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Various aspects of the laser cooling of atoms are investigated theoretically. More generally, the authors
investigate a process through which the kinetic energy of a collection of resonant absorbers can be reduced
by irradiating these absorbers with near-resonant electromagnetic radiation. The process is described here as
anti-Stokes spontaneous Raman scattering. Cooling mechanisms, rates, and limits are discussed for both free
and bound atoms.

I. INTRODUCTION

In the past few years, there has been increasing
interest in the use of near-resonant photon scat-
tering to cool a collection of atoms, ions, or
molecules. This interest is motivated in part by
the practical need to reduce first- and second-
order Doppler shifts in ultra-high-resolution
spectroscopy and in part by the esthetic appeal of
controlling the positions and velocities of a col-
lection of atomic particles to within the limits
imposed by quantum fluctuations. Recent pro-
posals and experiments using narrow-band tunable
lasers suggest that such control may soon become
a reality. It is not difficult to imagine that the
concepts and techniques which are being developed
may have application in a variety of areas not
initially anticipated.

Current interest in the possibility of cooling be-
gan with independent proposals to reduce the tem-
perature of a gas of neutral atoms' or ions which
are bound in an electromagnetic "trap"' with near-
resonant laser radiation. This method of cooling
has subsequently been incorporated into the in-
teresting schemes for trapping of particles using
near-resonant optical fields. ' The first demon-
stration4 of cooling using the basic techniques
described here was made for a slightly modified
situation; specifically, the magnetron motion of
an electron bound in a Penning trap was "cooled"
by a technique called motional sideband excita-
tion, ' which is formally equivalent to the laser
cooling of atoms. Cooling of ions bound in an
electromagnetic trap was more recently demon-
strated. "The cooling which is potentially
achievable should permit spectroscopy of unprece-
dented resolution and accuracy.

As discussed below, the technique can variously
be described in terms of radiation pressure, mo-
tional sideband excitation, optical pumping, or

anti-Stokes spontaneous Haman scattering; this
last concept is the one primarily used here be-
cause of its generality. It should be mentioned
that cooling by Raman scattering is not a new
idea; "lumino-refrigeration" was hypothesized
as early as 1950 by Kastler. ' We also note that
other cooling processes are possible; for exam-
ple, one could use optical pumping followed by
collisional relaxation, as discussed in Sec. II,
or cooling by collisionally aided fluorescence. '
The process described in this paper is, however,
more direct and does not rely on atom-atom col-
lisions to alter the atom kinetic energy.

The paper is divided as follows. In Sec. II we
describe the general aspects of the cooling pro-
cess and treat the problem combining simple
classical and quantum ideas. Section III introduces
the concepts and notation of the quantum-mechani-
cal treatment which is then applied to free atoms
in Sec. IV and bound atoms in Sec. V. In order to
make the problem somewhat more tractable, we
limit the discussion to simple systems which ex-
hibit the salient features of the process.

II. SIMPLE DESCRIPTION OF THE COOLING PROCESS

A. Analogy with optical pumping

The basic features of the cooling process have
been outlined previously (Refs. 1, 2, 5, 6, 7). The
attempt is made here to describe the qualitative
aspects of the problem more completely; how-
ever, the general problem becomes quite com-
plicated, and therefore several limiting cases
will be treated.

First, recall that in optical pumping we have a
way of drastically altering the temperature of a
specific degree of freedom in an atom or mole-
cule. Assume, for example, that we have an
alkali-like atom which has ground-state "hyper-
fine" structure. This atom can also have many
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excited electronic states, but we assume that we
have a narrow-band laser which can excite the
atom from one of the ground states to only one
excited electronic state. The relevant levels are
shown in Fig. 1.

Without laser. irradiation, the atoms eventually
reach thermal equilibrium by collisions or inter-
action with the background blackbody radiation.
Therefore, the ratio of the number of atoms in
state 2 to those in state 1 is given by the Boltz-
mann law:

N2/N~ = exp [—(E, —E,)/As Tj,
where k& = Boltzmann's constant, T = temperature,
and E„E,and N„N, are the respective energies
and numbers of atoms in the states. For sim-
plicity we assume that the ground state has only
two nondegenerate energy levels; hence statistical
weight factors are absent in Eq. (1).

If we now apply the laser radiation to the atoms,
optical pumping occurs. Atoms are excited to
level 3, but can decay into either ground state.
If we neglect the finite frequency widths of the
laser and of the optical transition, this process
continues until all of the atoms are in level 1.
They remain there until another process (say, the
collisions) depopulates this level. However, in the
pumping process, N, /N, -O, and, via Eq. (1), we
may say that T —0 also. In this simple example,
we see that we can cool an internal degree of
freedom of the atom (the hyperfine structure) by
optical pumping. In principle, we could continue
this optical pumping process and, using collisions
to transfer kinetic energy to the internal degree
of freedom, could reduce the translational tem-
perature of the gas if there were sufficient isola-
tion from the rest of the environment. The pro-
cess of laser cooling discussed below is very
similar to the optical pumping case except that
the translational degrees of freedom are optically
pumped directly.

B. Laser coohng of free atoms

Assume that we have an unbound gas of atoms
(or resonant absorbers in general) which possess

a resonant electric dipole transition (frequency,
v, ) in some convenient spectral region with radia-
tive linewidth y/2w (full width at half-intensity
points). Now suppose that we irradiate these
atoms with monochromatic, directed, low intensi-
ty radiation tuned near, ' but slightly lower than,
the resonance frequency. We assume that the in-
tensity is well below that which would cause satu-
ration (the case of saturation is treated in Ref.
10), and that the thermalizing collision rate y,
between atoms is much less than the natural line-
width y, but is larger than the optical absorption
rate (y»y, » absorption rate, see Sec. VF).
Those atoms of a particular velocity class moving
against the radiation are Doppler shifted toward
the resonant frequency v, and scatter the incoming
light at a higher rate than those atoms moving with
the radiation which are Doppler shifted away from
resonance. For each scattering event, the atom
receives a momentum impulse kk (k is the photon
wave vector) in the absorption process. For an
atom which is moving against the radiation, this
impulse retards its motion. This retardation can
also be described in terms of radiation pres-
sure. '" The average momentum per scatter ing
event transferred to the atom by the reemitted
photons is zero, because of the randomness of the
photons' directions (if we neglect terms of second
order in iv~/c, where v is the atom velocity and c
is the speed of light). The average net effect then
is that the atomic velocity is changed by an amount
Av—= h k/M per scattering event, where M is the
atomic mass. When v and k are antiparallel, this
leads to a net cooling, provided iv+ iv) & ivi.
(See Fig. 2.) In a practical cooling experiment it
would be desirable to irradiate the atoms from all
sides with radiation that covered the entire lower
half of the Doppler profile. ' Alternatively, nar-
row-band laser schemes might be employed where
the laser frequency is swept from some very low
value to a value approaching the rest frequency. '
This requirement is substantially relaxed if the

ABSORPTION

electronic excited state

ENERGY
Laser driven transition

REEMISSION

hyperfine states
OI

FIG. 1. Levels of interest in a hypothetical alkali-
like atom. Optical pumping into state 1 occurs while
driving the 2 3 transition with a laser.

FIG. 2. Qualitative description of radiation-pressure
cooling. In the absorption process, the atomic velocity
is changed (reduced for k v& 0) by an amount &v=8k/M.
In the reemission process, the average change in velo-
city is zero. Therefore in the overall scattering pro-
cess, the kinetic energy can be reduced.
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atoms are bound, as is described later. (See
Sec. IIC.)

The above argument gives the essence of the
cooling process but neglects residual heating ef-
fects due to recoil. For example, in the re-
emission process, as explained below, the average
momentum transfer is zero '(neglecting terms of
order ~v~'/c'); however, the atom undergoes a
random walk in momentum space because of the
finite momentum transfer in each emission. Thus,
the limiting kinetic energy for a single atom in
the cooling process must be at least the recoil
energy R = (kk)'/2M, and, as we will see below,
may be considerably larger than the recoil en-
ergy. To be more quantitative, we first write
the resonance absorption and spontaneous emis-
sion frequencies, which are given by:

(2a)

cu, = &go+ k, v' —~&up' —R/0, (2b)

where &u0=2wv» (k,„, [ =&@,b, /c, )k, [
= v, /c, v

= atom velocity in the ground state, v' = atom
velocity in excited state, c = speed of light, P
= ~v~/c, k 2w = Planck's constant. These equa-
tions, valid to order P' in the atom velocity, and
to first order R/k&u, in the recoil energy, can be
obtained by invoking conservation of energy and
momentum in the absorption and emission pro-
cesses. The second term on the right-hand side
of these equations is the ordinary first-order
Doppler shift, ihe third term is the second-order
Doppler or time dilation shift, and the last term
is usually called the recoil shift. We will use the
nonrelativistic approximation and therefore ne-
glect the third term in Eq. 2. Also, as explained
in Sec. III, the net effect of averaging over all
possible directions of reemission, is equivalent
to setting the second term in Eq. 2(b) equal to
zero (neglecting terms of order P' and higher).
Hence, the average energy change of the photon
per resonant spontaneous scattering event is' given
by

dition. As an example, suppose we have an atom
with M = 100 amu, v, = 5x 10"Hz(X = 600 nm) at
thermal energies (T = 300 K), then v, , = 2.2 x 10'
cm/s, k~k~v, , = 2.5x 10 "ergs, 2R =7.3x 10 "
ergs. Clearly, the recoil heating does not play
a significant role until very low temperatures are
achieved. Of course, at higher frequencies v0 it
becomes more important. If we interpret the
energy changes in terms of temperature changes
by the relation AE~ = —', @~AT, then AT = 0.012 K
per scattering event at &= 300 K, and it therefore
takes on the order of 10' scattering events to do
substantial cooling at optical frequencies.

