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Many experiments seem daunting at first glance,
owing to the sheer number of physical variables they involve.
To design an apparatus that circulates fluid, for instance, one
must know how the flow is affected by pressure, by the ap-
paratus’s dimensions, and by the fluid’s density and viscosity.
Complicating matters, those parameters may be temperature
and pressure dependent. Understanding the role of each
 parameter in such a high-dimensional space can be elusive
or prohibitively time consuming. 

Dimensional analysis, a concept historically rooted in
the field of fluid mechanics, can help to simplify such prob-
lems by reducing the number of system parameters. For ex-
ample, in a fluid apparatus in which the flow is isothermal
and incompressible, the number of relevant parameters can
often be reduced to one. The rewards of such a reduction can
be spectacular: It may allow a model the size of a children’s
toy to yield insight into the dynamics of a jet airplane, or a
fluid-filled cylinder the size of a garbage can to elucidate the
 behavior of a stellar interior. (See box 1 for a brief history of
dimensional analysis.)

Dimensional reasoning
Dimensional analysis comes in many forms. One of its sim-
plest uses is to check the plausibility of theoretical results. For
example, the displacement x(t) of a falling body having initial
displacement x0 and initial velocity u0 is

where g is its acceleration due to gravity. According to the
principle of dimensional homogeneity, if the left- and right-
hand sides of the equation are truly equal, they must share
the same dimensions. Indeed, each term in the equation 
has dimensions of length. Despite the modesty of the
 dimensional-homogeneity requirement, it is violated by a
number of equations often used in the hydraulics literature,
such as the Manning formula for flow in an open channel and
the  Hazen– Williams formula, which describes flows of water
through pipes.

Dimensional analysis can also help to supply a theoretical
result. Consider the ray of light illustrated in figure 1, which,

in accordance with general relativity, is deflected as it passes
through the gravitational field of the Sun. Assuming the Sun
can be treated as a point of mass m and that the ray of light
passes the mass with a distance of closest approach r, dimen-
sional reasoning can help predict the deflection angle θ.1

Expressed in terms of mass M, length L, and time T, the
variables’ dimensions—denoted with square brackets—are
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Going back more than 300 years, discussions of dimensional
analysis have appeared in scores of texts, often with different
slants:
1687. Isaac Newton publishes the Principia, which, in book II,
section 7, contains perhaps the earliest documented discussion
of dimensional analysis. 
1765. Leonhard Euler writes extensively about units and dimen-
sional reasoning in Theoria motus corporum solidorum seu rigido-
rum, a comprehensive treatment of the mechanics of rigid bodies.
1822. Joseph Fourier employs concepts of dimensional analysis
in his Analytical Theory of Heat. 
1877. Lord Rayleigh outlines a “method of dimensions” in his
Theory of Sound. 
1908. At the 4th International Congress of Mathematicians in
Rome, Arnold Sommerfeld introduces a dimensionless number
that he calls the Reynolds number, in tribute to Osborne
Reynolds. The Reynolds number, which appeared in what’s now
known as the Orr– Sommerfeld equation, is among the most
famous of all dimensionless numbers.
1914. In what is generally regarded as the big breakthrough in
dimensional analysis, physicist Edgar Buckingham introduces
the theorem now known as the Buckingham Pi theorem. It is
one of several methods of reducing a number of dimensional
variables to a smaller number of dimensionless groups. 
1922. In his influential book Dimensional Analysis, Percy Bridg-
man outlines a general theory of the subject.
1953. In his George Darwin lecture before the Royal Astronomi-
cal Society, Subrahmanyan Chandrasekhar names the Rayleigh
number, a dimensionless temperature difference central to
 thermal convection. 

Box 1. A brief history of dimensional analysis
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[θ] = L0T 0M0, [r] = L1T 0M0, and [m] = L0T 0M1. It follows that 
no combination of powers of r and m can be dimensionally
homogeneous with θ. 

