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Abstract

The reduced description in terms of drifts and adiabatic invariants of the
motion of a charged particle in a strong magnetic field is derived. The demon-
stration employs systematically two time scales and an iteration scheme for
each quasiperiodicity. This leads to a particularly expeditious derivation, as
well as the details of the rapid oscillations at each stage. Moreover the
motivation of each part is clear, as is the relation to simple problems in dyna-
mics. The small parameters, the existence of which underlmcs the method, are
displayed explicitly.

Introduction

A central problem in plasma physics is the derivation of a tractable
description of the motion of a charged particle in a strong magnetic field.
This task was initiated by Alfvén (1) on a physical basis, and carried to a high
degree of mathematical sophistication by Kruskal (2). The formal con-
siderations of the latter author provide a constructive technique for the
development of a so-called *“ reduced description” of the motion in powers of
an appropriate small parameter. The method applies to all dynamical
system that exhibit one or more, almost periodic motions. A partial summary
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312 THE MOTION OF A CHARGED PARTICLE

of both points of view has been given by Northrup (3), who combines several
points of view. The basic notion underlying all treatments is that of the
existence for each almost periodic motion of two time scales, one of which
describes the rapid periodic aspect, and the other any slow perturbation of
this. When this notion is applied systematically to the problem of the motion

of a charged particle in a strong magnetic field, coupled with an appropriate -

iteration scheme, it is possible to derive, in a very efficient manner, all of the
well-known results and, in addition, indicate explicitly what are the small
parameters and the details of the reduced description.

Section 1 is devoted to developing the guiding-center description and the
associated approximate constant of the motion or adiabatic invariant, the

amagnettc moment, to the lowest significant order, Section 11 is concerned with
“the derivation of the reduced description when the motion of the guiding
center along the lines of force is periodic and the particle does not move much’
perpendicular to the line in one period. The second adiabatic invariant, the so-
calied longitudinal invariant, is found to the lowest significant order in this
second small parameter, as well as a description of the rapid oscillation. In
Section 111, a final reduction is affected in the description when the energy
of the puiding-center particle changes but little in the time required to
circulate once on a magnetic surface. Here, in addition to a third adiabatic
invariant the magnetic flux, the details of the motion in the constant flux
surface are found.

The derivations presented here have the virtue of considerable analytical
simplicity and conceptual unity. It is also clear from them explicitly what the
small parameter in question is, and also how to proceed tq the next order,
Moreover, at all stages the treatment is simply related to a familiar problem
in classical mechanics.

I. The Gyrating Particle and the Magnetic Moment Adiabatic Invariant

The equation of motion of a parﬁclc of charge g and mass m acted on by
an electric field E(r,r), a magnetic field B(r,¢) and a grawtatlonal potential

Glr,t) is
P=a—Qx¥ ' (1-1)
where .
a(r,f) = qE(r,0)/m — VG(r,t) - B )
Q(x,0) = gB(x,)fme E
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When a and € are constant in space and time, the solution of eq. 1-1 can be
written (4):

r=R+p (1-4)

where 7
R{f) = R{0) + bb - [R(O) + $ at*] + b x a 1/Q (1-5)
p(t) = [e; cos (D + ¢) + e, sin (Qf + ¢)Jw/Q (1-6)

In the above expressions the perpendicular speed w and the phase ¢ are
constants, and we have introduced

Q = gB/mc (1-7)
b=B/B (1-8)

and the orthonormal right-handed set of Cartesian unit vectors, e, , e,, and
¢; = b. Clearly,

R(r)_—_« bb * [R(0) + ar] + b x a/Q (1-9)
= wl —e, sin (Qf + ¢) + ¢, cos (Qr + @)] (1-10)
=—-xp '

The solution is readily verified by substitution in eq. 1-1. The vector R(s)
describes the trajectory of the so-called guiding center; the term in brackets in
eq. 1-5 arises from the accelerated motion in the direction of the magnetic
field; the term b x a/{2 is designated the drift velocuy perpendicular to the
magnetic field.

Consider the case in which a and € depend on space and time but do not
change much in a distance w/C or a time 1/Q, where w is the magnitude of the
component of the velocity of the particle orthogonal to the magnetic field
measured relative to the drift velocity, and Q is the value of the gyration
frequency that prevails at the point in question on the trajectory of the
particle. It then seems plausible that the solution of the equation of motion
will be very much like that given in eqs. 1-4 to 1-6. 1f this is so, one is led to
seek a solution effectively in powers of the small parameter

& =

+ {(W/Q)V In aB] (-1

Q"(:;?E-FR-V) In aB

This is the program adopted by Kruskal (2) and leads to an asymptotic
representation.

