Mass Producing Positrons Using Ultaintense Lasers and their Applications

Gerald D’Arco
Columbia University
Outline

- What are positrons?
- How are they formed?
- Mass production of positrons (LLNL experiment)
- Various applications
What are Positrons?

- Antimatter partner of the electron

- \(m_p = m_e, \; S_p = S_e = \frac{1}{2}, \; Q = +e \)

- First Theorized by Paul Dirac in 1928

- Discovered by Carl D. Anderson in 1932 who won the Nobel prize in 1936
How Positrons Are Created

- Radioactive β^+ Decay – “positron emission”
- Created by radioactive sources
- Low $E \sim$ some thousand eV
- Used in medical imaging (PET)
How Positrons Are Created

- Hot Electrons via two processes:
 - Trident Process
 \[e + A \rightarrow e' + A' + e^-e^+ \]
 - Bethe–Heitler Process
 \[e + A_1 \rightarrow e' + A_1' + \gamma \text{ followed by } \gamma + A_2 \rightarrow A_2' + e^-e^+ \]

- Hot electrons are typically produced by particle accelerators (Very High E ~ billions of eVs).

- More recently being produced by lasers.
Mass–Producing Positrons with Lasers

- Lawrence Livermore National Lab (headed by Chen and Wilks) started research in 2003 (published results in 2009)

- Experiment carried out with Titan Laser
 - Laser energy 120–250 J
 - Ultraintense \(\sim 1 \times 10^{20} \) W/cm\(^2\)
 - Ability to couple short and long pulse
Mass–Producing Positrons with Lasers

- Fired two laser pulses at high–Z targets
 - A) 100J for 1 nanosecond
 ◦ Creates plasma on surface of target
 - B) Ultraintense \(10^{19} \text{ W/cm}^2\) for a few picoseconds
 ◦ Accelerates hot electrons into target
 ◦ Electrons interact with Au nucleus and undergo pair–production via B–H process
Mass–Producing Positrons with Lasers
Experimental Results

- High number of positrons were observed in Au and Ta targets > 250 microns

- 1.6×10^{10} positrons/sr measured from the rear spectrometer

- 2×10^9 positrons/sr measured from the front spectrometer

- Angular distribution is anisotropic
Experimental Results

- 10^{16} positrons/cm2 inside the target

- Rate of positron production was $\sim 2 \times 10^{22}$ positrons/s/sr

- Because the number of positron $\propto E$ there can be 10 times these rates for kJ
 - OMEGA EP laser, NIF–ARC laser
High Yield Positron Applications

- Can help us understand more astrophysical anomalies such as deep space gamma-ray bursts

- Will provide a much more efficient way of creating positronium gas
 - Gamma Lasers
 - Light sabers
 - Antimatter rocket fuel
High Yield Positron Applications

- Non-destructive testing (NDT) for aeronautical and defense weapons
 - Based on the lifetime of positrons in a defect, we can deduce what and where it is.
Sources

Questions?