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Viscoelasticity Breaks the Symmetry of Impacting Jets
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A jet of a Newtonian liquid impacting on a wall at right angle spreads as a thin liquid sheet which
preserves the radial symmetry of the jet. We report that for a viscoelastic jet (solution of polyethylene glycol
in water) this symmetry can break; close to the wall, the jet cross section becomes faceted and radial steady
liquid films (wings) form, which connect the cross-section vertices to the sheet. The number of wings
increases with increasing the viscoelastic relaxation time of the solution, but also with increasing jet
velocity and decreasing distance from the jet nozzle to the wall. We propose a mechanism for this surprising
destabilization of the jet shape, which develops perpendicularly to the direction expected for a buckling
mechanism, and explain these dependencies. We also discuss the large-scale consequences of the jet
destabilization on the sheet spreading and fragmentation, which show through the faceting of hydraulic
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jumps and of suspended (Savart) sheets.
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Since Savart’s thorough study [1], the impact of a jet on a
solid surface has motivated many works to understand the
pressure and the shear on impact [2—4], the liquid deflection
into a wetting or suspended liquid sheet [1], and the circular
hydraulic jump [5,6], or receding sheetedge [7,8], that forms
downstream. These situations have direct applications for
cutting [9] and cleaning with high pressure jets, cooling by
jet impingement [10], and atomizing liquids [8,11,12].
However, very little attention has been paid to the important
case of viscoelastic liquids [13,14]. These liquids are
ubiquitous in nature (mucus, DNA, tree sap) and in human
activities (adhesives, drag reduction additives, paints, pro-
pellants). Contrarily to Newtonian liquids, they develop
anisotropic elastic stresses (normal stresses) in a flow, which
result in unusual steady phenomena (e.g., rod climbing, die
swell, and open siphon [15,16]), but also dynamic insta-
bilities and noninertial turbulence [15,17,18]. We study here
the impact of a viscoelastic jet and report a new phenomenon:
the steady symmetry breaking of the jet on impact, and its
consequences on the spreading and fragmentation of the
liquid sheet downstream.

Our experiment consists of a viscoelastic liquid jet
impacting perpendicularly on a smooth glass plate. The jet
is formed by extruding the liquid from a large (20 L)
pressurized tank, either through a long tranquilization cham-
ber (stainless steel tube) ended by a cone-shaped stainless steel
nozzle, or through a Pasteur pipette (essentially straight glass
nozzle). In both case a straight jet with radius a is obtained (no
significant contraction nor swell is observed). The mean flow
velocity u in the jet is set by adjusting the constant air pressure
in the tank with a pressure regulator and continuously
monitoring the tank weight (1 g precision scale AIP
System). The distance / from the nozzle exit to the plate is
varied with a calibrated microcontrolled linear stage. We used
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several liquids (see below), but for the systematic study we
focused on a solution of unbranched polymer in distilled water
(polyethylene glycol [PEO Sigma-Aldrich] with molecular
weight M = 4 x 10% g/mol ataconcentrationof 2 g/L). The
solution of an air pressure driven flow is chosen to limit the
mechanical degradation of the viscoelastic solution in a pump
prior to its impact. It imposes a cyclic process: the whole liquid
is extruded and collected downstream from the impact to be
poured back to the tank for a new cycle. In spite of the pump-
free system, the solution slowly evolves from cycle to cycle
due to the large shear stress on impact. At each cycle a sample
is collected to measure the rheological properties of the
solution [19]. The viscosity is essentially independent from
the aging of the solution and, in the model below, we will
consider an effective shear viscosity # =5 mPas that is
relevant for the typical shear rate u/a ~ 103-10* s=! in the
experiments. The relaxation time A of the solution is measured
from the constant time scale of the thinning dynamics of the
filament that is left behind a detaching drop [20]. It is found to
regularly decrease (from 17.6 to 7.3 ms) with the aging of
the solution. The solution has a density p = 995 kg/m?
(measured with a calibrated flask) and a surface tension
y =60 mN/m (measured by fitting the static shape of a
pendant drop).