An alternative method that is more expeditious for obtaining lowest
significant order results consists in the introduction of an auxiliary variable
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8 contrived to describe the rapid gyration indicated in eq. 1-6 for the constant
field case and a suitable iteration scheme. We shall require periodicity in 8 and
choose the period to be unity, so that § has the character of an angle variable
in Hamilton Jacobi theory. For the case of constant fields one sees from
eq. 1-6 that § = Qt2x is an appropriate choice. For the general case we write

r=R({) + p(6,0) : (1-12)
whence if we denote partial derivatives by subscripts and set 0 = v(r),
i = R{) + () pol0.) + p(0,1) (1-13)
Presumably,
vp® > p°

and we expect that in the order of magnitude v ~ Q/2nr.
In dealing with the equation of motion, since we anticipate that p? =
w2/Q2?, we are led to expand Q(r,f) and a(r.t) in powers of p because this is

effectively an expansion in powers of the small parameter ¢ of eq. 1-11. Thus
one writes

a(R + p,1) = a(R,t) +p - Va(R,1) + 4pp: VVa(R,0) + - - (1-14)

and a parallel expansion for 2. When these expansions and the time deriva-

tive of eq. 1-13 are employed in the gquation of motion 1-1, we obtain
the result,

R+ v?pgo + 2vpo, + ps + pro=a+p- Va+ 4pp: VVa + -
~QxRep (V) x R — 1pp:(VVQ) x R

“‘“VQ X pg— vp - (VE) % py — Jvpp: (VVQ) % p,
—Qxp —p- (V) x p, — 1pp:(VVQ) % p,
— (1-15)

Note that in eq. 1-15 8 occurs only in p and its derivative, a = a(R,f), Q =
. £2(R,1), and V denotes the gradient with respect to R. We shall require that p
be periodic in @ with period unity and the average of p over one period in 8
vanish. That is, following Kruskal, one can write the Fourier series:

p(g,t) = Z] [p(n)(t)eilmxﬂ + p(n}“(t)e-‘mnnﬂ] (1'16)

Thus, if we integrate eq. 1-15 over one period of 8, we obtain

1 ) ‘
Rﬁa+vfod9pﬂx[p-(Vﬂ)]~«~.QxR+'“ (1-17)
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As will be shown later, the dependence of p on # to the lowest significant
order is given by eq. 1-6 with 2r0 replacing Q. Thus, if one carries out
integrations over one period in §, the integral of any quantity cubic in p or its
derivatives will vanish to the lowest significant order. In particular, it
follows from this observation that the terms indicated by dots above are
smaller by a factor of the order &2 than the largest term retained explicitly.

When eq. 1-17 is subtracted from eq. 1-15, on regrouping terms and

‘recognizing that R is not a function of R but depends only on ¢, we find that

(v2po + v xpYy = —2¥pg — ¥pp + p- V(@ + R x Q) +p, x O
i
+ vpy % (p+ V) — j A0 vpy X (p - VX + +++ (1-18)
[¢]

The terms indicated by dots on the right-hand side of eq. 1-18 are smaller by a
factor of order & than these indicated explicitly on the right. These latter in
turn are smaller by a factor of the order ¢ than those written on the left-hand
side of eq. 1-18. Thus, to the lowest significant order, we require that the
left-hand side above vanish, whence on integration in 8

Ipg + v % p = £() _ (1-19)
where £(t) is the constant of integration. 1f one integrates eq. 1-19 over one
period in £}, it follows that the left-hand side vanishes because of eq. 1-16, Thus

£ =0, and if we resolve eq. 1-19 in the Cartesian coordinate system associated
with the unit vectors introduced prior to eq. 1-19, we obtain the result:

Q 4
pra——AD=0 (1-20)
Q
Pap + ‘791 =0 (1-21)
Pa=0 (1-22)

It follows from eq. 1-22 and the requirement that p have no part constant
in § that p, = 0. Moreover, if one adds { times eq. 1-2] to eq. 1-20,
Q
(p+ip2)s= "f—v“ (py+ipy) (1-23)

whence
Q 1/2
putips= ip(r)e[— (2o ¢(r))] (1-24)

where we have introduced the real constants of integration, p{f) and ¢(1).
In order that p, as determined from eq. 1-24, be periodic in 8 with period
unity, we must require that

