analytic work and qualitative analysis. 

Higher approximations can be found by iterating the results just found, 
but in general the results are so complicated that the virtues of the reduced 
description are lost. 

It has been shown (6) that these lowest significant order results represent 
the leading term in an asymptotic expansion of the trajectory of the particle 
in powers of the small parameter E of eq. 1-11. That is, if one writes the 
partial sum, 

SN(t) = r0 (t) + er1(1) + e2r 2(t) + ···eNrN(t) 

then, for any fixed time t, 

I
. I r(t)- SN(t) I 

0 tm N = 
e-+-0 E 

This is distinct from what would prevail were the procedure convergent, 
namely, 

lim lr(t)- SN(r)l = 0 
N~oo 

II. The Second or Longitudinal Adiabatic Invariant 

A further reduction of the preceding guiding-center description can be 
made when the motion along the lines of force is quasiperiodic and much 
more rapid than the motion associated with the drift. The demonstration is 
assisted by writing the magnetic f1eld in terms of two scalar fields a(r,l) and 
{J(r,t) via 

B = (Va) x (V{J) (2-1) 

,.,. 
i'· 
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which clearly satisfies V · B = 0. To show that eq. 2-1 is possible, recall that 
one can define lines of force by the equation 

dr x B(r,t) = 0 

Let S be some surface nowhere tangent to the lines of force. In this surface 
choose a family of lines. The set of all lines of force through one of the lines 

. of this family defines a surface. Let a(r,t) = canst be the equation of such 
"magnetic surfaces." Now choose a second family of lines in S nowhere 
tangent to the first, and in a parallel manner associate with them a family 
of magnetic surfaces y(r,t) = canst. By construction 

B · Va = 0 B · Vy =0 (2-2) 

and as follows directly from the above, since Va, Vy, and (Va) x (Vy) are 
noncoplanar on writing B = (Va) x (Vy)j). + (Va)Jl + (Vy)v, 

(Va) x (Vy) = ).B 

Jf one takes the divergence of the above equation and uses V · B = 0, 

B ·VA =0 

and A must be a function of a andy. We shall now introduce a new variable 
{J(a,y). Clearly, B · V {J = 0. lf we viewy as a function of a and {J, and denote 
partial derivatives by the subscripts, 

(Va) x (Vy) = (Va) x [y. Va + Yp V{J] 

= Yp(Va) x V{J 

We choose Yp =A. This yields the desired result 

B = (Va) x (V{J) = V x (aV{J) (2-3) 

Therefore, the intersection of any two surfaces a = canst and {J = const is a 
line of force, and one can interpret the associated pair of values a, {J as the 
coordinates of the line of force. Even though the pattern oflines of force may 
change in time, we shall identify that line labeled by a given pair a, {J as the 
same line of force. The functions a and {J need not be single-valued. See 
Figures I, 2, and 3. 

U. THE SECOND OR LONGITUDINAL ADIABATIC INVARIANT 

Fig. 1. Diagram illustrating the construction of surfaces. 
oc =con st. 

B 

Fig. 2. Diagram illustrating the conStruct- Fig. 3. Diagram illustrating the use of IX, y 
ion of surfaces.y =canst. coordinates to label a line of force. 

Now one can write the Maxwell equation 

whence 
1 oa 1 o{J 

E= -V¢!---V{J--aV-
c at c at (2-4) 

and 

b · E = -b · V</!- ~ ab · V ofJ 
c at 

= - b · v(q, + ~ ap) 
c at (2-5) 
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since both b ·\'a - 0 and b Vfl 0 Th · - . = . us, tf one defines the potential 

V(r,t) = q</J + qa ap + J1B + mG 
c at (H) 

t~e e'!,uBation of motion for the parallel velocity, assuming that rna x b and 
J1 x v are of the same order of 't d 
consistent order magm u e can be written to the lowest 

mil= -b · VV + mub · (Vb). R.c 
since to this order we make the parallel assumption that 

b = abj at + (ub + R. .cl . Vb ~ ub . Vb 

The associated expression for R-' can be expressed as 

_.. 
t..tK 

(2-7) 

R. _ b [ q (aa ap ) .c- mn x VV +;; at Vfl-a;Va + mu'b· Vb] (2-8) 

'bl Obse;lve that, in th? expression for mti, the term involving R is osten-
st y sma compared With -b. VV. We assume -' . 
in a sense that we shall make precise later. ' moreover, that V, IS small 

Lets be the arc length along a line of force and su 
the character of a potential well, as indicated schematic~fy0;": ~:::: ~~-~~:~ 

v 

----- ------ ------- ---V • E 

s 

Fig. 4. A typical effective potential energy curve V ~s. s. 

both R .c and V, are zero, since 

u =S 

there is a first integral of the equation of motion, 

fms' + V = const = E 

II. THE SECOND OR LONGITUDINAL AD!ABAT!C IN VARIAN 1 

If one solves this for s, it is easy to show that 

t = r ds{2[E- V]/m} -l/2 

Clearly, the motion is periodic with a period 

"(£) = f ds {2[£- V]/m} - 112 

The orbit of the particle in the s, s phase plane is the closed curve E = const. 

