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Disruptions
  Two categories of disruptions:  

 Major Disruptions
 Vertical Displacement Events

  Three “stages” of a disruption
 Thermal quench
 Current quench
 Loss of vertical position

  The order of these “stages” determines the 
    type of disruption
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Major Disruptions
  Disruption starts because a stability limit is 

reached – Beta limit or density limit
  Loss of confinement leads to thermal 

quench – less than 1ms to reach sub KeV
  Impurities enter from the walls
  The plasma's resistance increases 

dramatically
  The current quenches at 1000 MA per 

second
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Vertical Displacement Events
  Unlike a Major Disruption, VDEs start with 

a loss of vertical stability
  The current and thermal energy is not 

released until the plasma becomes limited
  VDEs have larger halo currents and 

thermal energy deposited into the wall
  VDEs can cause more damage, but are 

easier to predict
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Typical Disruption (JET)

ITER Physics Basis, 1999
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Disruptions (DIII-D)

APS 2006
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Halo Currents

ITER Physics Basis, 1999
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Thermal Quench Time Scale

 Typically, most of the energy 
(~90%) is dissipated during 
the thermal quench during 
the 

1-2
 phase

 The remainder of the energy 
is lost when the plasma 
makes contact with the PFC 
during the 

2
 phase

 Thermal Quench in ITER 
extrapolated by minor 
radius:  

1-2
 ~ 20 ms and      

τ
2
 ~ 0.7 ms

ITER Physics Basis, 1999
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Current Quench Time Scale

 Data from seven different 
tokamaks was used to 
determine scaling

 
60

 was used as the 

standard, although the basis 
for determining the constant 
was not initially consistent 
among the machines

ITER Physics Basis, 1999
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Current Quench Time Scale
 Current Quench 

extrapolated by cross 
sectional area πκa2:  
t

60
/S* ~ 0.8 ms/m2

 100% decay rate 1996    
~1.33 ms/m2

 100% decay rate 2007    
~1.8  ms/m2

 Expected current quench 
time in ITER:  t

60
 ~36 ms 

linear or an exponential 
time constant of 18 ms

T.C. Hender, et. al., 2007
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 Uses the “inverse variable” technique to find the locations 
of the equilibrium magnetic surfaces

 Calculates a 2-dimensional equilibrium on closed and 
open magnetic surfaces with 1-D transport

 Circuit equations are solved for VV and passive and active 
coils

 Includes neutral beam heating, heating from a particles, 
bootstrap current, fueling by pellet injection

 Equilibrium configuration before disruptions is the 
reference inductive scenario: 

βp = 0.7, l
i
 = 0.85, Ip = 15 MA, q

95
 = 3, κ

95
 = 1.7

DINA Simulations

R.R. Khayrutdinov and V.E. Lukash, 1993
M. Sugihara, et. al., 2007
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Thermal Loads - MDs
 Melting and Sublimation thresholds (ε) are 

reported in units of MJ m−2 s−1/2

 The Beryllium melting criterion is:

 ~20 MJ m−2 s−1/2

 ε for ITER is in the range 8.2–75 MJ m−2 s−1/2 
for a deposition time of 1.5–3 ms

 Loss of Be thickness is ~30–100 μm/event 
for 1–2 MJ m−2

 Total allowable MDs ~ 100-300

M. Sugihara, et. al., 2007
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Thermal Loads – Upward VDEs
 Energy load during the 

vertical movement is   
3-4 MJ m−2 s−1/2 which  
is comfortably low

 The problem occurs 
during the thermal 
quench of the VDE 
when an additional load 
of 2 GW/m2 is 
deposited on the wall

 Be loss of thickness is 
~140 μm/event

 This VDE was 
examined using three 
different l

i
 values ~ 0.7, 

0.85 and 1 with little 
difference observed

M. Sugihara, et. al., 2007
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Thermal Loads – Downward VDEs
 ε still exceeds the critical Be 

melting value, but is less 
than for the upward VDEs

 In the tungsten baffle 
region, a considerably larger 
ε is expected.

 The wall's heat load is    
17.5 MW m-2 before the TQ

 The heat load during the TQ 
is 6.54 GW m-2

 The surface temperature 
reaches 750 K before the 
TQ, but 6760 K during the 
TQ

 Expected loss of W at the 
baffle is ~230 μm/event

M. Sugihara, et. al., 2007
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EM Load Analysis

 The fastest current quench time and the maximum toroidal 
peaking factor (TPF) were determined from the IDDB

 A 3D finite element code was used to calculate the induced 
eddy and halo currents

M. Sugihara, et. al., 2007
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EM Load Analysis

M. Sugihara, et. al., 2007

 Poloidal Forces are 
within allowable 
values
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EM Load Analysis

M. Sugihara, et. al., 2007

 Downward VDEs are 
expected to have the 
largest halo currents 
~6.4 MA at the 
maximum

 Maximum total vertical 
force is marginally 
within the design limit  
(80 – 85 MN)
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Runaway Electrons
 High in-plasma electric fields are 

created during the CQ.
 These electric fields generate 

runaway electrons with energies 
from 10 to 100 MeV

 Runaway electrons are expected 
to stay confined for 130-230 ms 
in ITER

 Avalanche multiplication allows 
for the creation of further 
runaway electrons

 A 15 MA discharge in ITER could 
allow for 70% of the initial 
thermal current to be converted 
into runaway electrons

ITER Physics Basis, 1999
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Runaway Electrons

T.C. Hender, et. al., 2007

 Vertical instability of the 
runaway electron current 
channel will cause the 
energy to be deposited on 
the upper or lower first-
wall or perhaps in the 
divertor.

