1. Review Chapter 3

2. Navier–Stokes Equation

Material or Convective Derivative

\[
\frac{D}{Dt} = \frac{d}{dt} \equiv \frac{\partial}{\partial t} + (\mathbf{u} \cdot \nabla)
\]

e.g. \[\frac{Df}{Dt} = \frac{df}{dt} + (\mathbf{u} \cdot \nabla) f \]
Velocity Gradient Tensor

\[
\frac{2u_i}{2x_j} = \varepsilon_{ij} + \frac{1}{2} R_{ij}
\]

\[
\varepsilon_{ij} = \frac{1}{2} \left(\frac{2u_i}{2x_j} + \frac{2u_j}{2x_i} \right)
\]

\[
R_{ij} = \left(\frac{2u_i}{2x_j} - \frac{2u_j}{2x_i} \right)
\]

\[
R_{ij} = \varepsilon_{ijk} \frac{dx_k}{dx_i}
\]

\[
\frac{dx_i}{u_i} = \frac{dy}{u_Y} = \frac{dz}{u_Z} = ds
\]

Path Lines:

\[
\frac{dx}{u_x} = \frac{dy}{u_y} = \frac{dz}{u_z} = ds
\]

Visualizing Flow

\[
\vec{u} + d\vec{u}
\]

\[
\frac{d\vec{u}}{d\vec{x}} = \frac{2u_x}{2x_j} d\vec{x}_j
\]
Characterizing Flow

Vorticity $\vec{\omega} = \nabla \times \vec{U} = -\frac{1}{\rho} \epsilon_{ijk} \vec{R}_{ij}$

Circulation $\Gamma = \oint \vec{U} \cdot d\vec{s}$

$= \iint \nabla \times \vec{U} \cdot d\vec{A}$

$= \iint \vec{\omega} \cdot d\vec{A}$

Problem 3.1

1. A two-dimensional steady flow has velocity components

$u = y \quad v = x.$

Show that the streamlines are rectangular hyperbolas

$x^2 - y^2 = \text{const}.$

Sketch the flow pattern, and convince yourself that it represents an irrotational flow in a 90° corner.
Problem 3.1

Find streamlines when \(\overrightarrow{u} = (\gamma, x) \)

\[
\frac{dx}{\gamma} = \frac{dy}{x} = ds
\]

\(x \, dx = \gamma \, dy \Rightarrow x^2 = \gamma^2 + c \)

Problem 3.2

2. Consider a steady axisymmetric flow of a compressible fluid. The equation of continuity in cylindrical coordinates \((R, \varphi, x)\) is

\[
\frac{\partial}{\partial R} (\rho R u_R) + \frac{\partial}{\partial x} (\rho R u_x) = 0.
\]

Show how we can define a streamfunction so that the equation of continuity is satisfied automatically.
Problem 3.2

Consider axisymmetric flow

Conservation of mass is

\[
\frac{2}{2r} \left(\rho RU_z \right) + \frac{2}{2r} \left(\rho RU_r \right) = 0
\]

\[
\frac{\partial \psi}{\partial r} = 0
\]

Find a stream function.

Try \(\rho \mathbf{U} = \nabla \phi \times \nabla \phi (r, z) \) \(\nabla \phi = \frac{\phi}{r} \)

which satisfies \(\nabla \cdot (\rho \mathbf{U}) = 0 \)

Then

\[
\frac{\partial \psi}{\partial z} = \rho RU_z \quad \frac{\partial \psi}{\partial r} = -\rho RU_r
\]
Problem 3.3

\[\mathbf{\hat{u}} = (x, y, u) \]

\[n = \oint \mathbf{\hat{n}} \cdot d\mathbf{s} = \iint \nabla \times \mathbf{\hat{u}} \cdot d\mathbf{A} \]

Find circulation around unit circle

\[\oint \mathbf{\hat{u}} \cdot d\mathbf{s} = \int_0^{2\pi} d\theta \, \mathbf{\hat{u}} \cdot \hat{\mathbf{\hat{e}}} \]

\[\hat{\mathbf{\hat{e}}} = \hat{x} \cos \theta - \hat{y} \sin \theta \]

\[\mathbf{\hat{u}} \cdot \hat{\mathbf{\hat{e}}} = -x \cos \theta - y \sin \theta \]