Adding the gravitational constant G, which has dimen-
sions L3T−2M−1, and the speed of light c, which has dimensions
L1T−1M0, seems sensible for a problem concerning gravity and
light. Of the potential expressions containing m, r, c, and G, al-
gebraic calculations reveal that dimensional homogeneity is
achieved only with solutions of the form mκr−κc−2κGκ, where κ is
any real integer. (See reference 1 for a step-by-step treatment.)

If the light ray skims just across the Sun’s surface, 
then r = 6.96 × 108 m, m = 1.99 × 1030 kg, and the quantity
mκr−κc−2κGκ will be small—on the order of 10−6 when κ = 1. The
κ = 1 term will give the largest effect, and higher-order terms
can be neglected. Arguments based purely on dimensional
reasoning suggest, then, that 

where α is an unknown constant. When Isaac Newton con-
sidered the problem more than 300 years ago, he arrived at
an identical expression, with α = 2. General relativity predicts
α = 4, and the latest experiments agree with that result to
within 0.02%.

Prototypes, models, and similitude
In fluid dynamics, dimensional analysis is used to reduce a
large number of parameters to a small number of dimension-
less groups, often in spectacular fashion. In addition to easing
analysis, that reduction of variables gives rise to new classes
of similarity.

Consider the simple example of flow around a prototype
airfoil, p, and a much smaller model, m, as illustrated in
 figure 2. The model and prototype are geometrically similar if
all of their corresponding length scales, including surface

roughness, are proportionate. Likewise, flows in the two sys-
tems are kinematically similar if the velocity ratios up/um are
the same for all pairs of corresponding, or homologous, points.

Depending on what is to be learned from the model,
kinematic similarity may be too lax a requirement. The
stricter standard of dynamic similarity exists if the ratios of
all forces acting on homologous fluid particles and boundary
surfaces in the two systems are constant. Dynamically similar
systems are by definition both geometrically and kinemati-
cally similar. 

An important conclusion of fluid mechanics is that in-
compressible, isothermal flows in or around geometrically
similar bodies are considered dynamically similar if they
have the same Reynolds number Re, where Re is the ratio of
inertial to viscous forces (see box 2). Consider the example of
a typical attack submarine, 110 m long and capable of moving
at 20 knots, or about 10 m/s. In water, that corresponds to
Re = 1.13 × 109. If all design tests must be conducted on a 
6-m-long scale model that can be towed at a top speed of 10
knots, the highest achievable Re would be about 3 × 107, about
1/36 that of an actual submarine. The model would be a poor
descriptor of large-Re effects such as turbulence.

If the same model were placed in a very large wind tun-
nel blowing air at, say, half the speed of sound, Re would be
about 7 × 107—closer to, but still well short of, true submarine
conditions. Further options are to cool the air, thus lowering
its viscosity and increasing its density—and thereby reduc-
ing the kinematic viscosity—or to operate at high pressures,
increasing density more still. Adopting just that strategy, en-
gineers at the National Transonic Facility at NASA’s Langley
Research Center in Virginia reached Re of about 1 × 109 in a
cryogenic wind tunnel. 

Cryogenic tunnels are currently among the most ad-
vanced test facilities available. Remarkably, one of the small-
est such tunnels, just 1.4 cm in diameter, is capable of reach-
ing Re as high as 1.5 million.2
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Figure 2. A prototype airfoil (left) can be tested
with a much smaller model (right), provided the
objects are geometrically similar and that the flows
around them are dynamically similar. Dynamic
 similarity is achieved if the characteristic flow
 velocities Up and Um are such that the forces at all
 homologous points—such as the two marked by
asterisks—are proportionate. (Adapted from ref. 15.)
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Figure 1. A light beam is deflected as it
passes through the gravitational field of a star.
Here, m is the star’s mass and r is the distance
of closest approach. Even without knowing
the underlying physics, one can use dimen-
sional reasoning to predict that the deflection
angle θ scales as Gmr −1c −2, where G is the grav-
itational constant and c is the speed of light.
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The friction factor
One consequence of dynamic similarity in pipe flows is that
the so-called friction factor λ—the dimensionless shear
stress exerted by the fluid on the pipe, and vice versa—is a
function of Re only, provided entrance effects, surface rough-
ness, and temperature variations are small. The friction fac-
tor is especially significant in engineering. The standard
λ(Re) plot, compiled from the results of eight papers pub-
lished between 1914 and 1933, is reproduced in nearly all
fluid dynamics texts and spans Re from 1 × 103 to 3 × 106. Two
devices exploiting two different strategies have charted new
territory. 