¥(t) = QR(E), )21 (1-25)

L8/ g e
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‘hus, on rewriting these results in vector form, to the lowest significant order
1 &, we obtain

p(0,0) = ple, cos (2n0 + ¢) + e, sin (216 + )] (1-26)

vhere p, ¢, ei', and e, all depend on time. Clearly eq. 1-26 reduces to eq. 1-6
or the case of constant fields. The time dependence of § is now determined
rom

ot) = j dt QR(1), 02 (1-27)

Note, however, that to this order in g, p, and ¢ are not yet determined as
‘unctions of time.

1f one wishes to calculate to the next order in ¢, it is adequate to drop the
erms indicated by dots in eq. 1-18. Rather than solve the resulting equation
sompletely, we shall be content to derive an approximate constant of motion,
correct to that order in ¢ corresponding to dropping the dots in eq. 1-18. The
derivation proceeds by forming the scalar product of eq. 1-18 with p,, after
deleting the terms indicated by dots:

1 1
(5 vzpo’) + (2 = pop Vi + R x Q) +pg x p, 2 —py -fodﬂvpo x (p- V)
0
(1-28)
If we integrate eq. 1-28 over one period in 0, we obtain

1 i 1
(f d()vpoz) =j d0p,p:V(a + R x Q) +j d0py X p, - (1-29)
4] ¢ 0 0

The integration over 0 has removed the nominally large terms in eq. 1-28, and
it is adequate to use the lowest significant order approximation eq. 1-26 in
eq. 1-29. Thus

f d0p,* = 4n2plj d0[cos? (276 -+ ¢) + sin® (276 -+ $)]
] Q

= 4np? - (1-30)
and .

fldepgp = mp? fldﬂ[_ez sin (276 -+ ¢) + e, cos (210 -+ ¢)]
(] 0
 [ey coS (210 + ¢) + e sin (270 -+ ¢)]
= 2mp? fld(){(ele1 — ey ey) sin (2al + ¢) cos 2n0 + )
0 .

+ .8, cos? (210 + @) — ey e, sin (270 + §)}
= mp*(e,e; — €, €) (1-31)
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In order conveniently to reduce the remaining integral, we note that on
combining eqs. i-19 and 1-25 we can write

=_2nbxp (1-32)

But substituting bin eq. 1~ 32 and using the result eq. of 1-26 that b - p =0, we

ﬁnd that
b X py = 2np {1-33)

Thus
1 i
ja‘opaxp,-g=gf b % g p, (1-34)
0 0

1
=2nQ [ dop - p,
1]
a1
=2nQ - | df - p*
RY fo 2P
]
=1} — pt
TR
since p? = p?is independent of 0. These results permit one to write eq. 1-29 as
(2n0Qp%), = np*le,e, -V — e, 8, - V) - (& 4+ R x Q) + n0(p?),
= —np?[(e; x ) x V] (a -+ R x @) + (np?), — np’Q, (1-35)

On using eqs. 1-2 and 1-3 on the right-hand side above, after transposing the
term that is a multiple of that on the left-hand side, we obtain the result,

since e, X ¢, = b,
QY = —np*{(b x V) -(a + R x Q) + Q,}
= —up? (b -Vx{a4RxQ) +Q,}
= —mp ——[b Vx[E+ RXB]+ B) (1-36)
In eq. 1-36, B, is to be interpreted as a time derivative holding 0 fixed, ie., a

convective derivative following the guiding-center motion characterized by
R, namely,

dB
Bi=—+R-VB (1-37)
ot
But from the Maxwell equation,
JB
(VxE=— T (1-38)




318 THE MOTION OF A CHARGED PARTICLE

it follows, since VB =0 and VR = 0, that

B
B = —_— -
. at+1i VB

1
eV x [E+ER><B]+B-VR+RV-B—BV'R

I

—cV % [E-l— %‘ R x B] (1-39)

Thus
1 1
bV x [E+ER><B] +EB'

=0 (1-40)

Note that E + 1/c (R x B) is just the electric field seen by an observer moving
with the guiding center.

