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1 Grad-Shafranov equation

[1]For axial symmetric case, the toroidal B �eld is ~Btor = F̄∇φ. Where
2πF̄ (r, θ) is the total poloidal current through the circle with radius at(r, θ).
The total B �eld is given by

~B = F̄∇φ−∇φ×∇ψ̄p

notice that here 2πψ̄p is the polodial �ux, but de�ned slightly di�erent from that
in Plasma II. ψ̄p is 0 at magnetic axis and is the integration of counter-clockwise
B �eld from magnetic axis to the surface.

Then we have

µ0j = ∇×B

=
dF̄

dψ̄p
∇ψ̄p ×∇φ− (R

∂

∂R
(

1

R

∂

∂R
) +

∂2

∂2Z
)ψ̄p∇φ

=
dF̄

dψ̄p
∇ψ̄p ×∇φ−4∗ψ̄p∇φ

thus

jtorodial = −4
∗ψ̄p
µ0r

It should be pointed out that currently 4∗ is de�ned in cylindrical coordinates
while other functions are de�ned in �ux coordinates. For MHD model:

µ0j ×B = µ0∇p

⇒ (−F̄ dF̄

dψ̄p
−4∗ψ̄p)(∇φ)2 =

d(µ0p)

dψ̄p

⇒ 4∗ψ̄p = −r2 d(µ0p)

dψ̄p
− F̄ dF̄

dψ̄p

= −r2P − T
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Grad-Shafronov equation is

4∗ψ̄p = −r2P (ψ̄p)− T (ψ̄p) (1)

and we have

µ0jtorodial = rP +
T

r

1.1 Green's function

Search for Greens function G(r, z, r′, z′) such that[2]

4∗r,z
r

G(r, z, r′, z′) = δ(r − r′, z − z′) (2)

G|r,z→∞ → 0

In fact the poloidal component of B �eld:

−∇φ×∇ψ̄p = ∇× (ψ̄p∇φ)

and ψ̄p is thus the φ component of magnetic potential Aφ corresponding to the
B �eld. The physical meaning of the RHS of (2) is a ring current (1/µ0) locating
at (r′, z′) and its magnectic potential is

~A(~r) =
µ0

4π
·
ˆ

j(~r′)

|~r − ~r′|
d3r′

= (~∇φ) · rr
′

4π
·
ˆ π

−π

cos(θ)√
r2 + r′2 − 2rr′cos(θ)

dθ

thus

G(r, z, r′, z′) =
rr′

4π
·
ˆ π

−π

cos(θ)√
r2 + r′2 − 2rr′cos(θ)

dθ (3)

1.2 Solution of GSh equation

We only want to solve GSh equation within a domain:

4∗

r
ψ̄p = f(r, z) ∀(r, z) ∈ Ω (4)

we can extend Ω to the whole space to include the external coils and have

ψ̄p(r, z) =

¨
f(r′, z′)G(r, z, r′, z′)dr′dz′ (5)

+Σ
i
IiG(r, z, r′i, z

′
i)

where Ii denote external coils. This is not very numerically e�cient because
if Ω is a N − by − N space and f(r, z) is non-zero almost every where in the
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domain then this would require O(N4) operations to obtain the value of ψ̄p at
every point.

Another way to solve this is to �rst construct the boundary value ψ̄p(r, z)|(r,z)∈∂Ω

using (5) (Which will take O(N3) operations) and then discretize (4) and solve
it numerically (Which is expected to take O(N3) operations). [4]

To construct ψ̄p on the boundary, we still need to calculate Green's function
O(N3) times beforehand and store them in the memory. We can improve it
further more.[3]

4∗u
r

= (
∂

∂r
(
1

r

∂

∂r
) +

∂2

∂2z
)u

= ~∇ · (1

r
~∇u)

using Green's identity

ˆ
G(r, z, r′, z′)

4∗

r
ψ̄p(r, z)− ψ̄p(r, z)

4∗

r
G(r, z, r′, z′)drdz

=

ˆ
G(r, z, r′, z′)f(r, z)− ψ̄p(r, z)δ(r − r′, z − z′)drdz

=

ˆ
G(r, z, r′, z′)f(r, z)drdz − ψ̄p(r′, z′)

since ˆ
Ω

G(r, z, r′, z′)
4∗

r
ψ̄p(r, z)− ψ̄p(r, z)

4∗

r
G(r, z, r′, z′)drdz

=

ˆ
Ω

G(r, z, r′, z′)~∇ · (1

r
~∇ψ̄p(r, z))− ψ̄p(r, z)~∇ · (

1

r
~∇G(r, z, r′, z′))drdz

=

ˆ
∂Ω

G(r, z, r′, z′)

r

∂

∂n
ψ̄p(r, z)−

ψ̄p(r, z)

r

∂

∂n
G(r, z, r′, z′) dSr,z

we have

ψ̄p(r
′, z′) =

ˆ
Ω

G(r, z, r′, z′)f(r, z)drdz

+

ˆ
∂Ω

ψ̄p(r, z)

r

∂

∂n
G(r, z, r′, z′)− G(r, z, r′, z′)

r

∂

∂n
ψ̄p(r, z) dSr,z(6)