So \[\oint \mathbf{\hat{u}} \cdot d\mathbf{s} = \int_0^{2\pi} \hat{x} \cos \theta \, d\theta = -\pi \]

Also

\[\iint \nabla \times \mathbf{\hat{u}} \cdot d\mathbf{A} = -\pi \]

\[\mathbf{\hat{e}} \times \mathbf{\hat{u}} = -\hat{z} \]

Problem 3.4

4. Consider a plane Couette flow of a viscous fluid confined between two flat plates at a distance \(b \) apart (see Figure 9.4c). At steady state the velocity distribution is

\[u = Uy/b , \quad v = w = 0 , \]

where the upper plate at \(y = b \) is moving parallel to itself at speed \(U \), and the lower plate is held stationary. Find the rate of linear strain, the rate of shear strain, and vorticity. Show that the streamfunction is given by

\[\psi = \frac{Uy^2}{2b} + \text{const.} \]
Problem 3.4

\[\mathbf{v} = \left(v, \frac{u v}{b}, 0 \right) \]

Linear Strain Rate:
\[\varepsilon_{xx} = \varepsilon_{yy} = 0 \]
\[\varepsilon_{xy} = \varepsilon_{yx} = \frac{1}{2} \left(\frac{2 u v}{b^2} \right) \]

Shear Strain Rate:
\[\gamma_{xy} = \frac{1}{b} \left(\frac{2 u v}{b^2} - \frac{2 v u}{b^2} \right) \]

Vorticity:
\[\omega = \frac{1}{b} \left(\frac{2 u v}{b^2} - \frac{2 v u}{b^2} \right) \]

What is the stream function?

Since \(\nabla \cdot \mathbf{v} = 0 \),
\[\mathbf{v} = \nabla \times \mathbf{A} = \hat{\mathbf{z}} \left(\frac{2 y}{b^2}, -\frac{2 y}{b^2}, 0 \right) \]

So
\[\frac{u v}{b} = \frac{2 y}{b^2} \Rightarrow \psi(r) = \frac{u v}{b} + \text{constant} \]

Problem 3.5

5. Show that the vorticity for a plane flow on the \(xy \)-plane is given by

\[\omega_z = -\left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} \right). \]

Using this expression, find the vorticity for the flow in Exercise 4.
Problem 3.5

Find vorticity, $\mathbf{\omega}$, for flow on $x-y$ plane.

$$\mathbf{\omega} = \nabla \times \mathbf{u}$$

If $\mathbf{u} = (u, v, 0)$ then

$$\mathbf{u} = -\frac{\partial z}{\partial y} \mathbf{i} + \frac{\partial x}{\partial y} \mathbf{j} - \frac{\partial y}{\partial y} \mathbf{k} = -\frac{\partial z}{\partial y} \mathbf{i} + \frac{\partial x}{\partial y} \mathbf{j}$$

$$\therefore \mathbf{\omega} = -\nabla \times \left(\frac{\partial z}{\partial y} \mathbf{i} + \frac{\partial x}{\partial y} \mathbf{j} \right) = -\frac{\partial}{\partial y} \left(\frac{\partial x}{\partial y} \right) \mathbf{i} + \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) \mathbf{j}$$

For the flow in Exercise 4.

$$\omega_z = -\frac{u}{b}$$

Problem 3.7

7. Determine an expression for ψ for a Rankine vortex (Figure 3.17b), assuming that $u_\theta = U$ at $r = R$.
Problem 3.7

Find stream function for a Rankine vortex

Where the upper plate at \(y = b \) is moving parallel to itself at speed \(U \), and the lower plate is held stationary. Find the rate of linear strain, the rate of shear strain, and vorticity. Show that the streamfunction is given by

\[
\psi(y) = \begin{cases}
U(y) & y < R \\
U(R) & y > R
\end{cases}
\]