1. Cross section and cooling rates

The atomic cross section for absorption, ne-
glecting saturation, "has the form

o(~) = o.(ay)'/[(~ —~.„)'+(-'y)'], (4)

where o0 is the resonance scattering cross sec-
tion (o, =2va' for unpolarized atoms). Therefore,
if the radiation is incident along the x direction,
the rate of kinetic energy change is, using Eq.
(3):

dE I
o ((u) (k kv„+ 2R),

dt (5)

dv„
1+ [(2/y) ((u —(u,' —kv„)]' '

where u = (2ksT/M)'~' and &v,
'= &a, +R/K

Similarly, Eq. (5) becomes

(6)

where I is the energy flux of the laser beam
(ergs/sec cm') and where o is given by Eq. (4).
(This expression will be more fully justified in
Sec. III.) Equation (5) gives the cooling (heating)
rate for a single atom. If we consider an en-
semble of atoms we must average v„over the ve-
locity distribution. If, for example, the distribu-
tion is given by a Maxwell-Boltzmann distribution,
Eq. (4) becomes a Voigt profile:

( )
""exp[-(v, /u)']

0
Wvu

aE(photon) = k (&o, —~„,) = —k k, ~ v —2R .

Here we note that this equation applies to both
resonant and nonresonant scattering and can also
be simply derived in general by considering con-
servation of energy and momentum in the overall
scattering process. For this more general case,
k,b, is replaced by k. The change in photon ener-
gy is accounted for by a change in atom kinetic
energy per scattering event

dE ICr0 kkv„+ 2R
dt k(u . „1+[(2/y)((u —(u', —kv„)]'

exp[- (v, /u)']
veau

Equation (7) can also be written in the form

ReZ(F, Q)

(7)

aE~(atom) =8k v+2R. (3) + —~,' —~ —
@

ImZ(F, Q)
2, 2R

This leads to a net average cooling as long as
N k v& —2R, and net heating for the opposite con- where F= (eo —+)/(ku), Q——= y/(2ku), and Z(F, Q)
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is sometimes called the plasma dispersion func-
tion" defined as

p co

Z(F, Q) =II '~'
J „x—I" —iQ

for Q&0. We can numerically solve Eq. (7) for
dE/dt; however, when y and R/II are much less
than the Doppler width we can approximate the in-
tegral and the cooling rate by

=, '[N(~ —ru, )+A] exp —
( '), (8)

where (()D= (d~/c.
For the case of unbound atoms, radiation inci-

dent along only one direction would retard the
motion only in that direction and heat the motion
in the other directions due to recoil. Therefore,
in a practical situation we might irradiate the
atoms with six narrow-band laser beams directed
along the +x, ay, and az directions of a Cartesian
coordinate system. In this case we must sum
terms like Eq. (5) for each laser beam. If (i) the
frequencies of the lasers are equal giving standing
waves, or (ii) if the waves are not plane, we must
consider the effect of the induced dipole forces
responsible for optical trapping. ' In order to dis-
regard this effect we will assume that the incident
(plane-wave) radiation has low enough power —that
is, the limiting kinetic energy is larger than the
potential energy "hills" created by the standing-
wave-induced dipole force. In this limit, the in-
duced forces average to zero. When the atoms
are bound this complication need not arise, since
one laser beam may be sufficient to cool all de-
grees of freedom.

2. Cooling )imit

is much less than the natural width, we can show
that the maximum cooling rate is achieved when
(d = ~,' ——,'y. In this case Eq. (9) reduces to

d zalea, , le'(v,')
)dt kd

We find the minimum kinetic energy (E&) when

dE„/dt=0, in which case

(10)

which is independent of intensity. In a real situa-
tion, of course, other causes of heating would be
present, making high intensity desirable. (See,
however, Sec. VF). Note that Eq. (11) holds for a
single atom or an ensemble of weakly thermalized
atoms. If the atoms have a Maxwell-Boltzmann
distribution, then EE„=—,'k~T. If y=2m ~ 10 MHz,
we find T,.„=2.4 && 10 4 K.

From Eq. (11) the rms velocity v, , = ((I)„'))'~'
can be used to arrive at an approximate Doppler
broadening b, mD-= (d,v, ,/c. In deriving Eq. (11),
we have assumed that this Doppler broadening
is much less than the natural linewidth, which
then implies that A «ky. In our example, ky
=0.7&&10 "ergs»A =4~10 "ergs, and our as-
sumption is justified. However, for weakly al-
lowed transitions in light atoms, this condition
will be violated and the minimum kinetic energy
will be limited as shown below to approximately
the recoil energy A.

When the condition R «Sy is not satisfied we
must accurately evaluate Eq. (7) to find the cool-
ing limit. Assuming the thermalizing collision
rate between atoms is large compared to the op-
tical absorption rate, we can evaluate the plasma
dispersion function to find the average energy

We can estimate the limit on cooling with the
following argument whose general features were
advanced by PureeQ. " Assume that substantial
cooling has already taken place so that the Doppler
width of the atomic transition is smaller than the
natural linewidth y. We further assume that we
irradiate the unpolarized atoms with six laser
beams as described above, which are tuned near
the lower. half-power point of the optical reson-
ance, ~ —coo —=- ~y. Considering the rate of ener-
gy change in the x direction, we can write

IO

~kT
R

lo'

R) W r.)O'-~

dE» I
[a, (hkv„+ 2R)+o (- II'„+2R)j,

dt ~co

where I is the energy flux of each laser beam and
where a, (o ) is the scattering cross section for
the laser light moving with (against) the atomic
motion.

With the approximation that the Doppler width

lP2 I I I I ~ I I I I I I I I I I I I I I

lP-3 lO ~ lP-I
I IP

+(eI' eI)-2R
2R

FIG. 3. Plots of k&T~ versus h(coo —co)/R for four
values of R/Sy. %e have assumed that the thermalizing
collision rate (p~) is much greater than the optical
absorption rate.
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which makes Eq. (7) vanish for particular values
of a&,

' —&u, R, and y. (We note that cooling is
possible only if (&oo —&u) &2R/k. ) In Fig. 3 we show
the minimum energy thus obtained for various val-
ues of h (&o,

' —&u)/R and R/Ay. We note that it is
possible to cool to an average energy less than the
recoil energy; however, we must also note the
difficulty in obtaining the proper conditions under
which these results hold. In particular, free atoms
cannot really be thermalized amongst themselves.
Therefore some kind of confinement is required,
in which case the required degree of thermal iso-
lation from the environment would be difficult to
achieve. (Ideally, we would like a transparent
box whose walls have zero heat capacity. ) This
situation can be nearly realized for electromag-
netically bound ions, in which case we might be
able to obtain temperatures less than R/ks, when
y&R/h. For the atoms described in the previous
example (R =—4x 10 "ergs), this would imply
T & 2.7X 10 ' K, when the natural linewidth of the
transition y/2v was less than 6 kHz. We also note
that practical limitations on laser power would
occur for the case of free atoms since the dif-
fusion of the atoms during the cooling process
would require large volumes (» 1 cm').

C. Laser cooling of bound atoms

For the case of bound atoms we consider the
special situation where they are harmonically
bound in all dimensions. The assumption of har-
monic binding is not es8ential, but it allows a
simple interpretation and exhibits the most im-
portant features found in any bound system. For
simplicity, we consider an atom constrained in
the x, y, and z directions by springs of negligible
mass as shown in Fig. 4. Of course, in a real
situation, the springs might be replaced by'elec-
tromagnetic restoring forces. We assume that
the springs are attached to a massive block and
that they act independently and may have different

spring constants giving rise to different frequen-
cies of oscillation 0„, Q„and 0, in the three di-
rections, where we assume (Q,}«u&„i=x, y, z.

x =x, sin(Q, t+ P,),
where x, is the oscillation amplitude and Q„ is a
phase factor. Choosing $„=0, we have

E„„=E, sin(kx, sinQ„t —~t) .