See Figure 5. 

; 

s 

Fig. 5. A representativeS, s phase plane diagram for 
'he case of constant E. 

When it and V, do not vanish, the energy E will be a function of I. 
Suppose, however, that we extend the definition of the period <(E) by means of 
the integral above to this case and assume that 

(2-9) 

It seems plausible in this circumstance that the motion should be almost 
periodic. Let us assume so and seek a solution of the equation of motion via 
the introduction of an auxiliary variable 0(1) such that 0 accounts for the 
rapid oscillation of period of the order <, and any explicit dependence on I 

is associated with the slow time variation. That is, we write* 

s = s(O,I) (2-1 0) 

whence if we define v(l) = ~ 
(2-11) 

*The symbols 8 and v are distinct from the quantities so labeled in the Introduction. 
We use the same symbols to illustrate the parallelism of the development. 
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where the subscripts denote partial derivatives. The equation of motion 
reads 

v
2
s00 + V, = -2vs01 - v,s0 - (vs0 + s,)b · (VR,) · b 

where we have used the fact that b · R = 0 to write 

(Vb) ·li., = V(b · RJ- (VR,) · b = -(VIi.,)· b 

(2- i2) 

The terms on the left-hand side above are presumably larger by a factor 
1/r. than those on the right-hand side. Thus to the lowest order we require 
that the left-hand side above vanish. This requirement on multiplication by 
s0 leads to 

(~v2s/+v),=o 
whence on integration 

m 
'2 v2s0

2 + V = E(t) 

The constant of integration E(t) is as yet unknown as a function of t. When 
one solves. for s0 'from the above a further integration is possible, namely 

e J' ;; = ds{l[E(t)- V(s,a,fl,t)]/mr 112 (2-14) 

In the integrand we have indicated explicitly that the potential V depends on 
the points on the line afforce labeled by a and /3, and by the timet. We have 
not indicated explicitly that it also depends on p. 

Let us pick v = v(E,a,fJ,t), so that 8 is an angle variable; i.e., when s goes 
through one period of its motion for fixed a,f3,t, we require that 8 change by 
unity. Therefore, 

~ = f ds{2[E- V]/m) - 1
/

2 = <(E,a,/3,1) ci-1s) 
and 

8(1) = f dt v (2-16) 

In order to determine E(t), we revert to the equation of motion 2-13 
and note that, if we retain terms to the next order in e beyond that part which 
Jed to eq. 2-13, we find that 

v2s00 + V, + 2vs,. + v,s, + vs0 b · (VR,) · b = 0 

If we multiply this equation by s,, the result can be written 

(1v's/ + V), + (vs/)0 + vs,'b · (VR,) · b = 0 

i 
·] 
,1 

j 
J 
j 

I 
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lf we integrate this equation with respect to 0 from zero to one, and recall 
that s(O,t) is presumably periodic in 8 with period one, we obtain 

a J, J 1 - d8vs/ + dOb · (VR,) · bvs,' = 0 at o o 
(2-17) 

Let us in the above eqnation use s as the variable of integration and 
recognize that to the lowest significant order we may use eq. 2-13 to express s, 
in terms of E and V. The equation then reads on multiplication by m: 

~ f ds {2m[E(1)- V(s,a,/3,1] J''' 

+ T ds b · ('YR,) · b(2m[E(t)- V(s,a,fJ,t)]} 112 = 0 (2-18) 

Note that afat acting on the first integral above means a time derivative 
holding the line of force fixed. We shall now show that dsb · ('YR") · b is jusj 
the time rate of change of the element of arc length ds due to the velocity li.,. 
See Figure 6. 

~s+oc\S line.genero1ed ol 1+81 

Let us consider a vector 

Fig. 6. Schematic diagram illustrating the calcu- 'i;' 
lation of the time rate of change of arc length 
along a line of force due to R.1. 

ds = dsb 

In an infinitesimal time Jt the end of ds, as indicated in Figure 6, is carried 
a distance R,(R,t) bt by the guiding-center motion. The tip of ds is carried 
into 

The net change in ds is to lowest order 

Jds = ds · (VR") Jt 
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whence the square of the element of arc length is carried into 

(ds + ods)2 = (ds)2 + 2ds. (ods) + ... 

