Vertical Stability Diagnosis and Control in ITER

Paul Hughes

Measurement and Feedback

ITER Operational Considerations

ITER-Specific Challenges
Vertical Stability Diagnosis and Control in ITER

Measurement and Feedback

Vertical Position Measurement
 Magnetometry and reflectometry

Vertical Velocity Measurement
 Saddle-loops and pickup loops

Active Stability Feedback
 VS1 and VS2 circuits plus proposed VS3

Passive Stability Feedback
 Vacuum vessel and conducting blanket support structure
Vertical Stability Diagnosis and Control in ITER

Vertical Position Measurement

Magnetic field measurements
- 41 full flux loops, 36 internal and 5 external
- Rogowski coils for halo currents
- External hall effect sensors
 - 60 B_{Tan} and 60 B_{Norm}
- 100s of inductive probes for B_{Tan} and B_{Norm}

Used for...
- Equilibrium reconstruction
- Vacuum flux and driven coil currents

Position reconstruction from reflectometry
- Reflectometry limited for probing in H-mode
 - Pedestal too steep for typical resolution
- Can watch position of fixed density point at edge
 - Pedestal acts as stable plasma 'wall'

from Wagner (1984)
Vertical Stability Diagnosis and Control in ITER

Vertical Velocity Measurement

Saddle loops
- Area-measurements of \dot{B}_{Norm}
- More than 120 in-vessel saddle loops
- Usually integrated to get B_{Norm}
 - but \dot{B}_{Norm} can indicate plasma movement

Pickup coils
- Analogous to guitar pickups
- Point-measurements of \dot{B}

\[
B = \mu n I \Rightarrow \dot{B} = \mu n \dot{I} = \frac{\mu n V}{L}
\]
Vertical Stability Diagnosis and Control in ITER

Active Stability Feedback Systems

VS1 Circuit: PF2-5 outboard poloidal coils
- Superconducting NbTi coils
- 2/3 of PF: total ~40 MA-turns
- Discharge time constant ~14s

VS2 Circuit: CS2U & CS2L central solenoid coils
- Superconducting Nb$_3$Sn coils
- 1/3 of CS: total ~45 MA-turns
- Discharge time constant ~7.5s

VS3(?): New (proposed?) in-vessel VS coils
- Standard copper coils

from Humphreys (2009)
Vertical Stability Diagnosis and Control in ITER

Passive Stability Feedback Systems

Stainless steel vacuum vessel wall
As well as suppressing ripple, enhances stability
Together with blanket supports, \(R_t \approx 7.7 \mu\Omega \)

Toroidally continuous conducting blanket supports
Improve up/down symmetry for plasma position
Reduce displacement after disturbance by \(~50\%\)

Vacuum vessel vertical displacement characteristics
Vertical displacement VV mode time constant \(~0.25\)s
Typical initial displacement after MD \(~10-20\)mm
Vertical instability growth time \(~60-160\)ms
Vertical Stability Diagnosis and Control in ITER

ITER Operational Considerations

Operational Parameters
\(l, \kappa \)

Operational Control Limits
\(m_s, \Delta Z_{\text{max}} \)

Feedback Control Figures of Merit
\(\Delta \tilde{Z}_a \) and \(\Delta \tilde{Z}_n \)
Vertical Stability Diagnosis and Control in ITER

Operational Parameters: \(l_i \) and \(\kappa \)

In a circular plasma, \(l_i(3) = \frac{2 \int B_0^2 dV}{R(\mu_0 I_p)^2} \)

Normalized for ITER's plasma shaping, \(l_i(1) = \left[\left(\frac{\mu_0 I_p}{\int dl_0} \right)^2 2\pi R \int dA_{\phi} \right] \frac{2 \int B_0^2 dV}{R(\mu_0 I_p)^2} \)

However, most analysis simply uses \(l_i(3) \)

It can be shown that \(l_i(3) \leq \left[\frac{1}{2} + \ln(q_{95}) \right] \frac{2\kappa_a}{1 + \kappa_a^2} \) to 1st order for a "top-hat" current

\(l_i \) should be \textit{smaller} in ITER
Vertical Stability Diagnosis and Control in ITER

Operational Control Limits: m_s

- Stability margin as function of l_i, κ, q_{95}
- l_i will be smaller in ITER
 - Higher m_s for a given κ
 - q_{95} much lower in ITER
- Suggests overall lower m_s in ITER operating regime