This expression is familiar as the signal de-
rived from an oscillator of frequency + which is
frequency modulated at frequency 0, with modu-
lation index kr, . Equation (13) can be expanded
in terms of a series of Bessel functions and gives
rise to the spectrum shown in Fig. 5(a) when kr,
= 1.5. We note that the atom sees a spectrum
comprised of a "carrier" at frequency & with
equally spaced first-order Doppler effect gen-

I(x Jm (kxg)

(a)

iQx 2Gx

l. Strong binding

When the binding is "strong", (y«(Q, )), the
gross features of the absorption spectrum are
significantly altered. We can see this by con-
sidering the optical electrical field seen by a
particular atom. If the incident (plane-wave) radia-
tion is directed along the x axis,

E„„=E, sin(kc —vt), (»)
where x is the atomic x coordinate and k and &
are the wave vector and frequency of the incident
radiation. Now

s prings
atom (mass=M)

block

~y/~

x
photon s

FIG. 4. Idealized representation of bound atom. In
this picture the binding forces are due to (massless)
springs; in an actual experiment these springs might be
replaced by electromagnetic restoring forces.

(b)

I I \

I \ I

y =I i= I i I
I

I l I

1~ ~ % I
~ ~ ~ / s

~o ~~~x auo+2&x

FIG. 5. Radiation spectrum when 0„»y. Part (a)
illustrates the spectrum of an incident wave E= csin(kx
—.cot) as seen by an atom which oscillates according to
x=x~ cosO„t, where we have chosen kx=1. 5. Part (b)
s'hows the emission spectrum as observed in the labora-
tory including the broadening due to the lifetime of the
upper electronic state.
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crated sidebands at the frequencies (d+rnQ„
(m =+ 1,+2, +3, . . . ) having intensities propor-
tional to J'(kx, ). Similarly, the spectrum of the
atom as seen by an observer in the laboratory
will have the same character as in Fig. 5(a), but
each component will be broadened by the natural
linewidth y as shown in Fig. 5(b).

To approximate the cooling rate, we note that
when y«Q„we can tune the incident radiation to
one of the resolved lower sidebands. Thus, an
atom can be made to absorb photons predominantly
of energy h(&u, +mQ„) where m is a (negative) in-
teger. Photons of average energy approximately
equal to @co, are reemitted, leading to a net cool-
ing. ' One can, therefore, approximate the cool-
ing rate to be:

dE Iv0= (kmQ„) ' d'.(kx.) .
dt "@~ ™a ~ (14)

Jm +a dE

Since E = —,'MQ„'x,' the factor in parentheses can be
integrated to give the result

In Sec. V we will see that this expression is
strictly valid only when the recoil effect is negli-
gible. For this approximation, as an example,
suppose Q„/2w = 12.5 MHz, M= 100 amu, A. =600 nm,
and m = —28. Let y/2w = 1.0 MHz, and suppose
that the intensity is such that erg/ku&, = 5 MHz. If
the x motion initially has an energy corresponding
to room temperature, so that &MQ,'(x')
,'MQ,'x,'= ,'k —T(T=300—K)thenx, —= 2.6x 10 ' cm,

kx, —= 30, J',,(kx, ) —= 0.046 and dE/dt= 0.3 eV/sec-,
I=2.7 mW/cm'. We therefore see that when the
atom is bound, rather substantial cooling can be
achieved with modest incident power tuned to a
single frequency. (We have, however, chosen a
strong sideband). Additionally, we can simul-
taneously cool all degrees of freedom with a single
laser beam if the incident radiation is directed

h
along, for example, the i+j+ 0 direction when the
vibration frequencies are related by rational num-
bers (but are not equal), or if, . as in a cloud of
ions, the long-range electrostatic forces tend to
thermalize all degrees of freedom. This tech-
nique' has been called "cooling by motional side-
band excitation. "'

In a collection of bound atoms that are weakly
thermalized (i.e. , the collision rate y, «y) a more
realistic estimate of the cooling can be obtained
if we average Eq. (14) over a thermal distribution.
%e have

dE = (hmQ„) ' exp(- k'(x') )(
Iso

xf (k'(x')), (15)

where I is the modified Bessel function of order
m and k'(x') =2Rk~T/(KQ, )'. If we assume that
we irradiate somewhere within the Doppler pro-
file, then we can show [see Eq. (41)] that ~m ~

~ k(x')'~'. In the high-temperature or short-
wavelength limit, k((x'))'~'» 1. Therefore we
can use the following asymptotic expansion" of I:

I (z)- (2wz) '~'exp(z -m'/2z) z»m»1 (16)

and we obtain

dE
@

Icr0
(17)

where ~ —~, =mQ„. The last factor shows the
Doppler profile. For the above conditions,
(dE/dt) = 0.057 eV/sec.

The above description is not quite correct be-
cause we have not considered in detail momentum
and energy conservation in the process of absorp-
tion and reemission. It happens that the absorption
and emission spectra are also altered by recoil.
Qualitatively we can say that in the emission spec-
trum, for example, components occur at fre-
quencies &, and ~,+m~„, but the spectrum is now
slightly skewed. For example, suppose we look
at the emissions at cu, +0 when kx, & 1. For pho-
ton emission at frequency u, -O„, conservation
of energy tells us that the energy of oscillatory
motion must increase; hence, during the emission,
Ax, increases and so also does the amplitude of
the spectral component at co, —0„. The opposite
argument holds for the component at ~,+O„and,
consequently, the average energy spectrum is
shifted to a value slightly below ku, . The solu-
tion to this problem is straightforward when quan-
tum mechanics is used and, therefore, we defer
discussion to Sec. V. It has been treated by a
semiclassical approach' when kx, «1.

A further complication arises when we ask for
the cooling limit when y«Q„. %e find that the
minimum kinetic energy achieved from a classical
treatment is less than the zero-point energy of
the harmonic oscillator and therefore we defer
this discussion to the quantum-mechanical treat-
ment.

At this point we can see the similarity of this
problem (when y«Q„) to the M'ossbauer effect.
Indeed, when Ax, ~ 1, the central peak or "carrier"
becomes dominant; excitation at this central peak
is equivalent to absorption on the Mossbauer
line —the main difference being that at y-ray en-
ergies the recoil plays a much larger role. As
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we will see below, the quantum-mechanical treat-
ment of laser cooling can use some of the same
formalism as the treatment of the Mossbauer ef-
fect.

Finally, another picture which provides a con-
nection with a familiar situation is given by con-
sidering the "molecule" formed by the block and
the atom bound to it. Cooling of the vibrational
motion is achieved by anti-Stokes Raman scatter-
ing. However, the ordinary selection rules for
vibrational transitions do not apply in general
since the "molecular" dimensions may be con-
siderably larger than the optical wave length.

2. 8'eak binding

When y»Q;, the period of the atomic center-
of-mass oscillation is much larger than the optical
decay time. Therefore, during one oscillation
period the atomic velocity gradually reaches the
value where the incident radiation is shifted into
resonance; scattering occurs, and for each scat-
tering event Eq. (3) holds. In this limit we have
treated the interaction of the radiation with the
atom as occurring at an instant of time. This is
reasonable since the atom loses optical phase
memory during one oscillation period and there-
fore coherence during successive oscillations
(which gives rise to the resolved sidebands) can
be neglected. An important difference from the
free-atom case is that the momentum of the pho-
ton is transferred to the center-of-mass motion
of the block and atom. In the limit that the mass
of the block becomes infinite, the change in ve-
locity of the center of mass, per scattering event,
goes to zero and the energy change must occur
in the kinetic energy of the bound atom.

Therefore, in the weak binding limit we may
apply Eq. (5) and find the average cooling rate by
averaging v„over one center-of-mass oscillation
period. In an ensemble of weakly thermalized
atoms Eqs. (7) and (8) therefore also apply. Ne-
glecting recoil, we obtain Eqs. (2) and (3) of Ref.
6. However, if we assume only one laser beam
is present to do the cooling we must assume that
the transition rate is small enough to avoid heat-
ing by recoil in directions perpendicular to the
laser beam. (See Sec. V F). If three mutually
perpendicular laser beams are used to do the
cooling this restriction is not necessary, but the
power must be held low enough to avoid the effects
of the induced dipole force. Note that the esti-
mated cooling limit given in Ref. 6 is too low by
a factor of 2. This is because only the recoil
heating in the absorption process was considered
and not the contribution from reemission.

D. Generalization of the cooling process

In this paper we address a rather specific prob-
lem, that is, the laser cooling of atoms. Ab-
stracting the problem slightly, we have excited
one "oscillator" —the atom's internal electronic
resonance at frequency ur, —with radiation at a
lower frequency +. In the frame of the harmoni-
cally bound atom, this excitation occurs due to one
or more of the upper sidebands shown in Fig. 5(a).
For the free atom these "sidebands" become a
single line.