We can now conclude from eq. 1-36 that

(2Qp?), =0 (1-41)

whence ‘ ( ivm
2 1 £ "

TR I s Pl e 1
M= P 211 £ VO™ me i /U"i (1-42) vl 2

the so-called magnetic moment, is an approximate constant of the motion.
Such an approximate constant is conventionally termed an adiabatic invariant.

. Letus now return to eq. 1-17. Note that the term therein involving VQ, on
using eq. 1-31, can be approximated by

1
v jo 8 py % [p - (V)] = vnp¥ese; - V — ese; + V) x (qB/mc)

I

i
— L[, xe) x VI x B

i

#
~—(hxV)xB

i
=~ [(VB) b — bV - B]

1

m

|

(1-43)

R

W
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Thus on dropping the terms indicated by dots, after dotting and substituting
b, eq. 1-17 yields

b-ik=b-a-Lp.vp (1-44)
and
R =b xR xb
1 it 1
=58 xb+;l-ﬁbeB+abe
=cE;2B_+£—12beG+;1%beB+ébxﬁ (1-45)
If we define
u=b-R (1-46)
we can write eq. 1-44 in the form
mi="b-[gE - mVG — uVvB]l + mbh-R (1-47)

since b - b = 0. Clearly, the acceleration along the magnetic field should not

be so large as to change the magnetic field in a time comparable with Q™!;
otherwise, the theory here developed is invalid,
Equation 1-45 can be solved by iteration, assuming that the acceleratio
a dominates, namely, to the lowest order, '
R 1 :
i = ﬁ ax b (1'48)

- Seo o

and to the next order

——'u~b><VB+~1b><

1
R, =
i=paxbtos 0

[(—1 ax b) + (ub)'} (1-49)
Q-
In order to iterate once again and preserve accuracy, one would have to
restore the terms indicated by dots in eq. 1-17 and also evaluate p to the next
order in &. '

The details of the gyration can be fixed, e.g., by choosing

€ = Ri/lRLl (1-50)
in which event

e, =€, Xe;=¢; Xbh (1-51)
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The dcrlvatlon of the equation governing the evolution in time of the siowly
varying phase function $(t) can be found by returning to eq. 1-18 and viewing
it as an inhomogeneous equation for the second approximation. That is,
one writes eq. 1-16 in the form

(s + () x ple =1 (1-52)

where v¥f is given by the right-hand side of €q. 1-18 with the terms indicated
by dots deleted, and p given by eq. 1-26. It is readily seen that f involves
only the first and second harmonics of 2z0, namely,

2
= Z (l‘('i)EZfllnﬂ o+ [(")*e—annﬂ) ’ (1_53)
n=1

In order that the solution of the homogeneous equation associated with
eq. 1-52 reproduce eq. 1-26, we must as before select v = 2r/Q. If then, as
before, we resolve eq. 1-52 in a Cartesian coordinate system defined by the
orthornormal vectors e, , e,, e, = b, on adding i times the two-component to
the one-component of eq. 1-52, we obtain

(1 + ip2)as + 2milp, + ip,), =fi + if (1-54)

We require that p be represented by eq. 1-16, namely, that it be periodic
in  with period one and have no part constant in @, That is, if we write

I
|
18
o
m
I
a2
=
=

pi+ipy (1-55)

2
Ni+ifa= )Y de*™? (1-56)

where ¢, and d, are both zero, then the insertion of these expressions in
eq. 1-54 and the equating of the coefficients of like Fourier factors e**
yields

4n2n{n + Ve, = d, (1-57)

Clearly, when # 3 —1, one has
¢y = —d fAn*n(n + 1) (1-58)
and the ¢, vanish for n = +3, +4,.... In order that a solution exist for

n= —1, one must have d_, =0, or equivalently as follows from eq. 1-56
on multiplication by ¢?** and integration over one period in 0,

) |
d, = jd dO(f, + ify)e*™ =0 (1-59)
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Equation 1-59 is equivalent to two real conditions resulting from taking
the real and imaginary parts. These are effective equations for ¢ and p. On
judicious combination they yield eq. 1-41. We shall not develop them in
detail.