So

\[
\psi(y) = \begin{cases}
-\frac{U^2}{2b} & y \leq R \\
u R \left(\frac{y}{R}\right) - \frac{RY}{2} & y > R
\end{cases}
\]

Note:

\(\nabla^2 \psi = \omega_z \) for \(y < R \) (rotational)

\(\nabla^2 \psi = 0 \) for \(y > R \) (irrotational)

Problem 3.8

8. Take a plane polar element of fluid of dimensions \(dr \) and \(r \, d\theta \). Evaluate the right-hand side of Stokes' theorem

\[
\int \omega \cdot dA = \int u \cdot ds,
\]

and thereby show that the expression for vorticity in polar coordinates is

\[
\omega_z = \frac{1}{r} \left[\frac{\partial}{\partial r}(ru_\theta) - \frac{\partial u_r}{\partial \theta} \right].
\]

Also, find the expressions for \(\omega_r \) and \(\omega_\theta \) in polar coordinates in a similar manner.
Problem 3.8

9. The velocity field of a certain flow is given by

\[u = 2xy^2 + 2xz^2, \quad v = x^2y, \quad w = x^2z. \]

Consider the fluid region inside a spherical volume \(x^2 + y^2 + z^2 = a^2 \). Verify the validity of Gauss' theorem

\[\int \nabla \cdot \mathbf{u} \, dV = \int \mathbf{u} \cdot dA, \]

by integrating over the sphere.
Problem 3.9

Let's consider the flow \(\mathbf{U} = (2x^2 + 2xy, y^2, x^2) \). We need to compute the divergence of \(\mathbf{U} \) over the sphere.

\[
\nabla \cdot \mathbf{U} = 2x^2 + 2x^2 + y^2 = 2x^2 - x^2 + y^2 = 2(2 - \cos^2 \phi \sin^2 \theta + \sin^2 \phi).
\]

Using spherical coordinates:

\[
x = \rho \cos \phi \sin \theta, \\
y = \rho \sin \phi, \\
z = \rho \cos \phi.
\]

The divergence is then:

\[
\frac{\partial U_x}{\partial x} + \frac{\partial U_y}{\partial y} + \frac{\partial U_z}{\partial z} = \frac{2 \rho^2 \sin \phi \cos \phi \sin \theta}{\rho^2} = \frac{2 \sin \phi \cos \phi \sin \theta}{\rho}.
\]

But at the surface \(\rho = 4 \):

\[
\oint_{\partial V} \mathbf{U} \cdot d\mathbf{A} = \frac{8 \pi}{3} \quad \text{Q.E.D.}
\]

Problem 3.10

10. Show that the vorticity field for any flow satisfies

\[
\nabla \cdot \omega = 0.
\]
Problem 3.10

\[\nabla \cdot \vec{\omega} = 0 \quad \text{where} \quad \vec{\omega} = \nabla \times \vec{u} \]

But \(\nabla \cdot (\nabla \times \vec{u}) = 0 \) for all \(\vec{u} \)

Problem 3.11

11. A flow field on the xy-plane has the velocity components

\[u = 3x + y \quad v = 2x - 3y. \]

Show that the circulation around the circle \((x - 1)^2 + (y - 6)^2 = 4\) is \(4\pi\).
Problem 3.11

Find the circulation for the flow \(\mathbf{U} = (3x + y, 2x - 3z) \) about the point \((x, y) = (1, 6)\) with radius \(r = 2\).

