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A recent study of red blood cells (RBCs) in shear flow [Lanotte et al., Proc. Natl. Acad. Sci. U.S.A. 113 ,
13289 (2016)] has demonstrated that RBCs first tumble, then roll, transit to a rolling and tumbling
stomatocyte, and finally attain polylobed shapes with increasing shear rate, when the viscosity contrast
between cytosol and blood plasma is large enough. Using two different simulation techniques, we construct
a state diagram of RBC shapes and dynamics in shear flow as a function of shear rate and viscosity contrast,
which is also supported by microfluidic experiments. Furthermore, we illustrate the importance of RBC
shear elasticity for its dynamics in flow and show that two different kinds of membrane buckling trigger the
transition between subsequent RBC states.

DOI: 10.1103/PhysRevLett.121.118103

The behavior of red blood cells (RBCs) in flow has been
a fascinating research topic for several decades, due to the
direct biological relevance and intriguing physical mech-
anisms which govern the observed cell shapes and dynam-
ics. First observations of RBCs in linear shear flow have
shown that RBCs tumble (TB) or flip as a coin at low shear
stresses and tank tread (TT) at high enough shear stresses
[1–4]. A TT RBC adopts a nearly stationary orientation in
shear flow and its membrane performs rotating motion
[1,3,4]. The transition between the two motions is due to
the existence of a minimum of elastic energy when the
membrane is in static equilibrium, which is referred to as
shape memory [5], and has been incorporated into the
theoretical models for RBC dynamics [6,7]. Recently,
another dynamics, RBC rolling, which appears at moderate
shear stresses in between those resulting in cell TB and TT,
has been discussed [8–10]. Rigidlike TB motion at low
shear stresses is destabilized by a possible movement of
the elastic cytoskeleton of a RBC [10] and the cell shows
first a TB motion with a precession in its orientation axis,
followed by the rolling motion for increasing shear stresses
[10–12]. A similar behavior has been also found for oblate
capsules [13,14].
Most of the mentioned studies have been performed

under conditions with a low viscosity ratio λ < 1 between
intracellular and extracellular fluids. This means that RBCs
are suspended into highly viscous fluids in comparison to
blood plasma, as λ ≈ 5 under physiological conditions [15].
The use of a high-viscosity fluid medium has been driven
by the limitations of experimental devices and cell tracking
at high shear rates, because the high viscosity allows the

application of high shear stresses at moderate shear rates.
However, the viscosity ratio λ has been shown to play a
crucial role in vesicle [16–18] dynamics in shear flow, such
that an increase in λ induces the transition from vesicle TT
at low λ to TB at high λ [16,19]. Recent simulations of
RBCs in shear flow have also reported TB at large enough λ
values [20]. Other numerical investigations of RBCs [21]
and oblate capsules [14] in shear flow have reported a
stable rolling motion for large enough viscosity contrasts
and shear rates. In contrast, a recent study [22] on blood
rheology has found that RBCs at λ ≈ 5 first tumble, then
roll, deform into rolling stomatocytes, and finally adopt
highly deformed polylobed shapes as the shear rate is
gradually increased. Polylobed shapes have also been
reported in early experiments on RBCs in shear flow
[23] and in a theoretical study on elastic quasispherical
capsules in parabolic flow [24].
In this Letter, we take a closer look at these dynamic

shapes and transitions between them. In contrast, Ref. [22]
was focused on the effect of these shapes on blood
rheology. We construct a state diagram, which presents
the observed shapes and dynamics of RBCs for a wide
range of shear rates and viscosity contrasts. Then, we focus
on RBC dynamics at λ > 1 and show that two of the most
salient shape transitions are controlled by membrane
buckling due to cell compression. These results highlight
the essential role of the elastic cytoskeleton for RBC
motion under physiological flow conditions.
Shapes and dynamics of RBCs are obtained from three-

