

Resistive Wall Mode Observation and Control in ITER-Relevant Plasmas

J. P. Levesque

April 12, 2011

- Basic Resistive Wall Mode (RWM) model
- RWM stability, neglecting kinetic effects
 - Sufficient for machines without large energetic particle populations
- Extended RWM stability, including kinetic effects
 - Important for large machines like ITER
- Measuring RWMs
- Why RWMs are important
- Expected RWMs in ITER
 - Scenario-dependent
- RWM effects on bulk plasma properties
- Controlling RWMs
 - Passive stabilization
 - Active feedback

The Resistive Wall Mode (RWM) is a form of the ideal external kink whose growth rate has been slowed by a conducting wall

- Ideal MHD stability analysis of tokamak plasmas introduces the ideal *external kink*.
- A conducting wall near the edge of a tokamak plasma slows the growth rate of the external kink from an Alfvénic time scale to the resistive time scale (τ_w) of the wall.

Fig. 2.3: An (m, n) = (3, 1) perturbation to a toroidal surface, such as might be observed during the onset of an external kink mode.

MHD stability analysis gives a straightforward estimate for RWM growth rate

 $-\frac{\delta W_{\infty}}{\delta W_{b}} \xleftarrow{} \text{No wall (or wall at infinity)} \qquad \delta W_{\infty} = \delta W_{F} + \delta W_{V}^{(\infty)}$ $\xleftarrow{} \text{Ideal wall at position } b \qquad \delta W_{b} = \delta W_{F} + \delta W_{V}^{(b)}$ $\delta W_{\infty} = \delta W_F + \delta W_V^{(\infty)}$ (Neglecting δW_{s})

Plasma contribution (same for both parts):

$$\delta W_F = \frac{1}{2} \int_{V_F} \left(\frac{|\delta \mathbf{B}|^2}{\mu_0} - \boldsymbol{\xi} \cdot (\mathbf{J} \times \delta \mathbf{B}) + \Gamma p |\nabla \cdot \boldsymbol{\xi}|^2 + (\boldsymbol{\xi} \cdot \nabla p) \nabla \cdot \boldsymbol{\xi} \right) dV$$

Vacuum contribution:

$$\delta W_{V}^{(\infty)} = \frac{1}{2\mu_{0}} \int_{S_{p}} (\mathbf{e}_{n} \times \delta \widehat{\mathbf{A}}_{\infty}) \cdot \mathbf{e}_{n} \times (\mathbf{e}_{n} \times \nabla \times \delta \widehat{\mathbf{A}}_{\infty}) dS \qquad \left(\text{from: } \delta W_{V}^{(\infty)} = \frac{1}{2} \int_{V} \frac{|\delta \widehat{\mathbf{B}}_{\infty}|^{2}}{\mu_{0}} dV \right)$$
$$\delta W_{V}^{(b)} = \frac{1}{2\mu_{0}} \int_{S_{p}} (\mathbf{e}_{n} \times \delta \widehat{\mathbf{A}}_{b}) \cdot \mathbf{e}_{n} \times (\mathbf{e}_{n} \times \nabla \times \delta \widehat{\mathbf{A}}_{b}) dS$$

Including kinetic effects changes the growth rate and introduces rotation

• Kinetic contribution can have resonances:

$$\delta W_{K} = \frac{\sqrt{2}\pi^{2}}{m_{j}^{3/2}} \sum_{l=-\infty}^{\infty} \int d\varepsilon \int d\chi \int \frac{d\Psi}{B_{0}} \hat{\tau} \left(-2|\chi|\frac{B_{0}}{B}\right) \times \frac{(\omega_{r} + i\gamma - \omega_{E})\frac{\partial f_{j}}{\partial\varepsilon} - \frac{1}{eZ_{j}}\frac{\partial f_{j}}{\partial\Psi}}{\langle \omega_{D}^{j} \rangle + l\omega_{b}^{j} - i\nu_{\text{eff}}^{j} + \frac{\omega_{E}}{\omega_{E}} - \omega_{r} - i\gamma} \varepsilon^{5/2} |\langle H/\hat{\varepsilon} \rangle|^{2}$$

Sabbagh, NF, 2006

RWMs can be measured with external magnetic probes or with internal emission diagnostics

• External: Measuring magnetic field oscillations

Internal: Measuring effects of the mode on plasma parameters

Delgado, *PPCF*, 2011 **Figure 2.** Plots of the three ME-SXR emissivities during the actively RWM control.

ITER steady-state scenarios are most susceptible to RWMs

^a 3000 s limit is imposed by the cooling system.

The resistive wall mode prevents high β in steady-state scenarios unless it is stabilized

Degree of RWM instability:

Figure 29. Normalized pressure and safety factor profiles for SS operational scenarios: solid line (N1): $q_{\min} = 2.43$, $\beta_N^{SS} = 2.56$. dashed line (N2): $q_{\min} = 2.25$, $\beta_N^{SS} = 2.7$, dotted line (N3): $q_{\min} = 2.12$, $\beta_N^{SS} = 2.82$; p_{01} corresponds to central pressure in the scenario N1 [203]. Hender, *NF*, 2007

Figure 30. Stabilizing wall position a_w/a versus normalized beta β_N or q = const scan of SS operational points N1,2,3. The no-wall limits are shown by vertical dashed lines [286].