Let's translate axis to \((x', y') = (1, 6)\)

\[
\oint \mathbf{U} \cdot d\mathbf{r} = \oint \mathbf{U}' \cdot d\mathbf{r}' = 2 \int_0^{2\pi} \mathbf{U} \cdot \hat{z}' = 2 \int_0^{2\pi} d\theta (\mathbf{U} \cdot \hat{z}')
\]

\[
\mathbf{U}' = (3(x' + 1) + y' + 6, 2(x' + 1) - 3(y' + 6)) = (3x' + y' + 9, 2x' - 3y' - 16)
\]

\[
x' = 2 \cos \theta \quad y' = 2 \sin \theta
\]

\[
\int = 2 \int_0^{2\pi} \left[-5 \cos (3x' + y' + 9) + \cos (2x' - 3y' - 16) \right] = 2 \int_0^{2\pi} \left[12 \cos 5 \sin 6 - 6 \sin 6 + 9 \cos 6 - 16 \cos 0 \right] = 4\pi
\]

Problem 3.12

12. Consider the solid-body rotation

\[
u_\theta = \omega r \quad u_r = 0.
\]

Take a polar element of dimension \(r \, d\theta\) and \(dr\), and verify that the circulation is vorticity times area. (In Section 11 we performed such a verification for a circular element surrounding the origin.)
Problem 3.12

Verify that circulation is vorticity times area for the flow \(\omega_0 = \omega_0 x \) (solid body rotation).

Note: vorticity \(\omega \times u = \frac{1}{2} \omega_0 (\omega_0 \cdot \omega_0) = 2 \omega_0 \).

\[\Gamma = \int \overrightarrow{u} \cdot d\overrightarrow{a} \]

\[\Gamma = \frac{\omega_0 (r+5\gamma)}{l^2 + 2\gamma} \]

\[= 2 \omega_0 r \delta \theta = 2 \omega_0 \times \frac{r \delta \theta}{\text{vorticity area}} \]

Problem 3.13

13. Using the indicial notation (and without using any vector identity) show that the acceleration of a fluid particle is given by

\[\mathbf{a} = \frac{\partial \mathbf{u}}{\partial t} + \nabla \left(\frac{1}{2} q^2 \right) + \omega \times \mathbf{u}, \]

where \(q \) is the magnitude of velocity \(\mathbf{u} \) and \(\omega \) is the vorticity.
Using invarics, show
\[
\frac{d\mathbf{u}}{dt} = \frac{2\mathbf{u}}{2\varepsilon} + \nabla \left(\frac{1}{2} \mathbf{u} \cdot \nabla \mathbf{u} \right) + \mathbf{\omega} \times \mathbf{u}
\]

But \[
\frac{2\mathbf{u}}{2\varepsilon} = \mathbf{u} \cdot \nabla \mathbf{u} = \frac{2u_i}{2\varepsilon} + \partial_j \frac{2u_i}{\partial x_j}.
\]

But \[
u_j \frac{2u_i}{\partial x_j} = u_j \left(\frac{2u_i}{\partial x_j} - \frac{2u_j}{\partial x_i} \right) + u_j \frac{2u_i}{\partial x_i} - \mathbf{\omega} \times \mathbf{u} \frac{2u_i}{\partial x_i} \left(\frac{1}{2} u_j^2 \right)
\]

To show this...

\[
\mathbf{\omega} = \nabla \times \mathbf{u} = e_{ijk} \frac{2u_k}{\partial x_j}
\]

\[
\left(\frac{2u_k}{\partial x_j} \right) = e_{ijk} \frac{2u_k}{\partial x_j}
\]

\[
\mathbf{\omega} \times \mathbf{u} = e_{ijk} \mathbf{\omega}_j u_k
\]

\[
\mathbf{\omega} \times \mathbf{u} = e_{ijk} \frac{2u_k}{\partial x_j}
\]

\[
= - \left(\delta_{kj} \frac{2u_k}{\partial x_i} - \delta_{ki} \frac{2u_k}{\partial x_j} \right) u_j \frac{2u_k}{\partial x_i} - u_k \frac{2u_k}{\partial x_i} + u_j \frac{2u_k}{\partial x_j}
\]

Which can be written as above. (6.20)

Problem 3.14

14. The definition of the streamfunction in vector notation is

\[
\mathbf{u} = -\mathbf{k} \times \nabla \psi,
\]

where \(\mathbf{k}\) is a unit vector perpendicular to the plane of flow. Verify that the vector definition is equivalent to equations (3.35).
Problem 3.14

Verify that \(\mathbf{u} = -\mathbf{k} \times \nabla \psi \) (with \(\mathbf{k} = \mathbf{\hat{z}} \)) is equivalent to the condition \(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \) with \(\mathbf{u} = (u, v) \)...