dimensional simulations using two different hydrodynamic
techniques. The first method corresponds to a mesoscopic
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particle-based approach, smoothed dissipative particle
dynamics (SDPD) [25,26], for modeling fluid flow, while
a RBCmembrane is represented by a triangulated network of
springs [27–30] whose vertices are coupled to the fluid via
frictional forces. The network assumes fixed connectivity
and includes the spring’s elastic energy, bending energy, and
area- and volume-conservation constraints [28,29,31]. The
second simulation method relies on a finite-volume parallel
solver for the incompressible Navier-Stokes equations on
unstructured meshes, YALES2BIO [32,33]. Fluid-structure
coupling is implemented using an immersed boundary
method adapted to unstructured grids [32,34]. RBCs are
discretized by a moving Lagrangian mesh and modeled as
viscous drops enclosed by membranes resisting shear,
bending, and area dilation [33,35]. More details on the
methods can be found in the Supplemental Material [44].
Simulations are complemented by experiments of a pressure-
driven flow within a slitlike rectangular channel with a
300 μm height and 3 mm width. RBCs are suspended in 4%
and 2% wt=wt dextran (MW 2 × 106 g=mol) PBS/BSA
solutions at a volume fraction of 1% at 25°C. Local shear
rates are estimated by measuring both the local cell velocity
and distance from a slit wall within the range between 10
and 20 μm.
To nondimensionalize the shear rate _γ, a characteristic

RBC time τ ¼ ηD=μ is defined, where D ¼
ffiffiffiffiffiffiffiffiffi
A=π

p
is an

effective RBC diameter and A is the surface area, μ is the
membrane shear modulus, and η is the dynamic viscosity
of a suspending medium. Average properties of healthy
RBCs are taken to be A ¼ 134× 10−12 m2 [36] (i.e., D ¼
6.5× 10−6 m) and μ ¼ 4.8 × 10−6 N=m. For instance, with
η¼9×10−4Pas the characteristic time is τ≈1.2×10−3 s.
Membrane bending rigidity is set to κ ¼ 70kBT ¼
3 × 10−19 J (kB is the Boltzmann constant and T is temper-
ature) such that the Föppl–von Kármán number α ¼
μD2=κ ¼ 680 is fixed in all cases. The stress-free shape
of a RBC elastic network is assumed to be an oblate spheroid
with a reduced volume of 0.96. The stress-free shape of a
RBC membrane affects the TB-to-TT transition [12,21,37],
such that a nearly spherical stress-free shape leads to shear
rates of the transition consistent with experiments [6,10],
while a biconcave stress-free shape shifts the TB-to-TT
transition to larger shear rates [12,21,37].
Figure 1 illustrates observed shapes in microfluidic

experiments (λ ≈ 8) and SDPD simulations (λ ≈5).
Different shapes, including rolling discocyte and stomato-
cyte, TB stomatocyte, trilobe, and multilobe, are shown
from two views, vorticity and flow-gradient directions (see
also movies S1–S4). By collecting a number of simulations
for different dimensionless shear rates _γ" ¼ _γτ (or capillary
numbers) and viscosity contrasts λ, we construct the RBC
shape diagram shown in Fig. 2. At very low shear rates
(_γ" ≲ 7 × 10−3), RBCs tumble (not shown). With increas-
ing shear rate, the cells first transit to a rolling discocyte and
then to a rolling stomatocyte. At high shear rates, λ plays an

important role, and TT occurs for λ≲ 3.2, while RBCs
exhibit multilobe shapes for λ≳ 3.2. Interestingly, the
transitions between different states for λ≳ 3.2 are governed
predominantly by _γ" and are nearly independent of λ. Note
that the transitions between different shapes and dynamics
are very similar from the two numerical methods.
Figure 2 also contains some experimental points to

support the simulation-based diagram. For example, the
transition to TT for λ≲ 1 occurs at _γ" ≈ 0.11, correspond-
ing to a critical shear stress of η_γ ≈ 0.08 Pa, which is
consistent with experimental values from Refs. [6,10]. In
contrast to the simulations, where a single RBC state is
found for fixed flow conditions, our microfluidic experi-
ments yield a distribution of different RBC states for a fixed
shear stress, see Fig. S1. Therefore, experimental data
points for λ ¼ 1 and λ ¼ 5 in Fig. 2 represent most
probable states for a fixed shear stress. The main reason
for a nonunique shape or dynamics observed in experi-
ments is likely a strong variability in RBC membrane
properties (e.g., shear elasticity, bending rigidity, cytosol
viscosity). All experimental shear rates are normalized with
τ based on average RBC properties given above.