Instead of the internal atomic "oscillator, " con-
sider an electron (or in general a charged parti-
cle) which is constrained like the atom shown in
Fig. 4. Further suppose that the resonance fre-
quencies Q„Q, are very high so that AQ„@Q,
» kQ„. If incident radiation is polarized along the
z axis and is directed along the x axis at frequency
Q, -Q„, then the z oscillation is excited much the
same way that the electronic transition in the atom
was excited by the frequency +, -Q, . Thus, cool-
ing of the x motion can be achieved at the expense
of driving (heating) the z motion. This is the es-
sence of "magnetron" cooling which was demon-
strated for an electron bound in a Penning trap. ~

Treating this problem classically is reasonably
straightforward, '"'"but a general quantum-
mechanical treatment is complicated by two things.
(a) Recall that for the laser cooling of atoms,
the electronic states can be assumed to comprise
a two-level system which is not saturated; this
is a good approximation for many practical situa-
tions. However, when the atomic transition is
replaced by the harmonic oscillator, many levels
are involved and saturation between levels can
occur. (b) In addition, the condition k~T
«kQ„SQ, is not generally satisfied and one must
contend with the effects of thermal background
radiation. Nevertheless, certain cases of this
more general problem can be treated. " Fortu-
nately, these two problems usually do not occur
for the laser cooling of atoms and many aspects
of the quantum-mechanical treatment are quite
straightforward.

We remark that the velocity selectivity provided
by the narrow-band (laser) source might be pro-
vided by other means. For example, assume the
atom is polarized in the z direction and is con-
strained to move along the x axis. If white light
irradiates the atom at an angle with respect to the
x axis, then, because the absorption rate is de-
pendent on the angle the radiation is received (in

.the frame of the atom), we obtain a differential
effect which is dependent on the atom velocity as
is required above. This is analogous to the state
selectivity provided by optical. polarization in the
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case of ordinary optical pumping.
We note that in terms of the above descripti. on

we are discussing the case of a nearly ideal re-
frigerator: for each scattering event (i) we ex-
tract an amount of energy kQ„ from the "x reser-
voir" at temperature T„, (ii) we supply an amount
of energy h(Q, —0„), and (iii) we transfer the
amount of energy I(Q, —0„)+AQ„= AA, to the
"z reservoir" at temperature T, . The second law
of thermodynamics then implies that the minimum
obtainable temperature T„ is given by the rela-
tion"

The competing heating mechanism which gives
rise to this limit arises because the thermally
excited z motion (frequency 0,) modulates the
Lorentz force due to the incoming radiation (fre-
quency 0, -0„) and gives a component at frequency
Q„which then excites the x motion. "

In the following we will assume that T, = 0;
equivalently, we Will assume that the atoms are
normally in their ground electronic state and the
background blackbody radiation is negligible.
Then the minimum temperature achieved will be
determined by recoil effects. We must, however,
keep the thermodynamic limit in mind in certain
cases.

We further remark that in terms of the above
description, the cooling process is entirely
analogous to the Overhauser effect where the
flipping of an electron spin in a solid is accom-
panied by a flipping of the nuclear spin system. "

We also note that cooling by the technique of col-
lisionally aided fluorescence' shares many simi-
larities with cooling described here. When col-
lisions are present, the atoms' absorption spec-
trum is broadened, and, if the collisions were
very regular like the ion "collisions" with the
electric restoring forces in an electromagnetic
trap, then the spectrum might appear as in Fig.
5(b). Of course, for the general case of collisions
the line broadening is not so regular; however,
the cooling principle still applies, so that if we
irradiated the atom at a frequency lower than the
center of gravity of its emission spectrum, cool-
ing would occur.

Finally, we observe that the cooling process
can be described in terms of radiation pressure.
The radiation pressure force on atoms has usually
been developed in terms of scattering'"; how-
ever, we note that an alternative approach some-
times used in elementary texts' describes the
radiation pressure force on a conductor in terms
of the Lorentz force interaction of the oscillating
magnetic field with the induced current. For the
atomic case, a dynamic polarization is established

which is usually given in terms of the suscepti-
bility. This atomic polarization interacts with
the magnetic component of the radiation field via
the Lorentz force leading to a force in the direc-
tion of the radiation:

dp IF=—= —oak.
cN @(d

The effects of recoil must be added separately in
this approach. The treatment of the problem as
scattering has the advantage of completeness and
is therefore used in the following. We finally re-
mark that the interest in radiation pressure forces
has had a long history. Some of the very early
experimental and theoretical papers have been
summarized by Nichols and Hull. " The first ex-
periment observing radiation pressure on atoms
was reported by Frisch. "

III. QUANTUM-MECHANICAL TREATMENT —GENERAL

ASPECTS

For the quantum-mechanical treatment we will
make some simplifying assumptions in order to
illustrate the basic features of the problem. We
can, however, assume that the atom (or mole-
cule, or resonant absorber in general) moves in
three dimensions. We assume that the motions
in the different directions are independent, al-
though it will. sometimes be convenient to assume
for a collection of atoms that they are therma-
lized with each other by some relatively weak
long-range forces yielding a collision rate y, «y.
It is also assumed that the time required for the
kinetic energy to thermalize with the outside en-
vironment is extremely long. This situation is
closely approximated for a cloud of ions stored
in an electromagnetic trap, for example. We
further assume that the internal structure of the
atom comprises a two-level system with ground-
state energy E, and excited-state energy E, such
that E, —E~ » k&T, where T is the ambient tem-
perature. Within the limits imposed by thermo-
dynamics'(Sec. IID) this allows us to neglect the
effects of background blackbody radiation; that is,
in the absence of laser irradiation, we assume
that the atoms are in the ground state. Finally,
we assume that the incident radiation is highly
monochromatic (spectral width «y) and that the
intensity is well below saturation.

In the following we will assume that the Hamil-
tonian for the system can be written

H =Ho+H',

where H, is the unperturbed Hamiltonian and H'
describes the interaction of the radiation with the
atom. We have

Ho= H~+ Hg+ H»
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FIG. 6. Pictorial representation of electronic [ground
(g) and excited (e)] energy states and translational en-
ergy states (denoted by integers) for an atom. When the
atom is very weakly bound or unbound the spacing be-
tween translational energy levels goes to zero. The
cooling can be described as anti-Stokes Baman scatter-
ing or optical pumping where the frequency (~~) of the
scattered photon is greater than the frequency (~L,) of
the "laser" photon.

where II, is the Hamiltonian for the two internal
states of the atom, H, is the Hamiltonian for the
translational degrees of freedom, and II„, is the
Hamiltonian of the radiation field. Assuming that
the various degrees of freedom are not coupled
in the absence of H', we write the total wave func-
tion as a direct product:

[g) =
~
ini) ( trans) [rad) .

In the absence of the radiation field, the internal
and translational energy levels are depicted in
Fig. 6. In the nonrelativistic limit, and assuming
low intensity, we make the usual approximation

a'= (e/mc)p A(R ),
where I'„and R„are the momentum and position
of the optically active electron, A is the vector
potential of the radiation field evaluated at the
position of the electron, and m is the electron
mass. %e have neglected the A' term in the Ham-
iltonian. "

For the cooling problem, we are primarily in-
terested in a scattering process that changes the
translational and radiation states but leaves the
internal atomic state unchanged. In particular,
we can formulate the problem by asking for the
cross section for scattering a photon of wave vec-
tor k and polarization & where the translational
energy has changed from E,(trans) to E&(trans)
and where the scattered photon has wave vector
k, and polarization i, . The differential cross sec-
tion for this process can be obtained as a par-
ticular result from the Kramers-Heisenberg
formula, which can be derived from time-depen-
dent perturbation theory. " Specifically, the dif-
ferential scattering cross section for scattering
from initial state L to final state f can be written

«g y ~ ~, . ~, '' ~ (f~~, Pgexp(-ik, ~ 8„)Ij)(j~C P„exp(ik Rg)[l&

&& & (e —&u, —[E&(trans) —E,(trans) ]/h), (19)

where dQ is the differential element of solid angle
into which the photons are scattered, & is the in-
cident photon frequency (~k~ =&a/c), N&u; =he,
+E~(trans) -E,(trans), r, is the classical electron
radius e'/mc', subscript s denotes the two possible
directions of the polarization of the scattered
photon, j denotes the intermediate state, and
where the wave functions now describe only the
electronic and translational degrees of freedom

~ j) =
~
int( j)) ~

trans�

(j)) .
The 6 function in Eq. (19) ensures conservation

of energy for the scattering process; that is,
k(&u, —~) = E, (trans) —E~(trans). The operator in
the matrix elements of Eq. (19) is proportional to
II'. From this equation we see qualitatively that
the process is described as the absorption of a
photon which promotes the atom to a distribution
of possible intermediate (virtual) states fj) (where

I

energy need not be conserved) followed by spon-
tarieous reemission. The denominator indicates
that a resonance is involved in the absorption.
This is the main cause for the cooling, since a
resonance can occur when the kinetic energy of the
atom changes, that is, when &u= &@,+ [E;(trans)
-E,(trans)]/S. Equation (19) can, of course, also
describe ordinary Baman and Hayleigh scatter-
ing.