But \((\mathbf{u}) = (-\mathbf{k} \times \nabla \psi) = -\varepsilon_{ijk} \frac{\partial \psi}{\partial x^i} \) or \(\mathbf{u} = \left(\frac{\partial \psi}{\partial y}, -\frac{\partial \psi}{\partial x} \right) \)

Thus \(\frac{\partial}{\partial x} \left(\frac{\partial \psi}{\partial y} \right) - \frac{\partial}{\partial y} \left(\frac{\partial \psi}{\partial x} \right) = 0 \) is satisfied.

Equations of Fluid Dynamics

(Conservation Laws)

- Continuity (Mass)
- Navier-Stokes (Force, Momentum)
- Energy
Continuity

Conservation of Mass

\[
\frac{2\rho}{2\varepsilon} + \nabla \cdot (\rho \mathbf{u}) = 0
\]

\[
\frac{2\rho}{2\varepsilon} + (\mathbf{u} \cdot \nabla) \rho = -\rho \nabla \cdot \mathbf{u}
\]

\[
\frac{\partial \rho}{\partial t} = -\rho \nabla \cdot \mathbf{u}
\]

\[
\frac{\partial \rho}{\partial t} = -\mathbf{F} \cdot (\nabla \cdot \mathbf{u})
\]

\[
\text{e.g. } \rho = \epsilon
\]

Newton's Law

Newton's Law for a Particle

\[
\mathbf{F} = m \mathbf{a}
\]

\[
\mathbf{F} = \frac{d}{dt} (m \mathbf{v})
\]

Newton's Law for a Fluid

\[
\mathbf{F} = \frac{D}{Dt} (\rho \mathbf{u})
\]

\[
= \frac{2}{2\varepsilon} (\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \mathbf{u})
\]

\[
= \frac{2}{2\varepsilon} (\rho \mathbf{u} \mathbf{u}) + \frac{3}{2\varepsilon} (\rho \mathbf{u}_i \mathbf{u}_j)
\]

\[
\text{Flux of Momentum from Fluid Element}
\]

\[
= \rho \left[\frac{2\mathbf{u}}{2\varepsilon} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right] + \mathbf{u} \left[\frac{2\rho}{2\varepsilon} + \nabla / \rho \right]
\]

\[
= \rho \left(\frac{D \mathbf{u}}{Dt} \right)
\]
Momentum

\[\rho \left(\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u} \right) = \rho \vec{g} + \nabla \cdot \vec{\tau} \]

\(\vec{\tau} = \text{STRESS TENSOR} \)
\(= \text{USUALLY SYMMETRIC} \)
\(= \text{HAS NORMAL STRESS \& PRESSURE} \)
\(= \text{HAS SHEAR STRESS \& (OFF DIAGONAL)} \)
\(\text{GRADIENTS OF STRESS PRODUCE FORCE} \)

\(\tau_{ij} > 0 \) IMPLIES TENSILE STRESS
\(\tau_{ij} < 0 \) IMPLIES COMPRESSIVE STRESS
\(\tau_{ij} \) \((i \neq j) \) ARE SHEAR STRESSES

Models for Stress

- ISOTROPIC PRESSURE

\[\vec{\tau} = -\rho \vec{g} \quad \nabla \cdot \vec{\tau} = -\nabla \rho \]

- MOVING FLUID WITH VISCOSITY

\[\vec{\tau} = -\rho \vec{g} + \vec{\sigma} \]

\(\vec{\sigma} \) VISCOUS STRESS

WHAT IS \(\vec{\sigma} \)?
Navier & Stokes

Claude-Lewis Henri Navier (1785-1836)

George Stokes (1819-1903)

Stokesian Fluid

Material Isotropy and Stress Symmetry

(e.g., air, water but not magnetized plasma)

\[
\vec{\sigma} = 2\mu \vec{\varepsilon} + \lambda (\nabla \cdot \vec{u}) \vec{\delta}
\]

\[\begin{array}{c|c}
\text{Viscosity} & \text{Bulk Viscosity} \\
\hline
\lambda & \frac{2}{3} \mu
\end{array}\]

Stokes modeled viscosity via kinetic theory of monatomic atoms and showed \(\lambda = \frac{2}{3} \mu \).