 A deposition depth of  
~2.5 mm for beryllium and 
copper and ~0.2 mm for 
tungsten is estimated.

Figure 49. Observation of soft x-ray image of runaways in JET. The downward 
motion (towards the divertor) is clearly seen. The runaways are first generated 
4ms after the start of the disruption 
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Runaway Electrons

Figure 51. Numerical simulation of the ITER first-wall temperature (in ◦C), just 
after energy deposition by 10MeV runaway electrons, with 50 MJm−2, deposition 
time =0.1 s.  From the lefthand side, the simulation geometry comprises 10mm of 
beryllium armour, 22mm of copper heat sink and a 10mm inner-diameter copper
cooling water tube (lateral spacing = 28 mm). The 2mm thick grey zone indicates ∼
material attaining temperature larger than the beryllium melting point.

 DINA simulations estimate 
15-65 MJ m-2 deposited on 
an area of 0.8 m2 for 50 MJ 
runaway energy content

 Beryllium and tungsten will 
both experience melting in 
the 15 MJ m-2 estimate and 
there will be ablation with 
the melting in the 65 MJ m-2 
case

 In a single runaway 
interaction event, Monte 
Carlo simulations predict 
several kg of molten 
material can be produced 
and mobilized by JxB forces 

 Graphite will also undergo 
ablation for >35 MJ m-2

T.C. Hender, et. al., 2007
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Runaway Electrons
 Runaways could be suppressed if two conditions 

are met:
 

– The electron density is at least:

n
RB

 ≈ 4.2 x 1020 m-3

 

– The electric field is below the critical   
electric field:

Ec = 4e3 neln≈ 38 V m-1

       mc2
      ____________________

M.N. Rosenbluth and S.V. Putvinski, 1997
T.C. Hender, et. al., 2007
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Mitigation – Neural Nets
 Mitigation requires proper early detection of 

disruptions
 Neural network predictors have been developed 

and tested on ADITYA, ASDEX Upgrade, DIII-D, 
JET, JT-60U and TEXT

 Performance is quantified by success rate, SR, 
failure rate (or missed alarm), MA, and false 
alarm rate, FA

 NNs require training with shots and information 
specific to input NN data set, operation modes 
and attributes of the tokamak

T.C. Hender, et. al., 2007
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Neural Net - DIII-D
 Trained to predict the maximum  at the 

disruption
 Uses 33 input parameters
 Prediction is tens of milliseconds in 

advance
 90% SR accuracy 
 20% FA on non-disrupting shots

T.C. Hender, et. al., 2007
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Neural Net – ASDEX Upgrade
 Trained to predict the time before a density 

  limit disruption for killer pellet injection
 An alarm is activated for tnn < 50 ms
 Uses 13 input parameters
 Trained from 99 disruptive shots and 386 

  non-disruptive shots
 85% SR (55/65 disruptive shots)
 1% FA for 500 non-disruptive shots

T.C. Hender, et. al., 2007
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Neural Net - JT-60
 Trained to predict the occurrence of a disruption by 

calculating a “stability level”
 Trained in two steps:

– First with 12 disruptive and 6 non-disruptive 
shots

– Second with modifications of the 12 disruptive 
shots based on the output

 Tested against 300 disruptive and 1008 non-
disruptive shots from over 9 years

 SR was 97-98% except for certain cases with a 
10 ms advance warning

 FA was 2.1% for non-disrupting shots
T.C. Hender, et. al., 2007
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Cross-Machine Neural Nets
 While there is difficulty in extrapolating a neural 

network, a cross-machine prediction of 
disruptions was attempted between JET and 
ASDEX Upgrade

 The NN was programmed using 7 normalized 
dimensionless parameters and normalized time

 The NN trained on JET and tested on ASDEX had 
a SR of 67%

 The NN trained on ASDEX and tested on JET had 
a SR of 69%

T.C. Hender, et. al., 2007
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Mitigation Methods
 Plasma control actions

– Experiments on JT-60 demonstrated that a 
VDE could be mitigated by a rapid shift of 
vertical displacement after the thermal 
quench is detected

 Pellet Injection

–   Uses cryogenic H2, D2, Ne, Ar, Xe, etc

–   Reduces 25-95% thermal flux to divertor
–   50-75% reduction in halo current
–   Unfortunately, causes runaway electrons

T.C. Hender, et. al., 2007
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Massive Noble Gas Injection

R.S. Granetz, et. al., 2007
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Massive Noble Gas Injection

 Runaway electrons were 
negligible in Alcator 
C-Mod and DIII-D 
experiments

 Lowering the 
temperature can speed 
up the current quench 
due to the increased 
resistivity.

 Total halo current is 
reduced by about 50%

 A substantial fraction (50-
95%) of the thermal 
energy is radiated 

R.S. Granetz, et. al., 2007



Gas Jet on ITER

Delivery time needs to be 9ms – 1/4 the tCQ

NRB has to be ~1024 atoms to achieve ne=nRB

Minimum look-ahead time: 5.1 or 11.4 ms

T.C. Hender, et. al., 2007
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