Depending on the impact conditions (velocity u# and
plate-to-nozzle distance /), the viscoelastic properties of the
liquid strongly affects the jet deflection and spreading on
the plate, as illustrated in Fig. 1. Atlow u and large /, the jet
behaves as a Newtonian jet [Fig. 1(b)]. The radial sym-
metry of the jet is preserved, both at the impact and in the
spreading, and the deflection of the liquid is confined to a
small region with size comparable to the jet radius. At large
u 2 1 m/sand short / < 1 cm, the impact is also steady but
its structure changes: The radial symmetry breaks [Fig. 1(a)].
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FIG. 1 (color online). Impact of a viscoelastic jet (PEO 4 x
10° g¢/mol at 2 g/L in water, a =0.71 mm, mean velocity
u = 8.46 m/s) extruded from a Pasteur pipette onto a glass
plate. (a),(c),(d) At small plate-to-nozzle distance I, steady
triangular radial liquid films (wings) connect the jet to the sheet
that spreads on the plate. (a) Side view showing three of the five
wings (the jet image at the bottom is a reflection on the sheet).
(c),(d) Bottom view through the plate. Close to the plate, the jet
has a cusped pentagonal cross section (appearing in black). The
five equally spaced wings initiate at the cross-section vertices and
generate a wake downstream on the sheet. (b) For larger / no
wing forms.

Close to the plate, planar triangular radial liquid films, which
we call wings, form around the jet. They attach both to the jet
and to the spreading liquid sheet. A bottom view through
the transparent impact plate [Figs. 1(c) and 1(d)] reveals
important features of the impact structure in the latter case.
The wings are equally spaced around the jet (from 3 to 34
wings, the maximum we could observe). Close to the plate,
the jet cross section actually has a cusped polygonal shape,
with the wings attaching to the polygon vertices. Between
two consecutive wings a bright region is often observed. We
speculate that it is a manifestation of the birefringence due to
anisotropy of the polymers in the flow since no curvature of
the interface is resolved at that place. A bright region is also
observed immediately downstream of the wings, where a
wake forms in the sheet that has a long-range influence on
the sheet (see below). For a given viscoelastic liquid, the
number of wings n increases with increasing velocity u and
decreasing plate-to-nozzle distance /, as shown in Fig. 2.
Similarly, the size s of the wings [see Fig. 1(a)] increases
with increasing u and decreasing /, except at short distances
when the wings are confined between the nozzle and the
plate and their size is set by [ (see Fig. 2 and the
Supplemental Material A [22]).

This destabilization of the jet (and its dependency on u
and /) is a robust phenomenon. It strongly depends on the
viscoelasticity of the liquid but only weakly on the other
parameters we could modify. First, the symmetry breaking
is only observed for solutions of polymers with high
molecular weights (PEO with M =1 to 8 x 10° g/mol
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FIG. 2 (color online). Typical evolution of the number n and
size s of the wings versus, (a) the mean jet velocity
[a=138 mm, [ =3.75 mm, and A = 9.6 ms. The red solid
line is the prediction for n from Eq. (2)], and (b) the plate-
to-nozzle distance [ (¢ =138 mm, u =3.07 m/s, and
A= 8.2 ms).

and polyacrylamide 18 x 10° g/mol) at concentrations
(~1 g/L)  where significant  relaxations  times
(A~10—100 ms) are measured. As a solution ages its
elastic properties decay (4 decreases) and we observed that
the velocities and distances required to form wings respec-
tively increase and decrease. By contrast, no symmetry
breaking could be observed for any Newtonian liquid we
tried (water-glycerol solutions with viscosity up to 80 mPa s
and velocity # > 10 m/s), nor for saturated water solutions
of commercial surfactants. This suggests that the instability
is neither a viscous buckling nor a Marangoni effect that
would be exacerbated by elastic stresses, but rather relies on
a purely viscoelastic mechanism. Second, for a given
viscoelastic solution, the destabilization is observed in
many different impact situations with similar dependencies
on u and [ (see the Supplemental Material B [22]): facing
circular jets (i.e., coaxial jets with same size and opposite
velocities), a circular jet impacting obliquely on a plate, and
the perpendicular impact of an elongated rectangular jet
[i.e., a liquid sheet with a large width-to-thickness ratio; see
Figs. 3(a) and 3(b)]. The first case shows that the no-slip
condition on the plate is not mandatory to the destabiliza-
tion, and the third case indicates that the radial radial
symmetry is also not necessary.