To evaluate the matrix elements in Eq. (19), it
is useful to express the electron position and mo-
mentum as functions of the atomic center-of-mass
position and momentum x and P, the position of
the electron relative to the atomic core r, and the
velocity of the electron relative to the atomic core
p/m„(m„ in this expression is the electron re-
duced mass given by m(1+m/M, ) ', where M, is
the mass of the core. In the approximation that
nz «M, we have:
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R„=x+r,
P =—P+p

M

(20a)

(20b)

where M =M, + m.
Before applying Eq. (19), we make the qualitative
observation that the cooling process can be repre-
sented as in Fig. 6, where we have illustrated a
process involving specific initial, intermediate,
and final states. In general we must, of course,
sum over all possible intermediate states, aver-
age over the initial-state distribution, and sum
over all final states to get the net result. We see,
however, that the cooling process can be de-
scribed as spontaneous anti-Stokes Raman scat-
tering or as a type of optical pumping as described
in Sec. II.

IV. LASER COOLING OF FREE ATOMS

A. Matrix elements

For a free atom we have

p2
Hq=

and the spatial eigenfunctions are

ltrans) =C„exp(iK x) —= IK&,

where C„ is a normalization constant and

«IPIK& =@K, &Kloof, IK& =(«)'/2M,

&K IK& =0(K, K),
where 5 denotes the Kronecker 6.

Using Eqs. (20), the matrix elements in Eq. (19)
take the form:

[e P, exp(ik x)] = 0 (Coulomb gauge) .

Therefore,

(K'lC —Pexp(ik x)IK) =(m/M)PpK e5(K+k, K'),

(22a)

(K'Iexp(ik x)IK) =5(K+ k, K'),

(elexp(ik r)lg) =ik (r),

(el' ~ pexp(ik r)lg& =im~, e (r&,

(22b)

(22c)

(22d)

where we have made the usual dipole approxima-
tion (1/Ikl » atomic dimensions) and have defined
(r) =(elrlg&. The ratio of the first term to the
second term in Eq. (21) can be written:

where e and g denote the internal atomic excited
and ground states, respectively.

Qualitatively, the first term in Eq. (21) repre-
sents a transition of the center -of -mass motion
which is caused by a field component resulting
from the laser field "modulated" by the internal
electronic oscillation. The second term repre-
sents an electronic transition which is caused by
a field component of the laser field which has been
Doppler shifted by the motion. For both terms,
however, a simultaneous change in electronic and
kinetic energy state has occurred.

We have

&jle P., exp(ik a„)ll&

= K' c ~ —P expik x K e expik r gM

+(K'lexp(ik x)IK&(el' pexp(ik r)lg&, (21)

k(K ~)k (r& v

M(o,e (r) c
'

In the nonrelativistic approximation used here,
the first term is therefore negligible and Eq. (19&

becomes:

«, Iexp(-ik. x)IK &&K;lexp(~k x)IKp& ~(„(@/2M)(K. K.))
d(gp, dA, (gp ', td0 —co+ (Ii/2M)(K,' —K p) —~iy

or equivalently:

( )I I ( &I'~(K'+k" K, +k)~(~-~, —(@/2M)(K,'-K2))
d~sdfl s ~ [&u, —&o+ (h/2M)(k'+ 2k K,)]'+-,'y' (23)

where C=(r,m&ujh)'. The 5 functions in this
equation express conservation of momentum and
energy in the scattering process. We set K&

=K, +k —k, . After some manipulation, which is
outlined in Ref. 23, Eq. (23) can be put in the form

(us~
C&. (~./~)l~. (r&l'l~ &r&l'»(~. -~,)

[(o, —(u+ (h/2M)(k'+ 2k K,)]'+4y'
(23a)
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where N is an angular factor of order unity which
depends on the angles between k, k„and K, . An
exact expression for N is given in Ref. 23. Ne-
glecting terms of order R/k&u„P' and higher, we
have

N= 1+P, cos 8», (23b)

where 8„ is the angle between K, and k, and P,
=IIt, /Me. cu, is the frequency of the scattered
photon" and, neglecting the same order of terms
as above, is given approximately by

8. Cross sections

The total cross section for scattering of the
laser light by an atom in the translational state
lK,&, obtained by integrating the differential cross
section obtained from Eq. (23a) over all angles
of the scattered photon, is (neglecting terms of
order R/h&u„P', and (&u —+,)/&oo)

~, ——a —(2R/k)(1 —cos8, ) P,—~(cos8, —cos8„),
(23c)

where 8, is the angle between k and k, and 8, is
the angle between k and K, .

do, &or = dO d(us

c~vl~ &r&l'l&r&l'

(~.b, —~)'+-'r'
where v,b, is given by Eq. (2a) (neglecting the P'
term). Since y is equal to 4e'l(r) l'&ug(3@c'), then

o~ =6v&'l~ &~& I'(lr)'/[(~. b, —~)'+ (2r)'j, (24)

ln(k)& = ln(k„), n(-k„), n(k„),

n(-k, ), n(k, ), n(-k, )&

where the occupation numbers are the same and
lk,. l

= k. Equation (23) then becomes

where &f'& is the unit vector corresponding to
(r&. If the orientation of the atom with respect
to the polarization vector e is random, the aver-
age value of lC &f'& l' is 3, and we arrive at Eq.
(4). However, in a particular experimental situa-
tion, the orientation of &f'& and 0 may be fixed,
in which case this averaging should not be per-
formed.

We will assume as in Sec. II that we have six
laser beams of equal intensity directed along the
m, +y, +z directions. To avoid the effects of the
induced dipole forces we must make the same ap-
proximations as in the classical treatment. In
this case the initial wave function describing the
radiation field becomes:

. &r&l'5(Kf+k. , Ki+k.)«~ —~. —(@'~)(&f'-&l))
(25)

where the sum over m represents the sum over
the directions of the six laser beams.

C. Cooling rates and limits

For each scattering event, the average change
in the kinetic energy of an atom initially in the
state lK,& is the negative of the average change
in energy of the scattered photon and'is equal to
[with c, given by Eq. (24)]

dn, e((u —(u, )
S

, =2&+@k v,

in agreement with Eq. (3). Again, smaller terms
of order p2&@&go, p&R, and higher have been ne-
glected. This same result was obtained in Sec. II
by averaging over all possible directions of the
scattered photon. The net cooling rate is given by

where I is the intensity of each laser beam, P,
is the probability for an atom to be in the initial
state lK,&, and do, f/dA is given by Eq. (25).
With the help of Eq. (26), we can write

dt 2k m, /

h K, k p,

where

(1/y')G„, = [~,+ (8/2M) (0'„+2k ~ K, ) —co ——,'iy] '

and y' = —', (1 —i)y. If we assume that the Doppler
width is smaller than the natural width
(h k K, /M «y) and write &o = &u, +R/h ——,'y+ a&a

we can write when Neo«y
I

G (=1+6(u/y' —(Sk K, )/y'M.
Es —E

+l(Ef -El)
k(g)

(2V)

Assuming P, is isotropic, the cooling rate is
given by Eq. (10) (maximum cooling for b, &@

= 0)
and the corresponding limit by Eq. (11). Simi-
larly if the Doppler width is not negligible com-
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pared to the natural width, we obtain Eq. (7), if
P, is given by a Maxwell-Boltzmann distribution.
Consequently, the limits of Fig. 3 are also ob-
tained. Thus the fully quantum-mechanical treat-
ment is not necessary to describe the cooling for
the case of free atoms. We shall see, however,
that it is necessary for an accurate description
of bound atoms.

V. LASER COOLING OF BOUND ATOMS

A. Matrix elements

To study the cooling process when the atoms
are bound we will assume for simplicity that the
atoms are harmonically bound in three dimensions
as discussed in Sec. D. This case may not be
realized in practical systems, but it may be a
close approximation; moreover, it illustrates the
important features of the problem. Thus we have

2

H, = + —,'M(Q,'x'+Q„'y'+Q2z') .

The solution for the eigenstates of a harmonic
oscillator appears in many texts; using the opera-
tor formalism we have

H, = g RQ, (N, +-,'), N, =ata, ,
5 =X2y2g

where a& and a& are the lowering and raising op-
erators for the states satisfying [a;, a~t] =i),&. The
position and momentum operators are given by

when

[A, [A,B]]= (B, [A,B]]= 0,
we have

exp(ikx) = exp[ikx, (at +a)]
= exp[- —,

' (kx,)']exp(ikx~t)

x exp(ikx ~) .

Since

a ln& = [n!/(n - m)!]'~'ln -
&mm (n

0 m&n

then

exp(ikx2a) ln)

=~' (,.".)'--
Thus the matr ix elements can be wr itten

&n'lexp(zk x)ln)

= &n„' l exp(ik„x) ln„)&n,
'

l exp(ik„y ln„)

x(n,'lexp(ik, z)ln, & .
Therefore, in general, we are interested in ma-
trix elements of the type (n'lexp(ikx)ln), where
we have dropped the subscripts.