Thus 

= (ds) 2 + 2dsb · [dsb · (VR J.l iit] + · · · 
= (ds)2 [1 + 2b · (VRJ.l· bot+ · · ·] 

ds + &Is= ds [1 + b · (VR 1_) · bot + · ·-] 

and in the limit 01-> 0, 
ods 
- = b • (VR ) · b ds .It j_ 

Equation 2-18 is then to be interpreted as a time derivative of the 
integral following the guiding-center motion, and 

J = f ds(2m[E(r)- V(s,a,{J,t)]) 1
'' (2-19) 

·is an approximate constant of the motion. For a given value J and known 
potential V this expression is an implicit equation for E. The constant J is 
conventionally termed the second or longitudinal adiabatic invariant. 

To recapitulate then, the motion along the line is determined by eq. 2-14 
withE given by eq. 2-19. The motion perpendicular to the line is then given by 
Ji.J. (see eq. 2-8), where we may replace mu2 by 2(£- V). To find the trajectory 
associated with RJ. requires only the solution of a second-order system of 
ordinary differential equations. 

It is interesting to note that, if the technique of this section is applied to 
the equation, · 

x + w(t)2 x = 0 
corresponding to 

V = 1w2x 2 

and 
(ciJ) ~ w' 

then it yields the well-known, lowest order WKB results. 

III. The Third or Flux Invariant 

When the fields involved in RJ. are changing sufficiently slowly, a notion 
that will be made more precise later, a further reduction in the description is 
possible. To demonstrate this, it is convenient to write equations for c(: and [J, 
instead of dealing with li.. To this end v.:e view RJ. as a function of s,a,{J, and 1 

and write 
li. = SR, +ctR, + PRp + R, (3-1) 
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where the subscripts indicate partial derivatives. Moreover, by the chain rule 

for differentiation, if f denotes the unit dyadic, 

VR = f = VsR, + VaR, + VpRp (3-2) 

whence on taking the dot product on the left-hand side with b, one has 

b = (b · Vs)R, = R, (3-3) 

since b · Vs = s, = I. If one takes the dot product of eq. 3-2 on the left-hand 

side with b x R, and b x R1 , 

b x R, = V {JRp · b X R, 
• 

b x R1 = VaR, · b x Rp 

The cross product of these two equations yields 

- '\Ia x V{J(b · R, X R1) 2 ~ (b X R1) X (b X R,) 

=bR,. b X Rp 

But, since Va x V fJ = B = Bb, one has 

b · R, x Rp = 1/B 

Now the dot product ofeq. 3-1 with R, x R1 ~ b X R, yields 

ciR,. b X R, = R . b X R, - R, . b X R, 

or on using eqs. 2-8, 3-5, and 3-6, 

ci/B = -b x R1 · (b/m!J.) 

x [VV + (q/c)(a, vp- {J,Va) + 2(£- V)b,] + R< Va/B 

(3-4) 

(3-5) 

(3-6) 

Since, by the chain rule for differentiation, R, · Va =a,, R1 · VV= v,, 
b · VV= R, · VV= V, Rp · V{l = pp = 1, R, · Va = ap =0, while b · Va=O, 
b . V {1 = O, and since b is a unit vector b · bs = 0, the above reduces to 

a = a.(R, - bb · R,) · (c/q)[V V + (q/c)(a, vp- p, Va) + 2(£- V)b,] 

=a,- (c/q)[Rp · VV + (qfc)a,R1 · V{J- (qfc){J,Rp · Va 

+ 2(£- V)Rp · b, - b · V V b · R,] 

= -(cfq)[Vp- V, b · R, + 2(£- V)b, · R1] 

But, on recognizing that Rps = (Rs)/J = bp, and b · b11 = 0, this can be written 

a= -(c/q){V, + [2(£- V)/m] 112([2m(E- V)]' 12 b · Rp),) 
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Finally, if we introduce the angle variable G in place of s, since 

ds = [2(£- V)fm] 112 r de, 

d = -(cfq)[Vp + {r- 1 [2m(E- V)] 112 b · Rp)o] 

If one integrates this expression over one period in 8, 

1 1 

J d8a = -(cfq) J dBVp 
0 0 

= -(cfq)r-• f ds(2(E- V)fm) -t/ 2 Vp (3-7) 

The right-hand side of eq. 3-7 can be related to the energy E, as de~ned 
implicitly by eq. 2-19, and considered to be a function of ~./3,1, and of course 
the constants of the motion J and fl.lfwe take the partial derivative ofeq. 2-19 
with respect to /3, we find that since J is an independent parameter, 

0 = fds{2(E- V)/m)- 1
1

2 [Ep- Vp] 

or on using eq. 2-15, 

f ds(2(E- V)/m) -t/2 Vp =rEp 

Thus, if we interpret Jb de& as the time derivative of the average value of a 
associated with a particle over a period t, we can cast eq. 3-7 in the fonTI 

a= -(cfq)Ep 

In similar fashion we can show that 

fJ = (cfq)E, 

(3-8) 

(3-9) 

where it is to be emphasized that a and {3 are the coordinates of the mean line 
of force on which the particle is gyrating and oscillating. 