In light of the crucial observations reported above, we
now propose a mechanism for the jet destabilization. First,
the absence of wings for large [/ shows that the symmetry
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FIG. 3 (color online). (a),(b) Angle and perpendicular view of
the transverse destabilization of a liquid sheet (elongated jet)
impacting on a plate. The dashed line indicates the plate surface.
(c) Schematics of the destabilization mechanism. The liquid is
sheared at the nozzle wall and develops an elastic tension 6y
along the streamlines. On impact, where the air-liquid interface
curves (R, > 0) due to the deflection by the plate, 64, promotes
the destabilization of the interface in the perpendicular direction
e,. By contrast, the velocity u; at the jet surface (set by the viscous
relaxation of the shear, as the liquid travels from the nozzle to the
plate) stabilizes the interface due to an inertial effect.

breaking is not an intrinsic destabilization of the jet (i.e.,
independent from impact). Second, the azimuthal destabi-
lization is transverse to the axial folding (viscous buckling
[23,24]) observed for viscous jet impacts [25], and, as
already mentioned, we could not observe symmetry break-
ing with viscous Newtonian liquids. This suggests that
the symmetry breaking is intrinsically viscoelastic, as the
purely elastic instability reported for Couette flows. The
general destabilizing mechanism is the same as that
identified by [16—18]: the presence of a tension (hoop
stress) tangent to curved streamlines. In the present impact
configuration this tension develops when the liquid is
sheared in the nozzle, as suggested by the plate-to-nozzle
distance dependence of the destabilization. Close to the
plate, where the liquid streamlines are deflected, the
interface is curved with a radius R, [see Fig. 3(c)].
Since the destabilization is also observed for an impacting
liquid sheet [see Figs. 3(a) and 3(b)], we consider a
simplified base state geometry that is invariant along the
transverse direction e,. The (unstable) equilibrium along the
radial direction e, yields —pu?/R, = divé - e,, where u
stands for the liquid velocity at the interface [in » = Ry; see
Fig. 3(c)]. There is thus a radial gradient of the normal stress
d,0.. = (Ao — pu?)/R, thatis related to the normal stresses
difference Ao = 64y — o,,. The stability of a liquid interface
directly depends on the sign of this tension (“negative
pressure”) gradient, whether the latter results from inertial,
gravitational (e.g., Rayleigh-Taylor [30]) or viscous effects
(e.g., Saffman-Taylor [31]). For a negative tension gradient
(0,0,, < 0) the interface is stable. Conversely, for a positive
gradient (0,0,, > 0) there is a positive feedback between the
interface deformation and the liquid flow beneath that
amplifies the initial deformation.

Following [32] we make an analogy with a Rayleigh-
Taylor instability with an effective gravity 0,c,,/p (see also
[33]). We consider a perturbation of the interface position
in the form R = Rye**t®R¥/u: j e a perturbation that is
advected by the steady velocity u e, and obtain

ZZAa—pu%

3
—yk’. 1
Ry k—7yk (1)

PO
As already noted, the interface is unstable (@ real) only if
Ao is positive, but also larger than the stabilizing centrip-
etal acceleration term puZ. In that case, the most unstable
wave number and growth rate are k2, = (Ao — pu?)/3yR,