Then, stress tensor

\[\vec{\tau} = -\rho \vec{\delta} + 2\mu \vec{\varepsilon} + \frac{2}{3} \lambda (\nabla \cdot \vec{u}) \vec{\delta}\]
Navier-Stokes Equation

\[\rho \left(\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u} \right) = -\nabla p + \rho \vec{g} + \nabla \left[2 \mu \frac{\partial \vec{e}}{\partial \vec{e}} - \frac{2}{3} \mu (\nabla \cdot \vec{u}) \vec{e} \right] \]

Assume \(\mu \) independent of \(x \). Then,

\[\nabla \cdot 2 \mu \vec{e} = 2 \mu (\nabla \cdot \vec{e}) \]

\[\varepsilon_{ij} = \frac{1}{\varepsilon} \left(\frac{2 \mu \varepsilon_{ij}}{\partial x_j} + \frac{2 \mu \varepsilon_{ij}}{\partial x_i} \right) \]

\(\nabla \cdot \frac{\partial \vec{e}}{\partial \vec{e}} = \frac{1}{\varepsilon} \left(\frac{2 \partial \vec{u}}{\partial x_j} + \frac{2 \partial \vec{u}}{\partial x_i} \right) \approx \frac{1}{\varepsilon} \nabla^2 \vec{u} + \frac{1}{\varepsilon} \nabla (\nabla \cdot \vec{u}) \]

Navier-Stokes & Euler

\[\rho \frac{D \vec{u}}{Dt} = -\nabla p + \rho \vec{g} + \begin{cases} \mu \left[\nabla^2 \vec{u} + \frac{1}{3} \nabla (\nabla \cdot \vec{u}) \right] & \text{Navier-Stokes' Equation} \\ \mu \nabla^2 \vec{H} & \text{Incompressible N.S.} \\ 0 & \text{Euler Equation} \end{cases} \]
Energy

\[\rho \frac{D \vec{u}}{Dt} = \rho \vec{g} + \nabla \cdot \vec{t} \]

\[\frac{D}{Dt} \left(\frac{1}{2} u^2 \right) = \rho \vec{u} \cdot \vec{g} + \vec{u} \cdot \left(\nabla \cdot \vec{t} \right) \]

Work Done by Body Forces

Work Done by Surface Forces

The Importance of Viscosity

Incompressible Euler Equation

\[\frac{2 \ddot{u}}{\partial t} + (\vec{u} \cdot \nabla) \vec{u} = -\nabla \rho \vec{g} + \vec{g} \]

\[\nabla \cdot \vec{u} = 0 \]

Let \(\vec{\mathcal{S}} = \nabla \times \vec{u} \). Then

\[(\vec{u} \cdot \nabla) \vec{u} = \vec{\mathcal{S}} \times \vec{u} + \frac{1}{2} \nabla u^2 \]

\[\frac{2 \ddot{u}}{\partial t} + \vec{\mathcal{S}} \times \vec{u} = -\nabla \rho + \vec{g} - \frac{1}{2} \nabla u^2 \]

Take curl of this equation

\[\frac{2}{\partial t} \vec{\mathcal{S}} + \nabla \times (\vec{\mathcal{S}} \times \vec{u}) = 0 \quad (\text{if } \vec{g} = -\nabla \phi) \]

If \(\vec{\mathcal{S}} = 0 \) at \(t = 0 \), then \(\vec{\mathcal{S}} = 0 \) forever!
Creation of Vorticity

(Note: Flow at thin layer at surface of cylinder vanishes.)

Summary

- The equations of fluid dynamics are dynamical conservation equations:
- Mass conservation
- Momentum changes via total forces (body and surface forces)
- Energy conservation