Bipolar Junction Transistor

What is a transistor?

- Device used to amplify or switch signals
- Computer processors
- Progress
 - Vacuum tubes, early field effect transistors, BJT
- Moore's Law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Overview

- Inventors (1956 Nobel Prize)
- History
- Physics
- Modes of Operation

Inventors

John Bardeen

Walter Brattain

Inventors

- John Bardeen and Walter Brattain
 - Employees of Bell Laboratories
 - Worked under William Shockley (3rd inventor)
 - Did much of the work
- Afterward
 - Shockley claimed most of the credit
 - Strained relationship
 - Bardeen won a 2nd Nobel Prize for BCS theory of superconductivity (1972)

Point Contact Transistor

Inventors

- William Shockley
 - Worked in secret on better transistor design
 - Major contributions to semiconductor physics
- Racist
 - Public proponent of eugenics

History

- Bell Labs wanted to create a solid state triode
 - Faster switching time
 - Cheaper
 - More reliable
 - No need to warm up
- Surface physics
 - Charge carrier behavior
 - Bardeen established this new subject

Physics

- Simplest picture
 - Two p-n diodes joined together
 - Flow of electrons and holes depends on doping and bias
 - E: Emitter
 - B: Base
 - C: Collector
 - $I_{\rm C} = \beta I_{\rm B}$
 - β typically ~200

Amplification

• The current in the base is given by

$$I_B = \frac{q D_n n_{pE0} A_E}{W_B} (e^{V_{BE}/v_{th}})$$

Where q is charge, D_n is diffusivity of electrons, n_{pE0} is density of holes, A_E is area, W_B is width, V_{BE} is the potential across the base-emitter junction, and v_{th} is thermal speed.

• Similarly, current in the emitter is given by

$$I_E \approx \frac{q D_p p_{nE0} A_E}{W_E} (e^{V_{BE}/v_{th}})$$

- Also, $I_C pprox I_E$
- So that $\beta_F \approx \frac{D_n N_{dE} W_E}{D_p N_{aB} W_B}$

Where N represents dopant concentration. For typical values of these parameters, β is around 200 but varies with use because of implicit dependence on temperature and bias.

Modes of Operation

- Forward Active Region
 - BE forward biased, BC reverse biased

- Reverse Active Region
 - BE reverse biased, BC forward biased

- Saturation
 - Both forward biased
 - "On"

- Cutoff
 - Both reverse biased
 - "Off"

References

- "John Bardeen and the Point Contact Transistor." *Physics Today*, Apr. 1992.
- "Compound-semiconductor Transistors." *Physics Today*, Oct. 1986.
- "The Transistor." *Scientific American*, Sept. 1948.
- "The Future of the Transistor." *Scientific American*, Jun. 1993.
- 2010 ELEN3106 Lecture Notes
- Hyperphysics Transistors. http://hyperphysics.phy-astr.gsu.edu/hbase/solids/trans.htm>