These matrix elements can be straightforwardly
evaluated from the explicit form of the wave func-
tions given in Eq. (29) or by the following operator
method. Since

A+8 A B - fA~Bj/g

x =x,(a„+a,'), P„=ixPSQ„(af -a„).
x,=- (k/2MQ, )",

and similarly for Y and s. We have 4 = 4„4'„0„
where in the above representation

(28)
&n'

l exp(ikx) ln)

= exp [-—,
' (kx,) ']

x (n'
l exp(ikx, at) exp(ikx, a) ln) .

e, =ln;&

Q) g ~ —S- 'Pl-—

(n, ln, ) =~„,.„,.~,,
e = ln, ) ln, ) ln, &

Operating to the right with exp(ikx, a) and to the
left with exp(ikx~ ) and using orthogonality, we
obtain

atln;& = (n;+1)'~2ln&-+ 1& i&j =x, y, z

and in the Schrodinger representation":

ln„& = (2~n, !v'~') ' ' exp( —MQ„x'/2h)

x H„„[(MQ„/!2)'~2x], (29)

where H„ is the Hermite polynomial of order n„.
From Eqs. (19) and (20) we will be interested

in matrix elements of the form

&n'le (m/M) P exp(ik x) ln)&el exp(ik r) lg&

+&n'lexp(ik'x) ln&&el' ' p exp(ik' r) Ig) (20)

and therefore we are interested in harmonic oscil-
lator matrix elements of the form

&n'
l exp(ikx) ln&

= exp [-—,
' (kx,)'] (n!n'!)'~'(i&,) "

n&

( 1)m(k )2m

, m! (m+ an)! (n( —m)!

where bn = ln' nl and n, is the le—sser of n and
n'. From the explicit form of the generalized
Laguerre polynomial

n

~:(~)= g (-)-("" ),
we have
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(n'
I exp(i'm) in&

= exp[- —', (Ax )'] (n, !/(n, + bn)! ]'~'

x (ill, ) "L„,"[(kx,)'] . (31)

of the operator:

A. „=-exp(-i k, ~ x)[~, &r)

+(k, &r&i, ~ P)/(Mv, ). (32)

In the following we will see that the cooling prob-
lem for bound absorbers shares many similarities
with the Mossbauer effect; therefore, some of the
same mathematics"'" can be employed. In the
study of the Mossbauer effect, one typically looks
at the absorption and emission processes sepa-
rately; for the cooling problem we recall that we
are primarily interested in a scattering process.
Nevertheless, it will be useful to look at the ab-
sorption and emission processes separately in
the cooling problem as well. With the help of
Eqs. (22c) and (22d), Eq. (30) reduces to

k &r)im ~& n'iexp(i kx)(C ~ (r& — e P)in)
M+0

and this expression can be substituted into Eq.
(19) to obtain the cross section.

B. Spontaneous emission

Strictly speaking, we must sum over all amplitude
contributions of the intermediate states n~ as in
Eq. (19); however, if only one intermediate state
n, is excited, which is a good approximation when

y«0;, then the probability for reemission is
proportional to I&n&IA„in, &i'.

It is instructive to first look at the average en-
ergy change of the translational energy states in
the emission process. We have

JdnZZ. ,(Z, —Z, ) i(n, i a,„in,&
i'

J'dna I&n~iA, pin, &i'

where we can write

Ef -E, n& A,p n~

A p le le Hg A p' sj

=(n, Ia,', [a„w„]In, &.

With the approximation of low laser intensity
used here, the scattered photon results from
spontaneous emission. Therefore, if we look at
the emission process separately, we are in-
terested in amplitudes which are matrix elements

Using the expression

[e„exp(- ik, ~ x)]

= [exp(- ik, ~ x)/2M] (k'k2 —25 k, ~ P)
-we have

(33)

&n;i,p[H„A, ]In,& =R(e, &r&)'+Ri '
I &(i, ~ P)&~ —,e, ~ &r)k, ~ &r&&(e, ~ P)(k ~ P)&.

4 M~, ) ', ' -ill'+,

+,(k. (r))'(E, I' Q n~ e, )),%-&y3! pZ

(34)

where, for an operator J, &Ey —E)& =8, (36)

we have

Q I&n, IA „In,.& I',
f

(35)

&~&, -=&., I~In,&,

The third term in Eq. (34) is approximately
equal to

l&r& I'(«, /+~. ) =@~4'l&r& I',
and the fourth term is approximately equal to
I(r) I'B(Q/u, )'. The fourth term is clearly negli-
gible with respect to the first, and the third term
is negligible when E~«S(d„which is reasonable
and is assumed here.

With the above approximations and noting that

which is independent of the intermediate state.
This is a familiar result from the studies of the
Mossbauer effect and shows that a fundamental
limit to the cooling process is caused by the re-
coil heating upon reemission. It also agrees with
Eq. (2b) (averaged over emission angles) for the
free atom case (neglecting P' terms). At this point
we note that

[(k, ( &)/M .]'&(. P)') ™
I& )I')3',

and therefore we will neglect the second term in
Eqs. (32) and (35) in what follows.

We can arrive at a better understanding of the
emission spectrum by asking for the second mo-
ment of translational energy change in the emis-
sion process. This is interesting because it
gives the spread of photon energies in the emis-
sion process. We have



1534 D. J. WINKLAND AND WAYNE M. ITANO 20

&(~E)'& =&(E, -E, -«, -E,&)'&

=&(Z, -E,)'& -It',
where we have used Eq. (36). We have

&(Ey -Ey)'& = ding (Ey —E.)'l&n&lexp(-ik, ' x)ln&&l'
I

dfIg I&n~lexp(-ik, ' x)ln~&l'
s,f &of

Writing

(Ep —Ep)'l&nqlexp(-ik ' x)In;&I'

=
I&nz I [H„exp(- ik, ~ x)] In;) I

',
using Eqs. (28) and (33), and assuming the atoms
to be unpolarized, we obtain

&(~E)'& =-:ft«, & . (37)

If the motion is characterized by the Mamvell-
Boltzmann distribution, this is just the expression

for broadening due to the Doppler effect. Below
we will show that in the classical limit the profile
of the emission spectrum observed in a particular
direction is a shifted Gaussian. In this case, for
the recoil energy R approximately equal to the
atom kinetic energy, the spectrum is shown in
Fig. 7. We note that Eqs. (36) and (37) are also
valid for the case of the free atom (neglecting
terms of order &8'), since Eq. (33) holds for both
cases; however, the spectrum is continuous and
is shown by the dotted line in Fig. V.

C. Absorption cross section

For the case of bound atoms, Eq. (19) becomes

"rr,-,
&

m ro.
~

&-&~,~, &-„&~
~ g &~ l»v&-&%, 'x&I&i&&~~I»v&&k'%&l" &

q
~ —a) &&8&

(o)

%e can obtain the absorption cross section by
summing over the final states and integrating over
possible scattered photon states. Following the
procedure used to obtain Eq. (24), we have

/
/

/
/

r

o , =6»x'le

&n, lexp(-ik x)ln, &-,'y
&&&o

—«&+ (E& —E&)/R —giP
(39)
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FIG. 7. Atomic spectra in classical limit (hQ„«k~7)
when R ~ Icoa. Part (a) shows the absorption cross sec-
tion for a laser directed 'along the x axis for the case
when y «Q„(giving the discrete lines) and when 0„—0 (dashed curve) which is also the case for free atom.
Part (b) shows the emission spectrum observed along
the x direction for the same two cases.

o, =a, l&n, +mlexp(zk x)In,&I' (40)

where we have dropped the x subscripts in the
wave functions.

It is useful to examine Eq. (40) when R «AT
and where n, is approximately equal to the mean
occupation number, i.e.,

Z. Strong binding

Equation (39) clearly shows the sideband struc-
ture in the absorption spectrum when 0; »y. For
this case, essentially only one term contributes
to the sum over j when the resonance condition
[&u, —&d+ (E; —E,)/ff= 0] is met. For simplicity,
assume that the atoms are unpolarized and that
the laser radiation is incident along the x axis,
so that e=~o+mQ„(m =0, +I,+2, . . .) that is, we
are tuned to the mth sideband. Then Eq. (39) be-
comes
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jm ~hQ„S k(u,Q„((x'))' '/c

= aQ„k((x2) )~/2

and so

Iml &I&'&" (» ) (» )",
(41)

If n* is large (kQ„/Z, «1), we can approximate
the Laguerre polynomial in the matrix element by
its asymptotic form. " Dropping the * super-
script, we have

exp[- —,
' (kx,)'] (kx,)!"!L!

!((Ax,)')

I (n+ I)~!.! [kx.(4n —2lm I+ 2)"]
(n& —~ [m [ + z )! !/'(n —[m f )!