In 1998 the Princeton University team of Mark Zagarola
and Alexander Smits published the first results from their
“superpipe,”3 a closed-loop, 34-m-long pipe with a nominal
diameter of 12 cm. Using room-temperature air compressed
as high as 187 atmospheres, the pair measured λ(Re) for Re
up to 3.6 × 107.

Later, a University of Oregon group led by one of us
(Donnelly) designed a device consisting of a 28-cm-long pipe,
roughly a half-centimeter in diameter, housed in a tabletop
helium cryostat.4 Several room-temperature gases—helium,
oxygen, nitrogen, carbon dioxide, and sulfur hexafluoride—
were used to measure λ(Re) for relatively small Re; liquid He
was used to attain the highest Re, up to 1.1 × 106.

Figure 3 shows datasets from both experiments. Com-
bined, the data span Re ranging from 11 to 37 million. Despite
a dramatic difference in scale—the Princeton superpipe
weighs about 25 tons, the Oregon tube about an ounce—the

overlapping data sets agree5 to within about 2%. It is a testa-
ment to the power of dynamic similarity.

Rayleigh–Bénard convection
Thermally driven convection is a conceptually simple but ex-
perimentally challenging problem. In the lab it’s typically car-
ried out in a Bénard cell like that sketched in figure 4a, a con-
tainer of fluid heated from below and cooled from above. The
temperature difference ΔT gives rise to a density gradient; for
typical fluids having a positive thermal expansion coefficient,
the denser fluid will lie above the less dense fluid. If the den-
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Figure 3. The friction factor, the dimensionless shear stress
exerted by a fluid on a pipe, is plotted as a function of the
Reynolds number Re. Blue symbols correspond to data ob-
tained from a 12-cm-wide, 34-m-long “superpipe” operated
at room temperature. Black symbols correspond to data
 collected in a pipe roughly 1/100 000 that size, operated at
cryogenic temperatures. Where they overlap, the data sets
agree to within about 2%, safely within the error margin of
both experiments. The solid line is the theoretical result for
laminar flow, and the discontinuity near Re = 2 × 103 corre-
sponds to the transition to turbulence. (Adapted from ref. 5.)

The Reynolds number. The most famous of the dimensionless
numbers, the Reynolds number, can be derived from the Navier–
Stokes equations for incompressible flows:

where u is local velocity, p is pressure, ρ is the fluid density, and
ν is the fluid’s kinematic viscosity.

Choosing appropriate characteristic length and velocity
scales, L and U, one can introduce a dimensionless displacement
x′ ≡ x/L, dimensionless time t′ ≡ tU/L, dimensionless velocity
u′ ≡ u/U, and dimensionless pressure p′ ≡ p/ρU2. The Navier–
Stokes equations become 

where Re = UL/ν is the Reynolds number.
The change to dimensionless variables is not just a superficial

step; it greatly reduces the amount of work needed to study a
given flow. Although it might seem that one would need to
investigate separately the effects of varying ρ, L, U and ν, one
needs to investigate only variations with Re.
The Rayleigh, Prandtl, and Nusselt numbers. Assuming den-
sity variations are small, thermal convection can be described by
the Boussinesq equations,

where α and κ are, respectively, the fluid’s thermal expansion
coefficient and thermal diffusivity, g is the acceleration due to
gravity, and T is temperature. Nondimensionalization of the
Boussinesq equations yields two key parameters: the Rayleigh
number Ra ≡ gαL/κν, the dimensionless temperature difference,
and the Prandtl number Pr ≡ ν/κ, the ratio of vorticity diffusivity
to thermal diffusivity.