If one is not interested in analyzing the details of the gyration, it suffices
to consider the equations governing the guiding center R{f): eq. 1-47 which
gives the time rate of change of the component of the guiding center velocity
along the magnetic field at the location of the guiding center and eq. 1-49
which gives the velocity of the guiding center perpendicular to the magnetic
field at the location of the puiding center. The advantages of these equations
over eq. 1-1 are twofold: first, they exhibit no fast gyrations on the scale of
the gyration frequency; second, they constitute a fourth-order system of
ordinary differential equations as opposed to eg. 1-1 which is a sixth-order
system. These features are useful both for purposes of numerical calculation,
and also for analytic work and qualitative analysis,

Higher approximations can be found by iterating the results just found,
but in general the results are so complicated that the virtues of the reduced
description are lost.

It has been shown (6) that these lowest significant order results represent
the leading term in an asymptotic expansion of the trajectory of the particle
in powers of the small parameter e of eq. I-11. That is, if one writes the
partial sum,

Sa(t) = ro(e) + exy (1) + er,() + « - ¥rp(0)

then, for any fixed time ¢, _
NEORENO]
Y

e~+0 &

=0

This is distinct from what would prevail were the procedure convergent,

namely,
lim |x(s) — Sy(r)j =0

N=m

IT. The Second or Longitudinal Adiabatic Invariant

A further reduction of the preceding guiding-center description can be
made when the motion along the lines of force is quasiperiodic and much
more rapid than the motion associated with the drift. The demonstration is
assisted by writing the magnetic field in térms of two scalar fields a(r,} and
Blr,t) via

= (Vo) x (Vf) (-1
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which clearly satisfies V - B = 0. To show that eq. 2-1 is possible, recall that
one can define lines of force by the equation '

dr x B(r,t) =0

Let § be some surface nowhere tangent to the lines of force. Tn this surface
choose a family of lines. The set of all lines of force through one of the lines
_of this family defines a surface. Let a(r,#) = const be the equation of such
“magnetic surfaces.” Now choose a second family of lines in § nowhere
tangent to the first, and in a parallel manner associate with them a family
of magnetic surfaces y{r,t) = const. By construction

Fig. 1. Diagram illustrating the construction of surfaces.
o = const. ’

B-Va=0 B-Vy=0 (22)

and as follows directly from the above, since Vo, Vy, and (Vi) x (Vy) are
noncoplanar on writing B = (Vo) x (Vy)/4 + (Vo + (Vy)v,

(Vo) x (Vy) = AB
If one takes the divergence of the above equation and uses V- B = G,

B-Vi=40

i ) . - Fig. 2. Diagram itlustrating the cons - Fig. 3. Di i i

and A must be a function of a and y. We shall now introduce a new variable ion of surfzfces.y = const 8 fhe construet cc!)ircaiin]a?t;asgtroar;:).é]i;]f:rl?;;ngft?t:r:ese e

B(z,7). Clearly, B - Vf = 0. If we view y as a function of « and £, and denote '

partial derivatives by the subscripts, ]
. Now one can write the Maxwell equation

(Va) % (V9) = (Va) X [1,Va + 7, V5] 128

0=V xE4-—

= 75(Va) x VB c ot
14 B ey Jacv :
We choose y; = A. This yields the desired result , =V x [E +o5 (ocVﬂ)] =T X [:’3 * oz 28 v TV
oo whence :

B = (Va) x (V) =V x («Vf) (2-3) 19 1 8
- R L @9
Therefore, the intersection of any two surfaces « = const and f = const is a and

line of force, and one can interpret the associated pair of values o, § as the 1 ' a8
coordinates of the line of force. Even though the pattern of lines of force may b-E= —b-V¢ — - ab-V e
change in time, we shall identify that line labeled by a given pair «, § as the

same line of force. The functions « and § need not be single-valued. See : - bV ( ¢+ a« %) (2-5)
Figures 1, 2, and 3. il
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since b SV — ) i .
¢ both b+ Vo =0 and b+ Vf = 0. Thus, if one defines the potential If one solves this for $, it is easy to show that
Vie,t) = gf,a_ﬁ * -
(t.0) = q¢ + ~ ot UB A mG (2:6) ; = j ds{2[E — V]jm}~ 12
ﬂ!l)e ecgl;tmn of motion for the parallel velocity, assuming that ma x b aénd I Clearly, the motion is periodic with a period
pb x are of the same order of magnitude can be written to the low -
consistent order owest (B = jgds {2[E — V]Im} ™12

mi = —~h-V . .
V4 mub - (Vb) - R, _ @7 The orbit of the particle in the s, § phase plane is the closed curve E = const.

since to this order we make the parallel assumption that See Figure 5.