Since n» ~m (, then

(n —(m[)!=n! [n(n —1)(n —2). . . (n —[m)+ 1)]

and

so that

[+ &)!ml/2 !m!/2

n, =n+=(n) =(a, )/(kQ, ) --,'.
For the case of interest, the laser frequency must
lie somewhere within the Doppler profile of the
atomic resonance (i.e., ~m ~kQ„K PA&so). In this
case, we can show that ~m~ «n*. We have

a(m)= Q P,a, , (42)

where a, is given by Eq. (40) and where P, is the
probability of the atom initially being in the state

In this more general case we can arrive at
an expression for the cross section by assuming
that P, is given by a thermal distribution. That
ls~

P, = [1—exp(- kQ„/kzT)] exp(- n, @Q„/kzT), &

so that when' «0

p[--'(k, )'](k .) "L. !((kx.)')

n !m!/2g! !(2n&/2kx )

Therefore

(n* —~m ( [exp(zk ~ x) [n*)

= (i) ~ !J! I(2n*'/'(kx ))

and since

nmx', = -,'(x') =-,' x,',
where x, is the amplitude of the classical oscil-
latory motion, then EII. (40) can be written

a, =a,J(!(kx,),
which is equivalent to the cross section used in
Eq. (14).

In general, we must average the absorption
cross section over a distribution of initial state
values. This averaged cross section is then given
by:

OO

rr(m&=rr, & —rrx&r
+

* P rrrr&r +' *) l(rr, +rwlr" Irr&I'
-m 8

~a ( I 00

where we have used Eq. (31). We obtain a similar
result for m ~ 0. These sums can be evaluated
with the generating function"

n!
(

'

)
L„"(xL„"(y)z"

x+y ~=(1-z) 'exp -z 1-z
&-.'~ (""*'

)
If we let

z =exp( —hQ„/kzT), x=y=(kx,), n= ~m~,

and noting thatI =I, then

a(m) =a, exp
2
„"—2(kx,)'nz AQ„

3

f1 1
I, 2 1 —exp(- AQ„/kzT)

xI &/2(kx, )'exp(- ,' SQ,/kzT )—1-exp(- AQ„/kzT)

Noting that

(x') = 2x', ((n) +-', ),
where (n) is the mean occupation number

@n„
(n) = g nP„= exp " —1

k~T

then
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o (m) =o,exp [-,'m (RQ, /ksT) —k'(x')]

xI [exp(AQ, /2k~T)2(kx, )'(n)] . (44)

Examination of Eq. (44) shows the skewing of the
cross section to high-energy values, i.e., rn &0.
This is plausible because, for example, in the
low-temperature limit (k~T (8) the atom more
easily gains energy rather than losing it in the
scattering process (W. hen T =0 it is impossible
for it to lose energy. )

A result similar to Eq. (44) is obtained when
one looks for the probability of emission at a
certain sideband frequency. From Sec. V B we
write a general expression for the probability
of emission of a photon of frequency e,+mO„,
which we call P(m). We have

P(m) = P i(n, —miexp(-ik, x)in, ) i'P, ,

x I [exp(kQ, /2ksT)2(kx, )'(n)] . (46)

This same result was derived by an alternative
method and is given by Eq. (3.66a) of Ref. 26.
Equation (45) clearly shows the skewing to low-
energy values.

In a high-resolution experiment with lasers used
to probe a bound atom, we might be particularly
interested in the cross section for absorption on
the unshifted carrier given by Eq. (44) for m = 0.
We have

o (m = 0) =o, exp(- k'(x'))

x I, [exp(kQ„/ksT)2(kx, )'(n)] .
A special case is when(n)-0, yielding the cross
section:

o (0- 0) = o, exp(- k'x', ) .
The exponential factor is known as the Debye-
Waller factor and is familiar in studies of x-ray
scattering and the Mossbauer effect. It shows the

where I'; is the probability of the atom being in
the translational energy level j when in the excited
state. P(m) is normalized to unity as can be
verified by summing over m. If we observe the
emitted light in the x direction, then k, ~ x- k~.
If I', is given by a Maxwell-Boltzmann distribu-
tion then we find

P(m) = exp[—2m(KQ„/koT) —k'(x')]

2. Weak binding

When the condition y«A„ is not satisfied, we
must return to the cross section given in Eq (42), .
where o, is given by Eqs. (38) or (39). Assuming
the atoms are thermalized and unpolarized, we
have:

o(m)
~„1+[(2/y)((u, —(o+mQ„)]' ' (47)

where o(m) is given by Eq. (44). In the classical
limit (hQ, «keT), we can use Eq. (46) and con-
vert the sum in Eq. (47) to an integral to obtain

o, ~ " exp[- (Q/coo)']

im &u, . 1+ [(2/y)(~,' —~+Q)]'

which is identical to Eq. (6). Thus we see that
the absorption cross section for a bound atom
approaches that of the free atom in the limit of
weak binding.

D. Cooling rate

The cooling rate can be derived from the dif-
ferential cross section by means of Eq. (27),
where dQ, z jdQ is given by Eq. (38). After some
simplification, and assuming the atoms are un-
polarized, we can write

suppression of the cross section due to zero-point
vibrations.

It is interesting to evaluate Eq. (44) in the clas-
sical limit, that is, when AQ„«kaT. In this case,
if we apply Eq. (16) we obtain

o(m) = (ooQ„/v w &uo) exp(- [(~ —&0)/~o]'),

where &u —e,'=mQ„It /-N Th. is expression is
analogous to the cross section used in Eq. (17),
but now shows the dependence on recoil. We note
that the envelope of the cross section for the
sidebands has a normal Doppler shape; however,
the center of gravity of this Doppler profile is
shifted to the frequency ~', = &o, +R/k. Similarly,
we can also find the expression for the emission
spectrum which then has the same form as Eq.
(46) except that +,'-u&," =or, —8/k. Thus, we ob-
tain a Doppler profile whose center of gravity is
shifted to the frequency ~, -A/5 as indicated in
Fig. 7.

(48)



20 LASER COOLING OF ATOMS

In the limit y «Q„, and assuming we are tuned
to resonance (v = &u, +mQ„}, then only one term
of the sum in Eq. (48) is important, and we ob-
tain

(49)

where a (m) is given by Eq. (42) or by Eq. (44)
when I', is given by a Maxwell-Boltzmann dis-
tribution. In the classical limit c(m) is given
by Eq. (46) and we obtain

d(Ei —E,) Iog,f ~ t
~

m

~~
~

~

~

0

~

D
R ~~~Q

Kw &Uo(dD

x exp[-(&u —ufo)'/A)2~], (50)

which is analogous to Eq. (17) but now includes
the effect due to recoil.

2. Peak binding

When the condition y «Q„ is not satisfied, we
must perform the sum in Eq. (48). In the clas-
sical limit hQ„«k~T we obtain

d(Eg —Ei) I
df AW7t (dodd D

" (2g+@Q) exp[-(Q'/uP~)]dQ
1+ [(2/r)(~l —~+Q)]'

which is identical to Eq. (7).

In this form we have separated out the effect due
to reemission (R term) and the effect due to ab-
sorption (E; E-, term}.

J. Strong binding

maximum cooling the incident radiation is tuned
to {d=~,-Q„, i.e., the lower sideband. In Eq.
(49) we have included the effect of only the re-
sonant sideband in arriving at a cooling rate.
However, to obtain the cooling limit, we will in-
clude the effect of both upper and lower sidebands
and the carrier. From Eq. (48) we therefore find
near the cooling limit:

(51)

which is independent of initial-state distribution
but assumes that the y and z degrees of freedom
are thermalized with the x degree of freedom and
therefore have the same distribution. We might
be tempted to apply Eq. (51) to the case of a single
isolated atom, but we note that if the laser is di-
rected along the x axis, then the y and z degrees
of freedom are heated without bound by the recoil
upon reemission. If the frequencies (Q,) are de-
generate then this argument applies regardless
of the direction of the laser since there are no
unique axes for the bound atom. If the frequen-
cies (Q,j are unequal, then Eq. (51) cannot hold
for a single laser directed along, say, the i
+j+ k direction, because the laser frequency
cannot simultaneously coincide with the first lower
sidebands for the three independent oscillations.
Each specific case is easily treated; for sim-
plicity, however, we will assume as above that
we have a collection of weakly thermalized atoms
such that the collision rate between atoms is much
larger than the optical transition rate (See .Sec.
VF). To find the minimum energy possible, we
set (dE/dt) =0 and obtain

E. Cooling limits

It is also interesting to estimate the limits to
the cooling processes; that is, what are the mini-
mum temperatures which can be achieved by the
technique? As explained in Sec. II, the limit is
obtained when the heating rate due to recoil equals
the cooling rate.

g. Strong binding

We first examine the case when Q„»y. We will
assume that substantial cooling has already taken
place, and therefore the spectrum of the atom
consists of the "carrier" at frequency u, and side-
bands at &u, +Q„; that is, k(x'}' '«1. Note also
that for this model to work, we must require R
«SQ„or else the reemission spectrum does not
satisfy the simple picture of a "carrier" and two
adjacent sidebands; however, this seems to be a
most interesting case in the optical domain. The
case when R» AQ„could be easily treated. For

Note that this expression differs from that of
Ref. V. The difference appears to be due to the
neglect of the heating effect due to recoil in the
direction perpendicular to the laser beam in Ref.
V. That is, if the unshifted emission in the di-
rection perpendicular to the laser beam is con-
sidered (the source of the "1+1" factor), then
the heating due to recoil in this direction must
also be considered.