The heat transfer rate is usually described in terms of the Nus-
selt number Nu, the ratio of the actual heat transfer Q to the heat
transfer Qc that would result from conduction alone. For non -
rotating Bénard cells having the same shape and boundary con-
ditions, Nu is completely determined by Ra and Pr. 
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Box 2. The origins of some dimensionless
numbers in fluid mechanics
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sity gradients are large enough, the configuration destabi-
lizes, leading to circulating flow known as Rayleigh–Bénard
convection. That convection enhances the heat transfer from
the hot lower boundary to the cool upper one. 

As detailed in box 2, the character of a Rayleigh–Bénard
flow can be described wholly in terms of dimensionless pa-
rameters. The Nusselt number Nu, the dimensionless heat-
transfer rate, depends on the Rayleigh number Ra, the dimen-
sionless temperature difference, and the Prandtl number Pr,
the ratio of the diffusivity of vorticity to thermal diffusivity.
(We’ve assumed that the system’s geometry is fixed.) For
small Ra, the fluid layer remains at rest, heat transfer is en-
tirely conductive, and Nu is relatively small. But as Ra grows,
the fluid begins to convect and Nu increases. A series of com-
plicated flow transitions ensues, until eventually—roughly,
around Ra = 106—the flow becomes turbulent. In that turbu-
lent regime, dimensional arguments suggest that Nu ∝ Raγ,
where heuristic arguments suggest that γ should vary from
around 2/7, or 1/3, to an asymptotic value of 1/2. (Other ex-
pressions for Nu(Ra) have been hypothesized; see, for exam-
ple, the article by Leo Kadanoff, PHYSICS TODAY, August 2001,
page 34.) 

The experimental challenge is to explore Nu in the highly
turbulent regimes of large Ra. Dynamic similarity affords
multiple ways to do so. One way to boost Ra—defined as
gαL3ΔT/κν, where α, κ, and ν are the thermal expansion co-
efficient, the vorticity diffusivity, and the thermal diffusivity,
respectively—is to create large temperature gradients. A
drawback of that approach, however, is that it can yield large

density variations, which complicate theoretical modeling.
When ΔT is large, a central assumption of the Boussinesq
equations that describe thermal convection—namely, that
density depends linearly on temperature—no longer holds
true (see box 2).

Another strategy for obtaining large Ra is to use a thick
fluid layer. Because Ra scales as L3, modest increases in L can
produce substantial gains in Ra. Alternatively, one can choose
a fluid having large α/κν. By those measures, low-
 temperature He is, to our knowledge, the most ideal fluid
available. Extreme increases in α/κν, however, can lead to un-
desirably large changes in Pr.

Several experiments adopt some combination of the
above strategies to explore heat transfer at the higher reaches
of Ra. A University of Oregon team led by Donnelly used low-
temperature He to explore Ra spanning 11 orders of magni-
tude.6 Strikingly, the data, shown in red in  figure 4b, are de-
scribed cleanly by a single power law, with γ = 0.31.

In 2001, about the same time as the Oregon data ap-
peared, researchers at Joseph Fourier University in Grenoble,
France, used a nearly identical cryogenic cell to obtain the re-
sults shown in green in  figure 4b.7 As Ra nears 2 × 1011, the
Grenoble data switch from a power law described by γ = 0.31
to one described by γ = 0.39. One potentially exciting inter-
pretation is that the switch marks the transition to the “ulti-
mate state,” a state predicted by Robert Kraichnan for asymp-
totically large Ra, in which the viscous boundary layers at the
ends of the Bénard cell become turbulent.8