Notice that the �rst term of RHS of (6) is what we need in (5), we can obtain
the value of this term by the following procedure:

Solve the equation numerically by discretizing the operator

4∗

r
ψ̃p = f(r, z) ∀(r, z) ∈ Ω′

ψ̃p|∂Ω′ = 0
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where the domain Ω′ is larger than Ω. Then calculate ∂
∂n ψ̃p on the boundary

and since ψ̃p is zero on the boundary, we have

ˆ
Ω

G(r, z, r′, z′)f(r, z)drdz =

ˆ
Ω′
G(r, z, r′, z′)f(r, z)drdz

= ψ̃p(r
′, z′) +

ˆ
∂Ω′

G(r, z, r′, z′)

r

∂

∂n
ψ̃p(r, z) dSr,z

and we only need to know the value of G(r, z, r′, z′)with (r, z) ∈ ∂Ω, (r′, z′) ∈
∂Ω′ . Substitute this into (5) we have

ψ̄p(r, z) = ψ̃p(r, z) +

ˆ
∂Ω′

G(r′, z′, r, z)

r′
∂

∂n
ψ̃p(r

′, z′) dSr′,z′ (7)

+Σ
i
IiG(r, z, r′i, z

′
i)

Use (7) to calculate ψ̄p(r, z) on the boundary and then solve it numerically.

1.3 Non-linearity of GSh equation.

In the previous section we are assuming the RHS of GSh equation is f(r, z)
while in reality the RHS of (1) is f(ψ̄p) which depends on the function of p(ψ̄p)
and F̄ (ψ̄p) . Even assuming that p and F̄ is given. f is a function of (r, z) in a
sense that we already know the function ψ̄p(r, z) and f(r, z) = f(ψ̄p(r, z)). But
ψ̄p(r, z) is the function that we are solving for!

One way to treat this problem is to solve this equation iteratively. Start with
an initial guess of ψ̄p,0(r, z) and use this to calculate fn+1(r, z) = f(ψ̄p,n(r, z))
and then solve the equation to obtain ψ̄p,n+1, iterate until ψ̄p converges.

In fact, the plasma boundary can also change during each iteration. Plasma
boundary is determined by a set of limiters located at (rs, zs) in this case and the
limiter with lowest ψ̄p,n,min = ψ̄p,n(rs, zs) determines the boundary of plasma.
The function of p̄ and F̄ are actually functions of normalized poloidal �ux
p̄(ψ̄p(r, z)/ψ̄p,min(r, z)) , F̄ (ψ̄p(r, z)/ψ̄p,min(r, z)) because they are de�ned on
the plasma region.

1.4 GSh equation on �ux coordinates

[1]Solving GSh equation on (r, z) coordinates gives simplicity in discretizing the
operator4∗, but it it may not be the most e�cient way. Use general coordinates
(a, θ) to describe the (r, z) plane, where a can be treated as a surface label and
θ the poloidal angle. Let

D =
D(r, z)

D(a, θ)
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then

4∗

r
f = ~∇ · (1

r
~∇f)

=
1

D

∂

∂a
(
DGa,a
r

∂

∂a
f) +

1

D

∂

∂a
(
DGa,θ
r

∂

∂θ
f)

+
1

D

∂

∂θ
(
DGθ,a
r

∂

∂a
f) +

1

D

∂

∂θ
(
DGθ,θ
r

∂

∂θ
f)

where

Ga,a =
∂~x

∂a
· ∂~x
∂a

Ga,θ = Gθ,a =
∂~x

∂a
· ∂~x
∂θ

Gθ,θ =
∂~x

∂θ
· ∂~x
∂θ

The GSh equation is thus

D4∗

r
ψ̄p = −rDP − D

r
T

= −V P − LT where V ≡ rD, L =
D

r

If (a, θ) is already the �ux coordinate (a∗, θ) that

ψ̄p = ψ̄p(a
∗), p̄ = p̄(a∗), F̄ = F̄ (a∗)

then we shall have

∂

∂a∗
(
DGa,a
r

ψ̄′p) +
∂

∂θ
(
DGθ,a
r

ψ̄′p) = −V P − LT (8)

averaging over θ we have

((
DGa,a
r

)0ψ̄
′
p)
′ = −TL0 − PV0, where (f)0 =

1

2π

ˆ
fdθ (9)

De�ne the total cross-section current

J̄(a∗) =
1

2π

ˆ 2π

0

dθ

ˆ a∗

0

µ0jtoroidal
D(r, z)

D(a, θ)
da

=
1

2π

ˆ 2π

0

dθ

ˆ a∗

0

rDP +
DT

r
da

=

ˆ a∗

0

V0P + L0Tda

Compare it with (9) we have:

((
DGa,a
r

)0ψ̄
′
p)|a

∗

0 = −J̄(a∗)

and since

Bθ(a = 0) = 0

⇒ ψ̄′p|a=0 = 0

we have

(
DGa,a
r

)0ψ̄
′
p = −J̄ (10)

Which is an 1D equation.
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1.5 Perturbed GSh equation

[1]When solving the GSh equation, we don't really have the �ux coordinate
(a∗, θ) until we get the true solution. However, we can use the coordinate (a, θ)
generated from each approximation of ψ̄p and assume that (a, θ) is close to
(a∗, θ) in the sense that

a∗ = a− ξ(a, θ)

then (r, z) which is initially a function of (a, θ) can be expressed as

r = r(a, θ) = r(a∗ + ξ, θ) u r(a∗, θ) + r′aξ

z = z(a, θ) = z(a∗ + ξ, θ) u z(a∗, θ) + z′aξ

the surface of (a, θ) has to satisfy that

ψ̄p(a, θ) ≡ ψ̄0
p + ψ(a, θ) = const

where ψ̄0
p is the main order approximation and can be obtained by solving the

equation (10), in the coordinate (a, θ) but taken as (a∗, θ). Thus:

ψ̄′
0
pξ + ψ = const

Notice that ξ have the part ξ0 and oscillatory part ξ̃ thus

ξ̃ = − ψ̃

ψ̄′0p

ξ0 =
ψ̄p(a, θ)− ψ̄0

p − ψ0

ψ̄′0p

chose ψ̄p(a, θ) = ψ̄0
p then

ξ = − ψ

ψ̄′0p

Now, GSh equation can be linearized:

4∗ψ̄p = −r2P (a∗)− T (a∗)

with P (a∗) = P (a)− P ′ξ + δP

T (a∗) = T (a)− T ′ξ + δT

(δP and δT denote the variations of the given function pro�le which will be
used later.) such that

Lψ̄p = −V P − LT + V P ′ξ + LT ′ξ − V δP − LδT (11)

For the previous algorithms, at each step, when ψ̄np → ψ̄n+1
p , only the change

to the LHS of the above equation is considered. If one can also calculated the
related ξ due to the change in ψ̄p , and use both of them in the above equation,
a better converging rate should be achieved.
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2 Equilibrium reconstruction

Solving GSh equation is one major part of reconstructing the equilibrium pro�le.
Yet, one also needs to have the pro�le of P̄ (ψ̄p) and T̄ (ψ̄p) to solve the equation.
These pro�les are the input parameters for GSh equation solver and are often
determined by the measurement from probes.

We start with an initial guess of the pro�les with parameters

P̄ (ψ̄p) = P̄ (α1, α2, . . . , αn, ψ̄p)

T̄ (ψ̄p) = T̄ (β1, β2, . . . , βn, ψ̄p)

and solve for ψ̄p(r, z). Then we have P̄ (α1, α2, . . . , αn, r, z) and T̄ (β1, β2, . . . , βn, r, z),
from which we can get the expect reading from the ith probe

Ei(α1, α2, . . . , αn, β1, β2, . . . , βn)

Since we also have the actually readings, the parameters can be adjusted to
better �t the reading. Update the parameters and solve the GSh equation again
until it converges. [4]

One can see that the convergence rate does not tend to be very fast, because
the �tting procedure does not take into account that ψ̄p(r, z) would be changed
when the parameters change. A better way to do it might be using δP and δT
in the equation (11) and obtain an estimated response of ψ̄p. Taking that into
account when doing the �tting procesure may result in a better convergence
rate.

2.1 E�ects of measuring techniques on reconstruction.

It is a commen sense that the more accurate your measurements are, the better
reconstruction you will get. But, it would be better if one can tell quantita-
tively how does the accuracy of the probe readings a�ects the credibility of
one's reconstruction result. In L.E. Zakharov's paper[5], he gives the relations
quantitatively.

The idea is to view errors as perturbations and see how large the magnitude
of the perturbation could be as long as they are undetectable by the device.
When we change the P and T pro�le by δP and δT , it will result in a change of
δψ̄p and eventually a change of signals we read, δS. For smal pertubation, we
can linearize the relationship and have

δS = AδX

where δS is a N dimensional vector of all the signals from probes and δX are
a M dimensional discrete version of the change of δP and δT . Since all probes
have certain degrees of error allowance, we use δε to denote that. Normalize
each row of A(i, :) with δεi and we get Ã. Thus,

δS̃ = ÃδX

7



and each entry of δS̃ has to have a magnitude less than 1 so that the perturbation
is within the error range of probes. One can single value decompse

Ã = UWV T

and for δXk = γVk we have δS̃k = γwkUk. Set certain constrains for the norm
of δS and we'll get the error range δX for the reconstruction.
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