ITER scenario 4 plasmas are expected to be marginally stable to RWMs for the predicted rotation and alpha particle content

FIG. 4. (Color online) Profiles of 0.8 $\omega_{\phi}^{\text{Polevoi}}$, the resulting ω_E , ω_b with $\chi=0$ and $\hat{\varepsilon}=2$, and $-\langle \omega_D \rangle$ with $\chi=0$ and $\hat{\varepsilon}=\frac{3}{2}$ (see Ref. 9) vs Ψ for ITER scenario 4.

2. The effect of energetic particles

In addition to scaling the expected rotation level, we can now explore the effect of alpha particles on ITER RWM stability by using c_{α} to scale $\beta_{\alpha}/\beta_{tot}$ in MISK. Figure 5 indicates that a sufficient population of alpha particles is required to stabilize the RWM for this ITER equilibrium at plasma rotation speeds from 0 to 1.8 times that predicted by Polevoi *et al.* Without any alpha particles, the plasma is predicted to be unstable regardless of the rotation. As the alpha particle β

NTV braking torque can slow the plasma rotation during RWM activity

Equilibrium plasma rotation decreases when RWM is MHD unstable •

Delgado, PPCF, 2011

charges just before collapse (disruption): (a) time evolution of β_N and D_{α} emission, (b) n = 1 integrated magnetic perturbation with the poloidal cross section. cf. (c) and

0.74

Time (s)

0.71

0.77

Matsunaga, PFR, 2009

•

iter

RWMs can be *avoided* or *passively stabilized* in a variety of ways

- Place a conducting wall near the plasma
 - Slows down the mode growth rate, and can stabilize quickly rotating modes
- β feedback/control
 - Feedback for heating mechanisms
 - Decrease β if it becomes too high
- Profile control
 - Modify current profile if *I_i* is too low
- Kinetic stabilization
 - Maintain appropriate plasma rotation
 - Raise energetic particle content
- Avoid RWM "triggers"
 - ELMs, sawteeth, Alfvén eigenmodes, etc., can cause a loss or redistribution of energetic particles, which can then reduce the RWM kinetic stabilization.

RWMs can be *actively suppressed* with internal or external magnetic feedback coils

Ex-vessel "Side correction coils" in ITER can be used for slow magnetic feedback

iter

- "Side correction coils" will be installed outside of the vacuum vessel
 - Mainly for static error field correction, but can also be used for slow RWM control
 - Circuit time constant of ~10s prevents fast feedback
- Internal coils are proposed for ITER, but not yet finalized
 - Also advertised as ELM mitigation coils

Internal control coils in ITER could significantly improve plasma performance

- Large increase in achievable β_N with proportional gain feedback using internal control coils

RWM growth rate for an ITER scenario 4 equilibrium

References

- J. W. Berkery et al., "The role of kinetic effects, including plasma rotation and energetic particles, in resistive wall mode stability." *Physics of Plasmas* **17**, 082504 (2010)
- L. Delgado-Aparicio et al., "Soft x-ray measurements of resistive wall mode behavior in NSTX." *Plasma Phys. Control. Fusion* **53** 035005 (2011)
- R. Fitzpatrick and A.Y. Aydemir, "Stabilization of the resistive shell mode in tokamaks." *Nuclear Fusion* **36**, 11 (1996)
- S. W. Haney and J. P. Freidberg, "Variational methods for studying tokamak stability in the presence of a thin resistive wall." *Phys. Fluids B* **1**, 1637 (1989)
- J. M. Hanson, "A Kalman Filter for Active Feedback on Rotating External Kink Instabilities in a Tokamak Plasma." *Thesis* (2009)
- T. C. Hender et al., "Chapter 3: MHD stability, operational limits and disruptions." *Nuclear Fusion* 47, S128 (2007)
- M. J. Lanctot et al., "Internal Mode Structure of Resonant Field Amplification in DIII-D." *Poster at APS DPP Conference* (2008)
- G. Matsunaga et al., "Rotational Stabilization of Resistive Wall Mode on JT-60U." *Plasma and Fusion Research* **4**, 051 (2009)
- M. Okabayashi et al., "Comprehensive control of resistive wall modes in DIII-D advanced tokamak plasmas." *Nuclear Fusion* **49**, 125003 (2009)
- M. Okabayashi et al., "Control of the resistive wall mode with internal coils in the DIII-D tokamak." *Nuclear Fusion* **45**, 1715 (2005)
- T. S. Pedersen et al., "Experiments and modeling of external kink mode control using modular internal feedback coils." *Nuclear Fusion* **47**, 1293 (2007)
- S. A. Sabbagh et al., "Advances in global MHD mode stabilization research on NSTX." *Nuclear Fusion* **50**, 025020 (2010)
- S. A. Sabbagh et al., "Resistive wall stabilized operation in rotating high beta NSTX plasmas." Nuclear Fusion 46, 635 (2006)

EXTRA SLIDES

FIG. 6. (Color online) Comparison of frequency profiles vs normalized Ψ for two shots from NSTX: (a) with high rotation stability and (b) low rotation stability.