bmab/at+(ub+l§ll)va~ub-Vb ~ U K/
The associated expression for R, can be expressed as s

b 3 " '
R, = — (% yg B
L= X [VV-t— C(E:Vﬁ_ﬁva) + mu%-Vb} (2-8) i const

" Obselrlve that, in the expression for mii, the term involving R is osfien
sm it . .
s1bly small compared with —b - VV. We assume, moreover, that ¥, is smalj s
In a sense that we shall make precise later. ! '
Let 5 be the arc length along a line of force and suppose that ¥ vs, s i“nas

the charact, orapo 1al w S H : !
er of tential well, as indicated schematically in Figure 4. When
Fig. 5. A representative §, s phase plane diagram for

the case of constant E.

v

When R and ¥V, do not vanish, the energy E will be a function of «.
Suppose, however, that we extend the definition of the period ©®(E}by means of
the integral above to this case and assume that

) e =1|dIn Efét) + R,QEm)™ Y <1 (29

—V=E B
\-/ 1t seems plausible in this circumstance that the motion should be almost
' ‘ periodic, Let us assume so and seek a solution of the equation of motion via.

P | the introduction of an auxiliary variable 6(r) such that # accounts for the
Fig. 4. A typical . . rapid oscillation of period of the order 7, and any explicit dependence on ¢
F1g. 4. A typical effective potential energy curve V vs. s, is associated with the slow time variation, That is, we write*

s = s(0,6) (2-10)

both R 1 and ¥V, are zero, since . o )
whence if we define v(f) =

U=} o 1
' . 3' §=v8y+ 5, (211

T I eg 1 f th q 3 T] bols B aﬂd v are disting [s)
m 1 T
‘h.e €15 a Il. Si l“' ral o ee lla“()ll ()i ofion " istinct I m the quanlltlcs SO labeled n the I

.2 _
dms®+ ¥V =const=E i We use the same symbols to illustrate the parallelism of the development.
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where the subscrtpts denote partial derivatives. The equation of motlon
reads

visg + V, = —2vs,, - Vosg — (vsp + s)b (VR - b (2_12)
where we have used the fact that b+ R = 0 to write L
(VD) * R, =V(b-R) — (VR)) b= —(YR,)- b

The terms on the left-liand side above are presumably larger by a hctor
He than those on the right-hand side. Thus to the lowest order we require
that the le(t-hand side above vanish. This requirement on multiplication by

5 leads to
(zu Vit 4 V) =0
2 [:]

T2, 4 V= B 2:13)

whence on integration

The constant of integration E(t) is as vet unknown as a functlon of 1. When
one solves for s,'from the above a further integration is possible, namely

v =j ds{2[E(t) — V(s,a,B,0)]/m) 12 (2;_14)

In the integrand we have indicated explicitly that the potential V' depends on
the point s on the line of force labeled by o and §, and by the time ¢, We have
not indicated explicitly that it also depends on p.

Let us pick v = v(E,a,f,1), so that @ is an angle variable: i.e. when 5 gocs
through one period of its motion for fixed o 8.1, we require that 8 change by
umty Therefore,

; = § dS{ZI:E - V]/m}_llz ET(E!OCsB’t) (2_15)

and :
O j dt v (i-m)

In order to determine E(f), we revert to the equation of motion 2-13
and note that, if we retain terms to the next order in & beyond that part whtch
led to eq. 2-13, we find that

Vi80g + Vo 4+ 2vsp, + v, 8 + v5,b - (VR - =0
If we multiply this equation by s,, the result can be written

(3¥%55> + Vg + (v542) + v547b - (VR) b =0

iL THE SECOND OR LONGITUDINAL ADIABATIC INV

1f we integrate this equation with respect to § from zero to one, and recall
that §(0,t) is presumably periodic in & with period one, we obtain

0 1d9 2 1deb- VR,) -bvs,? =0 2-17
EEJO v39+J0 (VR ) - bvsy” =
Let us in the above equation use s as the variable of integration and

recognize that to the lowest significant order we may use eq. 2-13 to express 5,
in terms of £ and V. The equation then reads on multiplication by m:

E% 5£ ds {2m[E(t) — V(s Bt}

+ 3@ dsb - (VR,) - b{2m[EQ) — V(s f01}V2 =0 (2-18)

Note that 9/d¢ acting on the first integral above means a time derivative
holding the line of force fixed. We shall now show that dsb+ (VR,) * b is jus}
the time rate of change of the element of arc length ds due to the velocity R, "
See Figure 6.