FIG. 1. RBC shapes observed in microfluidic experiments
(λ ≈ 8) and SDPD simulations (λ ≈5) at various dimensionless
shear rates _γ" ¼ _γτ (τ ≈ 1.2 × 10−3 s). The shapes are rolling
discocyte, rolling stomatocyte, TB stomatocyte, trilobe, and
multilobe, observed at _γ" ¼ 0.012, 0.18, 0.3, 0.9, and 2.15 in
experiments and at _γ" ¼ 0.014, 0.18, 0.34, 0.93, and 3.3 in
simulations, respectively. Two views, vorticity and flow-gradient
directions, are shown by the arrows with unequal and equal
lengths, respectively. See also movies S1–S4.
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To look in more detail into the transitions between
different states, we have computed RBC total energy, as
shown in Fig. 3(a) for a RBC with λ ¼ 5 from YALES2BIO
simulations. As expected, the RBC total energy is a
monotonically increasing function of shear rate, because
the cell gets more and more deformed by the shear forces.
However, we observe effective power laws with decreasing
exponents as we go from one dynamic state to the other,
as shown by the lines in Fig. 3(a). This implies that RBCs
adopt an energetically more favorable dynamics, even
though no energy minimum principles can be invoked
here. Therefore, there are no simple energy arguments
which could explain the existence of the shapes and
transitions at specific _γ".
To identify transition mechanisms between different

shapes and dynamics, we monitor RBC behavior for

increasing _γ". First, a TB-RBC in shear flow transits to
a rolling discocyte at low shear rates. Here, a precession in
the TB axis (i.e., the TB axis does not remain within the
shear plane) is first observed, followed by a complete
alignment of the RBC axis with the vorticity direction as
the shear rate is increased [10–12]. This transition has been
described for λ < 1 [10], and therefore, it is expected to
have the same origin for λ larger than unity.
As the shear rate is further increased at λ ¼ 5, a rolling

discocyte transits to a rolling stomatocyte. This transition
might occur due to membrane buckling, but it is difficult to
observe and confirm this effect directly in shear flow.
Therefore, we consider two types of cell deformation
(stretching and compression), which occur in shear flow.
To mimic the elongational component of the flow, a RBC is
stretched (without flow) [28,33] similar to the RBC
deformation by optical tweezers [39,40]. Even for very
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FIG. 2. Shapes and dynamics of RBCs in shear flow as a
function of _γ" and λ. Different areas, representing rolling
discocyte, rolling stomatocyte, TB stomatocyte, TT, and multi-
lobes, are based on simulation results, where dashed lines serve as
a guide to the eyes. Two sets of simulations are denoted by
triangles (SDPD) and circles (YALES2BIO). The colors indicate
RBC shape or dynamics. All simulation data are for Föppl-von
Kármán number α ¼ μD2=κ ¼ 680. The two sets of circles at
λ ≈ 5.3 and λ ≈ 8.3 correspond to simulations at λ ¼ 5 and λ ¼ 8,
respectively, and are just shifted up in the diagram for visual
clarity. The square symbols (λ ≈ 8) correspond to experiments
from Ref. [22], the plus symbols (λ ≤ 1) to data from Ref. [10],
and the crosses (λ < 1) to data from Ref. [38]. Diamond symbols
(λ ≈ 1 and λ ≈ 5—shifted down to 4.7) represent most probable
states from our microfluidic experiments, since no unique state,
but a distribution of different states is obtained for fixed flow
conditions, see distributions in Fig. S1. All experimental shear
rates are normalized by τ based on average RBC properties (i.e.,
D ¼ 6.5 × 10−6 m and μ ¼ 4.8 × 10−6 N=m).