The discrepancy between the Oregon and Grenoble data
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Figure 4. Rayleigh–Bénard
convection. (a) A Bénard cell
consists of a layer of fluid of
thickness L that’s heated from
below and cooled from above.
For normal fluids having a posi-
tive thermal expansion coeffi-
cient α, the configuration can
be unstable—with denser fluid
resting atop less dense fluid—
and lead to convection. To study
rotation effects, the cell can be
rotated about its axis with angu-
lar velocity Ω. (b) Even in the
nonrotating case, the relation-
ship between the temperature
difference T2−T1 and the heat
transfer rate (shown here in
 dimensionless form as the
Rayleigh and Nusselt numbers,
respectively) remains a matter
of debate. Data obtained at the University of Oregon (red),
Joseph Fourier University (green), and the University of
 Göttingen (blue) agree at moderately large Ra, but diverge 
for Ra > 1013. (Data are from refs. 6, 7, and 9.) (c) In a rotated
 Bénard cell, the influence of rotation is less a function of the
Rossby number Ro, the ratio of buoyant to Coriolis forces, than
of the Ekman number E, the ratio of viscous to Coriolis forces.
The dashed line corresponds to Nu = 0.18 E−1/2; it indicates where
the thickness δE of the Ekman boundary layer equals the thick-
ness δκ of the thermal boundary layer, and it marks the transition
between rotationally dominated and nonrotationally dominated
convection. (Adapted from ref. 10.)
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as plotted in  figure 4b seems quite small. Is it of any real con-
sequence? In geophysical and astrophysical fluid dynamics,
the answer is yes. Natural phenomena such as mantle con-
vection in Earth’s outer core, atmospheric and oceanic winds,
and flows in gas giants and stars are estimated to have Ra
ranging from 1020 to 1030, perhaps larger in stellar systems.
Extrapolated to such geophysical and astrophysical propor-
tions, a slight difference in scaling relationships could yield
order-of-magnitude differences in Nu.

The ideas of dynamic similarity can help resolve the dis-
crepancy. Guenter Ahlers of the University of California, Santa
Barbara and colleagues at the University of Göttingen in Ger-
many explored the range of Ra between 109 and 1015 using He,
N2, and SF6 at ambient temperatures and pressures up to 15 at-
mospheres.9 The high pressure, a feature absent from the Ore-
gon and Grenoble experiments, limits changes in Pr. 

Ahlers and company’s data, shown in blue in  figure 4b,
agree closely with the Oregon results and contradict the
 ultimate-state interpretation of the Grenoble data. But as the
figure shows, there is still no consensus for large-Ra behavior,
and the story continues to unfold. It remains unclear whether
Kraichnan’s ultimate state exists, and if so, where it begins.

Rayleigh–Bénard convection, with rotation
Most convection systems of geophysical and astrophysical
interest also involve rotation. The influence of rotation is
studied in the lab by spinning a Bénard cell about its axis with
some angular velocity Ω. Again, the flow behavior can be de-
scribed in dimensionless terms. Except now, in addition to Ra
and Pr, two new dimensionless numbers are also important. 

The first is the convective Rossby number 
Ro ≡ (gαΔT/4Ω2L)1/2, the ratio of temperature-induced buoy-
ant  forces to rotation-induced Coriolis forces. One might an-
ticipate that the transition between rotationally dominated
and nonrotationally dominated flow should occur some-
where near Ro = 1.

But there is also the Ekman number E ≡ ν(2ΩL)-1, the
ratio of viscous to Coriolis forces. Coriolis forces tend to
sweep away the viscous boundary layer that exists near the
container walls, and so the thickness δE of that boundary layer
scales as E1/2. A competing length scale is the thickness δκ of
the thermal boundary layer, which scales as Nu−1L. In general,
communication between the container and the bulk fluid will
be limited by the thinner of the two boundary layers. One
might anticipate that the transition between rotationally
dominated and nonrotationally dominated convection
should occur when δE = δκ.