65*308 line genercled al t+81

Fig. 6. Schematic diagram illustrating the calcu-
lation of the time rate of change of arc length
along a line of force due to Ry .

line of force af |

Let us consider a vector
ds = dsb

In an infinitesimal time 8/ the end of ds, as indicated in Figure 6, i:S carrfed
a distance R, (R,) §¢ by the guiding-center motion, The tip of ds is carried
into

R(R +ds,0) 8t = [RUR,0D + ds- VR (R,1) + -+ ] 8¢
The net change in ds is to lowest order

dds = ds - (VR ) 8¢
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whence the square of the element of arc length is carried into

(ds + 8ds)? = (ds)* + 2ds - (ds) + - -
= (ds)? + 2dsh - [dsb - (VR ) 8¢] 4 -+~

: = (ds)* 1 - 2b - (VR,) - b &z + -]
Thus
ds+dds=ds[1 + b (VR b ot -]
and in the limit 8¢ - 0,

3d.

O b (VR - b ds

&t

Equation 2-18 is then to be interpreted as a time derivative of the

integral following the guiding-center motion, and

J = fﬁds{zm[E(r) T (2-19)
* 1s an approximate constant of the motion. For a given value J and known
potential " this expression is an implicit equation for E. The constant J is
conventionally termed the second or longitudinal adiabatic invariant.

To recapitulate then, the motion along the line is determined by eq. 2-14
with E given by eq. 2-19. The motion perpendicular to the line is then given by
R, (sce eq. 2-8), where we may replace mu? by 2(E — V). To find the trajectory
associated with R, requires only the solution of a second-order system of
ordinary differential equations,

It is interesting to note that, if the technique of this section is applied to
the equation,’

i+ o(t)x=0
corresponding to '
V= Jw?x?
and
(@) < w?

then it yields the well-known, lowest order WKB results. ‘

III. The Third or ¥lux Invariant

When the fields involved in R are changing sufficiently slowly, a notion
that will be made more precise later, a further reduction in the description is
possible. To demonstrate this, it is convenient to write equations for & and £,

instead of dealing with R. To this end we view R, as a function of s,a,8, and ¢
and write

R = R, +4dR, + fR; + R, (3-1

|
|
!
!
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where the subscripts indicate partial derivatives. Moreover, by the chain rule
for differentiation, if # denotes the unit dyadic,

VR = F = VsR, + VaR, + VR, 32
whence on taking the dot product on the left-hand side with b, one has

(3-3)

since b - Vs = s, = 1. If one takes the dot product of eq. 3-2 on the left-hand
side with b x R, and b x Ry,

b=(b: VR, = R,

bxR,=VfR, b xR, (3-4)
b x .R,, = VaR, b xRy (3-5)
The cross product of these two equations yields
— Vo x VB(b* R, x Rp)* = (b x Ry) x {b x R,)
=bR, b xR,
But, since Vo x V3 = B = Bb, one has
bR, xRy =1/8 (3-6)

Now the dot product of eq. 3-1 with Ry x Ry = b X R, yields
GR, b xRy =R+b xRy —R, b xR,
or on using eqs. 2-8, 3-5, and 3-6,
a/B = —b x R, - (b/mQ)
% [VV + (gfcXa, VB — B, V) + 2E — Vb1 + R, ValB

Since, by the chain rule for differentiation, R,V =u,, I?I,-VV: Vy,
b-VV =R, VW=V, R Vf=f,=1 Ry Va=0,=0, while b+ Vo = 0,
b-Vp =0, and since b is a unit vector b-b, =0, the above reduces to

& = o,(Rp — bb* Ry) - (¢/QIVV + (q/)et, VB = B, Vo) + 2(E — V)b]
=a, — (c/g)[Ry - VV + (gf)x Ry - VB — (9/0)B, Ry - Va
4+ 2E — V)R by~ b-VV b R]
= —(e/[Vy — V. b R, + 2(E — V)b, Ry]
But, on recognizing that Ry, = (R,)g = by, and b+ b = 0, this can be written

g = —(c]gV, + [2UE - VM A 2m(E — VY2 b Ry N
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Finally, if we introduce the angle variable 8 in place of s, since
ds = [2(E — V)/m]''* ¢ d8,
6= —(c/g){Vy-+ {7 [2m(E - V)]'* b+ Ry}e