The equations of motion for o: and fJ are in Hamiltonian form with 
E(a,/3,1) playing the role of a time-dependent Hamiltonian. When E, = O,E 
is a constant of the motion, and the orbit in the a,{J phase plane is the c~rve 
E = canst. Suppose that this orbit is a closed curve, as shown schematically 
in Figure 7. Then the motion is periodic with period 

T = (qfc) f d/3/E, = (qfc) f da/Ep 

Suppose that 

Tl a ln E/811 ~I \ 
.- ~~lc'--

f.l"~ ol.-

c. L{t _L 01. ~ _L 
.-....t.-"l}-~;t 

U;v<T> 
b~ ~ !..1'• 

~ 

IL~ 
~ 

OJf;:.. [!. 

-t:: 
5D #~ 
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j3 

_,.-,..."/ E -= canst. 

a 
Fig. 7. Schematic diagram of constant flux surface 
illustrating a particle trajectory therein. 

We anticipate as in the former cases that the motion will be almost periodic 
we introduce an auxiliary variable x(l) and write 

a= a(x,t) f3 = f3(x,l) (3-11) 

If we define w(l) = ;(, we can write the equations of motion as 

w~, +a,= -(c/q)Ep 

wfJ, + /3, = (cfq)E, 

(3-12) . 

(3-J3f{ 
,.•,• 

To the lowest order we delete the ostensibly small term a 1 and [J, and note tha(;::·: 
then ·· 

(cfq)E, = (cfq)[a,E, + fJ,Ep] 

= ~, w/3, + /3/ -wa,) 

=0 
Thus to this order 

E = H(l) (3-14)? 

where the constant of integration H(t) is as yet undermined. Let us choose.: 
w = lfT, where Tis defined by eq. 3-10 but with the integrals extended over . 
the closed curve E =H. This makes X an angle variable, and one can formally'· 
integrate the approximate equations of motion, eqs. 3-12 and 3-13 with a, and 
/3, deleted, to obtain 

xT = (qfc) r da/Ep[a,f3(~,t),l] = -(qfc) ( d/3/ E,[~(/3,/),fJ,t] 

where f3(a,t) is determined from E(~,/3,1) = H(l), etc. '-1 

.,_ ~ ~s:; it./) ,_ 

lc~ tP}~~J~ ~ 
,(2 "-" ('>'-~ y- I _£__ ~ J fl.~ ~/1'1' ! 

"' e- 'i,_• t .,_ 
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In order to determine H(t), we note that, without approximation of the 
equations of motion, 

(cjq)E, = a,(cjq)Ea + J3,(cjq)Ep 

= a,(w/3, + j3,) - J3,(wa, + a,) 

= a,J3,- J3,a, 

= -(a/3,), + (a/3,), 

Thus, if we integrate this result with respect to x from zero to unity, we obtain 

and to the lowest significant order 

(3-15) 

is an approxinmte constant of the motion, where the integral is extended o~er 
the closed curve E = H. 

We shall now show that lj; is a magnetic ftux. To demonstrate this, we 
note that the Oux crossing any surface in x,y,z space is, on using Stokes 
theorem and B = (Va) x (V/3) = V x (o.Vj3), 

I d 2r · B =I d 2r · '1 x (aVjJ) 

=Idr·aVjJ 

=I d{J a (3-16) 

The line integral above is extended over any closed curve resulting from 
slicing the magnetic surface defined in x,y,z space by the equation E(a,[J,t) = 

H(t), as shown schematically in Figure 8. 

particle 
path 

path of 
line Integral 

magnetic surface E=H 

Fig. 8. Schematic diagram indicating particle path and line integral path in rnagrietic 
surface E =H. 
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Clearly, lj; is independent of the choice of line as long as it is topological!y 
equivalent to that shown above. Equation 3-15 is then to be viewed as deter
mining H(t) implicitly, given t/J. The approximate constant lj; is conventionally 
termed the third adiabatic invariant, or alternatively the flux invariant. 
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