FIG. 3. Transition between different shapes and dynamics at
λ ¼ 5. (a) Change in RBC total energy, including shear and
bending elasticity, from YALES2BIO simulations as a function of
shear rate. (b) Change in shear elasticity and bending energies
of a RBC compressed between two plates in SDPD simulations.
The cell buckles from a discocyte to a stomatocyte shape, when
the distance between plates becomes approximately 6.3 μm (see
movie S5).
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Stokesian Fluid



• Equation for rate of change of u(x,t) (not 
position) in lab frame


• Nonlinear. Complicated term:


• Viscous length scale: ν/U


• NS is a starting point: Once u(x,t) is known, 
then other fluid properties can be determined.

NS Properties 
(incompressible)

⌅u
⌅t

+ u ·⇤u = g � (1/⇥)⇤p + �⇤2u

u ·⇥u



Fixed and Material Volumes



Identities For Conserved Quantities



Example: Mechanical Energy
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Energy Conservation



Mechanical Energy



Total Work Done by Stress



Mechanical Energy Density 
for a Stokes Fluid



Conservation of Total Energy 
Density



Equation for Internal Energy 
(Temperature)

(Meyer’s Equation for an ideal gas)



Internal Energy Equation



Entropy  
(Disorder, Direction of Time)



Summary of Fluid Dynamical 
Equations
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Bernoulli’s Equation 
(Euler Equation)
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Bernoulli’s Equation 
(Conservation of Energy)



Bernoulli’s Equation

B � 1
2
u2 +

�
dp

�
+ gz = constant,

or
1
2
u2 +

p

�
+ gz = constant

⇥B = u�� (Steady Flow)

(also time-varying irrotational flow)



Lift



Pilot Tube
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What are E.O.M. in Co-Rotating 
Frame of Reference?



Gaspard-Gustave Coriolis

1792-1843

“On the equations of relative motion of a system of bodies”, published 1835



Small Rotation of Frame in δt
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Co-Rotating Frame 
(continued)



Centrifugal and Coriolis Forces



Incompressible Navier-Stokes in  
Co-Rotating Frame



Co-Rotating MagnetoSphere



Coriolis Force



Angular Momentum
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Ch. 4 Exercises

• 4.3/Angular momentum & stress tensor


• 4.4/Differential form of E.O.M. 


• 4.5/Stokes’ expression for stress tensor


• 4.8/Rocket equation


• 4.9/Trust generated from a “propeller”



Exercise 4.3



Exercise 4.3



Exercise 4.4



Exercise 4.4



Exercise 4.5



Exercise 4.5



Exercise 4.8



Exercise 4.8
~

~')..lL~

~
~

Q
:

l ~'0
~

~
~

II
1
/

" "
r-

:r
q
:

J
,

~
. "'
"..

'")
9

~
,

~
~

~
~

1
ci

-l
l

~
r-

~
J.

n
. ~

'l
';c:

l~
~

~
,

'"v
~

j
:i

~
~(L
 "-

II

..
.:

~

\~
!~

~

..
~

~
F

_
.

\

I

I

J
"

~
i

~

..

~
i

,
\
 
~
 
t

\~
\~

"
.
.
~
.
 
~
~

~
- .. 'I .... )''- ,

l1



Exercise 4.9
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Exercise 4.9



Summary
• Basic fluid dynamics involves “6” field variables: ρ, Ui, P, T


• Conservation of Mass, Energy, Newton’s Law, and an 
equation of state provide a “closed” set of dynamical 
equations for a fluid Integral or differential formulation of 
equations of motion (E.O.M.) are equivalent


• Integral form of momentum-force equation can be 
combined with Bernoulli’s Principle for a powerful way to 
compute flow/force parameters.


• Apparent forces, centrifugal and Coriolis, appear in a co-
rotating frame of reference