and w2 = 0.38\/ (Ao — pu?)?/yp*R}, respectively. To

apply this formalism to our situation, we first relate the
normal stress to the shear at the nozzle inner wall, i.e.,
Ac ~nlyy? (assuming in agreement with [34] that the
solution behaves as an Olroyd-B liquid), where the shear
rate at the nozzle wall expresses as y, = 4u/a (assuming a
Poiseuille flow with uniform viscosity). Second, the veloc-
ity u, at the surface of the jet differs from the mean flow
velocity u and depends on the distance / to the nozzle, as
schematized in Fig. 3(c). Indeed, immediately at the nozzle
exit u; = 0 by continuity. At large distance, the velocity
profile in the jet cross section relaxes to a plug flow, which,
from Eq. (1), stabilizes the interface (the elastic stresses
relaxation is subdominant here since //ud < 1). Since we
observed no thickening of the jet, we assume that the
relaxation of the jet velocity is mainly due to viscous
effects. Following [35] the surface velocity is u, =
3(nl/pua®)'/3u (the velocity in the jet equalizes over a
typical penetration depth +/5nl/pu, at a value which is set
by the initial velocity gradient at the wall 4u/a). Gathering
all these expressions, and using R, ~ a (valid for the base
state of both cylindrical jets and liquid sheets [4,10] of
which we consider here the linear destabilization), yields

u u\ 23
~ k=N 1- (2 2
n=kwa =N 1= (5) 2)

(valid for u > U), where
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Equation (2) is in agreement with all the experimental
trends discussed above. It predicts a threshold velocity for
symmetry breaking U o [/4%/? that increases with [ and
decreases with A. Equation (2) also expresses that for
u > U, the number of wings n~ Nu/U is proportional
to u. It is compared to all our measurements, with both
straight and convergent nozzles, in Fig. 4 [see also Fig. 2(a)
for a direct comparison]. The measurements are scattered
around Eq. (2), which we attribute to the simplifications of
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FIG. 4 (color online). Dimensionless number of wings n/N
versus dimensionless jet velocity u/U, where N and U are
computed from the parameter-free expressions of Eq. (3). All
the experiments (with a = 0.77-1.38 mm, u = 1.33-16.3 m/s,
[=05—-15.0 mm and A = 7.3 —17.6 ms) are presented. The
solid line represents Eq. (2). The filled (hollow) circles stand for
straight (convergent) nozzles. The color code represents the
absolute number n (from 0, dark blue, to the maximal value
34, dark red).

the model regarding the base state and the nonlinearities
arising from high amplitude saturated states. However, in
spite of these simplifications, Eq. (2) collapses most of the
data and captures both the order of magnitude and the trends
for n (with u, [, and 1) with no adjustable parameter, which
further supports the viscoelastic mechanism we invoke.
We conclude by highlighting the large-scale conse-
quences of the jet destabilization. Figure 5 shows sus-
pended (Savart) and spreading liquid sheets, formed by a
viscoelastic jet impacting on a small disk (with radius 2a),
and on a large plate, respectively. It shows that the
symmetry breaking extends to the whole of the sheets:
the shapes of both the Savart sheet and the hydraulic jump
on the plate are prescribed by the jet instability. In both
situations the local radius (distance from the impact point to
the edge or jump) is smaller in the directions of the wings
[visible in Figs. 5(d) and 5(f), and hidden but also true in
5(a), 5(b), and 5(c)]. This means that both the sheet
momentum and flow rate, which respectively set the sheet
radius [36] and the hydraulic jump radius in the viscous
limit [37], are reduced in the directions of the wings
relatively to other directions. Interestingly, for Savart sheets
the jet instability also sets the number of ejection sites
initiating the liquid fragmentation. However, contrarily to
previous studies, the polygonal shapes are not forced by an
anisotropy in the impact geometry [1,36,38], nor do they
result from the edge or jump proper dynamics [39-41], but
rather arise from the spontaneous symmetry breaking on
impact. We finally note that the destabilization of the jet is
probably not always steady. One expects that unsteadiness
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FIG. 5 (color online). Large-scale consequences of the jet
symmetry-breaking for n = 4 to 6. (a),(b),(c) Suspended (Savart)
liquid sheets formed by the impact on a disk twice as large as the
jet (represented by the white disk in the center). The sheet radius
(hence the sheet momentum) is minimal in the wings directions,
and the liquid is ejected at the vertices of the sheet. (d),(e),
(f) Hydraulic jumps formed by the impact on a large plate. The
radius of the hydraulic jump (hence the sheet flow rate) is also
minimal in the wings directions.

and turbulence of elastic origin emerge at higher velocities
or longer relaxation times. More generally, one might also
wonder if other systems that build up normal stresses, like
granular [42] or suspensions, could develop the same
destabilization.
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