As shown in figure 4c, data from experiments at UCLA’s
simulated planetary interiors laboratory confirm that the con-
dition δE = δκ, not Ro = 1, governs the transition from rotation-
ally dominated to nonrotationally dominated convection.10

When δE < δκ, rotation acts to prevent convection, and heat
transfer is less efficient than in a nonrotating system. When
δE > δκ, rotation effects are negligible, and Nu scales as it does
in the nonrotating case. With that crucial observation, the
UCLA researchers were able to estimate the temperature gra-
dients in Earth’s liquid-metal outer core as corresponding to
Ra = 7 × 1024. Of course, the extrapolation of carefully con-
trolled laboratory experiments to geophysical fluid mechanics
carries caveats, several of which are detailed in reference 10.

A real-world pendulum
Among the first problems posed to undergraduate physics
students is that of a simple pendulum: a point mass sus-
pended in a vacuum, oscillating with small amplitude. A real
pendulum oscillating in a viscous fluid, however, presents a

greater challenge. Wilfried Schoepe and colleagues at the
University of Regensburg in Germany studied the problem11

using a 100-μm sphere immersed in liquid He. Their data,
shown in figure 5, indicate a deviation from laminar flow at
a critical Re near 700.

At the University of Oregon we duplicated the experi-
ment with a 1-inch steel bob oscillating in water. The bob was
256 times as large as and 37 million times heavier than the
Regensburg group’s sphere. Yet our experiment yielded a
nearly identical relationship between dimensionless drag
and Re and showed a similar deviation from laminar flow at
large Re. Photos revealed that the steel bob starts to shed vor-
tex rings when Re surpasses the critical value.12

Beyond fluids 
A quick check with an internet search engine reveals the ubiq-
uity of dynamic similarity. Steven Vogel of Duke University
has helped pioneer the use of dimensional analysis in bio-
physics.13 He has used the concepts to highlight bounds on
certain forms of physical behavior, such as the maximum
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Figure 5. A real-world pendulum. (a) At low Reynolds
 number Re the drag force on a spherical pendulum agrees
with the Stokes prediction for laminar flow (solid line). But
two experiments—one with a 100-μm sphere immersed in
liquid helium (green and blue symbols), another with a 
1-inch steel bob in water (red)—demonstrate that the drag
force deviates from laminar flow above a critical Re near 700.
Photos of the steel bob show a laminar flow structure when
(b) Re < Rec and show the bob shedding vortex rings when
when (c) Re > Rec. (Adapted from ref. 12.)
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height of a tree if getting sap to the leaves is the crucial factor
(see PHYSICS TODAY, November 1998, page 22).

Principles of similarity also underlie key economic mod-
els, such as the debt-to-income ratio. For a long time now,
economists have had a good understanding of what that ratio
should be, regardless of total annual income, if the debt is to
be manageable. A recent article, “Dimensions and Econom-
ics: Some Problems,” suggests that many commonly used
models are not dimensionally homogeneous, which could re-
sult in problems during application and analysis.14

As with all tools, it is important to be aware of the poten-
tial limitations of dynamic similarity. The principle of similar-
ity could be crudely construed as follows: Two systems can be
considered completely similar when all dimensionless num-
bers are the same. In practice, complete similarity is impossible
to achieve unless the two systems are exactly the same. 

For example, in the submarine problem, we ignored
flow-compressibility effects, which become pronounced
when flow speeds approach the speed of sound. Sound trav-
els much more slowly in air than in water, so one must be
cautious. It is typically assumed that as long as the flow speed
is less than half that of sound, compressibility can be neg-
lected. Similarly, Rayleigh–Bénard experiments hint that Pr,
often assumed to be negligible, may play a more important
role in heat transfer than once thought. 

History demonstrates, however, that it is certainly pos-
sible to use principles of similarity to draw valuable parallels
between systems that aren’t entirely similar. Currently, dy-
namic similarity and dimensional analysis are topics that en-
gineering students learn as part of their fluid mechanics
course, typically in the second or third undergraduate year.
We believe that emphasis on dimensional reasoning would
be useful to students in many branches of physics as well.

The authors are grateful to Guenter Ahlers, Jonathan Aurnou, Paul
Roberts, Alexander Smits, Edward Spiegel, and Katepalli Sreenivasan
for their useful suggestions.
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