However: m_s is not necessarily a good cross-machine figure of merit!
More useful when normalized against $m_s(\text{min})$ of machine's coils, structure, PS, etc.
 - Seems to be found *empirically* for each machine
 - ITER expected to have $m_s/m_s(\text{min}) \sim 2$, comparable to DIII-D and C-Mod
Vertical Stability Diagnosis and Control in ITER

Operational Control Limits: ΔZ_{max}

Defined by $\Delta Z_{\text{max}} \approx -\frac{\partial z}{\partial I_s} v_z u_z L_{s}^{-1} b_c \frac{V_{\text{sat}}}{\gamma_z} e^{-\gamma_z T_{ps}}$

Coil geometry effects from $\frac{\partial z}{\partial I_s}$ and u_z

Implications:

$\Delta Z_{\text{max}} \propto \gamma_z^{-1}$ for a slow power supply

For a very fast power supply, ΔZ_{max} becomes mostly independent of growth rate

With ΔI_{max}^2, if $\Delta I_{\text{max}}^2 L_{\gamma_z} V_{\text{sat}} < 1$, $\Delta Z_{\text{max}} \propto \Delta I_{\text{max}}$

$\Delta Z_{\text{max}} \propto V_{\text{sat}}$

Individual coil set effectiveness scales like $\frac{\partial z}{\partial I_s} v_z u_z L_{s}^{-1} b_c$

For Example:

Using only VS1, $\Delta Z_{\text{max}} \sim 4$cm ITER rampup
Vertical Stability Diagnosis and Control in ITER

Figures of Merit: $\Delta \tilde{Z}_a$ and $\Delta \tilde{Z}_n$

$$
\Delta \tilde{Z}_a \equiv \frac{\Delta Z_{\text{max}}}{a} \\
\Delta \tilde{Z}_n \equiv \frac{\Delta Z_{\text{max}}}{\langle \Delta Z_{\text{noise}} \rangle_{\text{rms}}}
$$

Many machines see $\langle \Delta Z_{\text{noise}} \rangle_{\text{rms}} \sim 0.01a$, suggesting $\Delta \tilde{Z}_a$ is a good enough measure

$\Delta \tilde{Z}_a < 2\%$ represents high risk of VDEs

$2\% < \Delta \tilde{Z}_a < 4\%$ characterizes marginal control

$\Delta \tilde{Z}_a > 5\%$ stable in C-Mod and DIII-D

In ITER, using only VS1 (aka PF2-5), $\Delta \tilde{Z}_a \sim 2\%$

Even using VS1 + VS2 (PF2-5, CS2U, CS2L), $\Delta \tilde{Z}_a \sim 4\%$

from Humphreys (2009)
Vertical Stability Diagnosis and Control in ITER

Specific Challenges

H-Mode implies ELMs
 ELM-induced difficulties
 Solutions

ITER Scaling
 Challenges of ITER's size
 Solutions
Vertical Stability Diagnosis and Control in ITER

Specific Challenges and Solutions

Edge Localized Modes

- Characteristically associated with H-mode
- ELMs can displace the plasma vertically
- ELMs can also falsify plasma ΔZ
 - Moves pedestal position relative to bulk plasma
 - Generates extra B_{norm} noise
- Effectively decreases $\Delta \tilde{Z}_n$

Work on JET indicates illusory ΔZ from ELMs may be suppressed with careful tuning of gain on magnetic sensors
- ELM control methods may reduce magnitude of noise
 - Pellet injection
 - Jogging
Specific Challenges and Solutions

ITER Scaling Issues

- Stable $\Delta \tilde{Z}_a > 5\%$ region of means $\Delta Z_{max} > 10\text{cm}$ (!)
- VS1 + VS2 (PF2-5, CS2U, CS2L): $\Delta \tilde{Z}_a \sim 4\%$
- NSTX study: machine properties can *reduce* effective $\Delta Z_{max} \sim 20\%$
 - Nonaxisymmetries of passive components?
 - Nonlinear effects from plasma-limiter interactions?
 - Other unidentified effects?

Vertical instability growth times as short as 60ms

Proposal (approved?) to include in-vessel VS3 coils

Ongoing study should clarify effects of asymmetries and nonlinearities

Vacuum vessel design should minimize asymmetry effects (e.g. ripple)

dz/dt of current centroid monitored at 1kHz
Vertical Stability Diagnosis and Control in ITER

References
Donné et al., "Diagnostics." *Nucl. Fusion* (2007) **47** Ch7 S337-384

Gribov et al., "Plasma Operation and Control." *Nucl. Fusion* (2007) **47** Ch8 S385-403

Humphreys et al., "Experimental vertical stability studies for ITER performance and design guidance." *Nucl. Fusion* (2009) **49**