The minimum energy is of course limited to
the zero-point energy ~kQ„; however, this can
presumably be accurately determined if Q„ is
known, and therefore the uncertainty in energy
will be on the order of {n,)hQ„. In this limit, if
the atoms have a Maxwell-Boltzmann distribu-
tion, then the temperature of the atoms is given
by Eq. (43). If Q, /2w =12.5 MHz and r/Q, =0.1,
then T =—10 4 K; however, the fractional un-
certainty in this minimum energy is about 3
X 10 '. In this simple case where the absorption
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spectrum consists of a strong carrier with weak
adjacent sidebands (k(x')'~'« I), we remark that
if the incident radiation were tuned to cop we would
see in the scattered light a strong component at
frequency +„aweak Stokes line at (ur, —0„), and
a weak anti-Stokes line at (&u, +0,). However,
since the incident radiation is tuned to (dp

the scattered light will contain a component at this
frequency, but a much stronger component at fre-
quency (dp. Because of this we might regard the
cooling process as anti-Stokes or inverse-Stokes
spontaneous resonance Raman scattering.

2. Weak binding

When the condition y«Q„ is not satisfied, there
are two interesting cases to discuss. For both

cases we will assume that y, is much larger than

the transition rate or that we irradiate the atoms
with three mutually perpendicular laser beams.
(See Sec. VF.) In the first case we will assume
that substantial cooling has already taken place
so that the Doppler width is much less than the
natural width (which as before requires R «ky).
Maximum cooling will be obtained when + —+p
=-—,'y and we can expand the denominator in Eq.
(48) to obtain

"QI, (n, ~A(k)'(EA(k)
dt dt 2ti&u

+ [II„A(k)])/n, ),
where

A(k) = exp(ik ~ x)+ (I/ky') [exp(ik x), H,] .

After some simplification we obtain

dE Io0 (dt h(o I, ky

which does not depend on the distribution of initial
states and therefore holds for an isolated atom
if we use three mutually perpendicular laser
beams. Minimum kinetic energy is obtained when

dE/dt=0, andweobtainEq. (11)((Er„)~„=—,'hy). It
should be noted here that the total energy of a
harmonic oscillator is, on the average, equally
divided between the kinetic and potential energies.

The second case to discuss is when B»Sy.
In this limit we have shown that Eq. (7) applies
when I', is given by a Maxwell-Boltzmann dis-
tribution leading to the limits in Fig. 3.

F. Energy distribution for low thermalization rate

We are interested in the kinetic energy distribu-
tion when we use a single laser beam to cool a

collection of bound atoms. For simplicity we
discuss a particular example; other cases could
be similarly treated.

Suppose we have a single laser beam incident
along the x axis and consider the limit y»$Qq].
If we ask for the cooling limit, then we want
&u —u, =- 2y when R «ky. For this case the equa-
tion analogous to Eq. (10) is

where y, = Iv,/(2—K&) and where we have included
the transfer of energy between degrees of free-
dom (via the "collision" rate y, ) and have assumed
for simplicity that the recoil upon reemission is
distributed equally over the three degrees of free-
dom. Note, however, that this simple assumption
is violated even for unpolarized atoms. For the y
and z directions we have

In steady state, dE;/dt = 0, and we have E„=~by,
which is identical to Eq. (11), and E, =E, = —,'ky
+ 32By, /y, . Hence—if y, «y„ the other degrees of
freedom are substantially heated by recoil; for a
single isolated atom they are heated without
bound.

VI. SUMMARY

We have discussed laser cooling of atoms from
the standpoint of anti-Stokes spontaneous Raman
scattering. To isolate the essential features of
the problem we have made several simplifying
assumptions. We have assumed that the internal
states of the atoms comprise a simple two-level
structure and that radiative transitions between
these two levels proceed via pure electric dipole
transitions. We assume that the plane-wave radia-
tion source (laser) has spectral width «y and
power much less than that required for saturation.
We also assume that the power is small enough
to avoid the effects of the induced dipole force';
this is particularly important for the free-atom
case where it is desirable to have several laser
beams in order to cool in all directions (Sec.
II BI). Finally, we assume that the laser power
is low enough to avoid the effects of recoil heating
in directions perpendicular to the laser beam when
only one beam is used. The treatment has been
nonrelativistic; hence we have neglected terms of
order P'k&u, and PR in the energy.

The cooling rates for free atoms are given in
Eq. (5) (one laser beam in x direction), Eq. (7)
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(one laser beam in x direction, atoms therma-
lized), and Eq. (8) [approximation of Eq. (7) when

y, R/h «&oD]. These formulas are justified in Sec.
IV. For bound atoms, the most general expres-
sion for the cooling rate (for one laser beam) is
given in Eq. (48). Cooling rates for various ap-
proximations are given in Eq. (49) (y«Q„one
laser beam directed along the x axis and tuned to
&u =co,+mQ„, where m is an integer), Eq. (50)
[Eq. (49) in classical limit kQ„«AT], and Eq.
(V) (classical limit when y»Q„, one laser beam
directed along the x axis).

As an example, for M =100 amu, vp=5&&10"
Hz(A = 600 nm), y = 2m x 10 MHz, I= 50 mW/cm',
Gp 5 7 x 10 'p cm', the cooling rate for "free"
or weakly bound atoms (Q, «y) is given by Eq.
(8) when the atoms are thermalized. This gives
a rate dE/dt=- 1.4 eV/sec. We have assumed
that the laser is tuned to &u —~, = —v~/W2; this
is the condition for maximum cooling when y

This result is independent of temperature
as long as y «u&~. (Note, however, that the laser
must be swept closer to the line center as the
atoms cool to satisfy the condition &o —~a= —&u~/

v 2.) Equation (8) will also be invalid when u&D

~ 10y in this example due to saturation of the op-

tical transition.
When the atom is tightly bound (Q„»y) we may

apply Eq. (50) in the classical limit (hQ, «AT).
We note that for the same approximate detuning
(i.e., assuming the laser is tuned to the sideband
which is closest to satisfying the condition mkQ„
= —&uo/v 2), the cross section is equal to the cross
section in Eq. (8) times 2Q„/(vy), which results
from the compression of the full Doppler profile
into discrete sidebands. The cooling rate is in-
creased by the same factor.

It is particularly interesting to examine the cool-
ing limits for various cases. These are sum-
marized in Table I. In each case the mechanism
which limits the cooling is the recoil effect; how-
ever, this may not be apparent from the expres-
sions. The limits given in Table I assume that
there are no other heating mechanisms present;
in particular, we have avoided the thermodynamic
limits caused by blackbody radiation (Sec. II D)
by assuming that blackbody radiation from the
surroundings is absent.

For our example atom above, since R/h «y,
the first limit for both free and bound atoms ap-
plies. (The assumption is that Q «2mx 10 MHz,
which is usually the case for electromagnetically

TABLE I. Cooling limits for various limiting cases.

Case Limit Assumptions

Free
atoms

Bound
atoms

kgT~R (Fig. 3)

« „&..=4'

R/h «y. Six laser beams in +x,
+y, and +z directions, tuned to
~ = ~0+R/k —y/2. (Atoms need
not be thermalized via collisions. )
y/27t is the full width at half-max-
imum for the optical transition.

R/5 -y. Ensemble of atoms assumed
to be thermalized with Maxwell-
Boltz mann d istr ibution.

it/K, Q «V. Laser(s) tuned to
(u= cuo+R/8-'y/2. If atoms are
thermalized only one laser
beam need be present. If
atoms are not thermalized we
must have 3 mutually perpendicular
laser beams or one laser beam

A ~ A

along i+j+k direction when
Q„&Q &Qg &Q„.

Same as for free atom. (p»Q„)

y, R/~ «Q„. One laser beam
directed along x axis and
tuned to ~0 —Q„, atoms thermalized.
Same limit for noncolliding atoms if
Q„=Q~=Qg and 3 mutually perpendicular
beams are used.
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confined ions, for example. ) We have (Ex„) „
= 10 ' eV or, if the atoms are thermalized, T,„
= 2.4x 10 ~ K. If the atomic transition was only
very weakly allowed (given by the condition y .

8/k), then the limits given in Fig. 3 apply.
This would imply T ~ 2.7& 10 ' K for M = 100 amu,
v, = 5&& 10"Hz. However, for this limit to apply
we must have y/2m &6 kHz. This condition could
be realized on an intercombination line, for ex-
ample. Finally, if the atom was tightly bound, we
could realize the last limit in Table I. In this
case the minimum energy is given by the zero-
point energy, but as discussed in Sec. V E, the
uncertainty in this energy could be quite small.
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