If one integrates this expression over one period in &,
1 1
j dbi = —(c/q) j d6v,
0 0

= —(c/q)r! ﬂl ds{XE — V){m)~ 112y, (3-7)

The right-hand side of eq. 3-7 can be related to the energy E, as defined
implicitly by eq. 2-19, and considered to be a function of o,8,¢, and of course
the constants of the motion Jand u. 1f we take the partial derivative of eq. 2 19
with respect to ff, we find that since J is an independent parameter,

0= 3€ds{2(E — VYm} "V (E, — V]
or on using eq. 2-15, ‘
§ds(2(E ~ Vym) ™42 v, = <E,

Thus, if we interpret [} d04 as the time derjvative of the average value of «
associated with a particle over a period v, we can cast eq. 3-7 in the form

4= —(c/E; (3-8)

In similar fashion we can show that . :
B = (c/pE, (3-9)

where it is to be emphasized that « and § are the coordinates of the mean lme
of force on which the particle is gyrating and oscillating. i

The equations of motion for & and # are in Hamiltonian form w1th
E(w,B,1) playing the role of a time-dependent Hamiltonian. When E, =0,E
is a constant of the motion, and the orbit in the «,f phase plane is the curve
E = const. Suppose that this orbit is a closed curve, as shown schemat]cally
in Figure 7. Then the motion is periodic with period

T = (g/o) § dBIE, = (le) § duE, (3-10)
Suppose that '
(3
71010 Ejér| <1 R .
B g o~
. e Ll i - : ) et
7 e e o ~ o —
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E = const,
/

Fig. 7. Schematic diagram of constant flux surfac
illustrating a particle trajectory therein.

| e
i

Z We anticipate as in the former cases that the motion will be almost periodic
we introduce an auxiliary variable y(f) and write

: a=a(yt)  p=p) (3-11
If we define w(r) = j, we can write the equations of motion as
wa, + o, = —(c/q)E, (3-12);:_f
wf, + B = (c/DE, (3-1
To the lowest order we delete the ostensibly small term ¢, and f, and note th

then
(c/E, = (/o Es + By Ey]
= 051 wﬁx + Hx('_"wax)
=0

Thus to this order

E = H(0) (3-14);

where the constant of integration H(r) is as yet undermined. Let us choosc
w = 1/T, where T is defined by eq. 3-10 but with the integrals extended ov
the closed curve E = H. This makes  an angle variable, and one can formally
integrate the approximate equations of motion, egs. 3-12 and 3-13 with ¢, and:
B, deleted, to obtain :

3 B
AT = (a)o) | daf Byl Bo0,6) = —(a/e) | dBJE[a(p,0.5.1]

|
|
t where f(x,f) is determined from E(,B.0)= H(t) ete.

. \é h,l\)
N (:‘*':,_,]@L @e fbv Ua;
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In order to determine H(t), we note that, without approximation of the
equations of motion,

(c/pE,

I¢

az(C/Q)Ea + ﬁx(cl‘q)Eﬁ

= ax(wﬁz + nBt) - ﬁx(wax + at)
= axﬁr - ﬁx’xt

= —(af,); + (),

Thus, if we integrate this result with respect to y from zero to unity, we obtfflin

(I, dxan) -

and to the lowest significant order

W - Sﬁdﬁa (3-15)

is an approximate constant of the motion, where the integral is extended over
the closed curve E = H. ;
We shall now show that ¥ is a magnetic flux. To demonstrate this, we

note that the flux crossing any surface in x,p,z space is, on using Stokes
theorem and B = (Vo) x (V) =V x (aVf), i

szr-B = jdzr -V x (V)
= fa’r -uVf
zfdﬁa (3-16)

The line integral above is extended over any closed curve resulting from
slicing the magnetic surface defined in x,y,z space by the equation E(a,f, t) =
H{1), as shown schematically in Figure 8.

particle
path

path of
fine Integral

magnetic surface E=H

' Fig. 8. Schematic diagram indicating particle path and line integral path in magietic
surface E = H.
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Clearly,  is independent of the choice of line as long as it is topologically
equwalent to that shown above. Equation 3-15 is then to be viewed as deter-
mining H(¢) implicitly, given . The approximate constant i is conventionally
termed the third adiabatic invariant, or alternatively the flux invariant.
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