
APPH 4200  
Physics of Fluids

Review (Ch. 3) & Fluid Equations of Motion (Ch. 4)  

1. Chapter 3 (more notes/examples)


2. Vorticity and Circulation


3. Navier-Stokes Equation

Summary:  
Cauchy-Stokes Decomposition



Velocity Gradient Tensor

Problem 3.1

Kinematics

terms of the streamfunction.
nctions of rand e, the chain

t (:~)e'

se + u sine. (3.41)

quation (3.40) implies a1//ar

Therefore, the polar velocity

t the derivative of 1/ gives the
he direction of differentiation.

irdinates. The chain rule gives

sin e a1/---
r ae

,,/

..
x

ne polar coordinates.

Exercise 77

Differentiating this with respect to x, and following a similar rule, we obtain

a21/ = cose~ (cose a 1/ _ sine a1/J _ sine ~ (cose a1/ _ sine a1/J.
ax2 ar ar r ae r ae ar r ae

(3.42)

In a similar manner,

a21/ . e a (. ea1/ cose a1/J cose a (. a1/ cose a1/J-=sm - sm -+-- +-- sme-+-- .ay2 ar ar r ae r ae -ar r ae
(3.43)

The addition of equations (3.41) and (3.42) leads to

a21/ a21/ i a (a1/) i a21/
ax2 + ay2 = -; ar ra; + r2 ae2 = 0,

which completes the transformation.

Exercises
1. A two-dimensional steady flow has velocity components

u =y v =x.

Show that the streamines are rectangular hyperbolas

x2 _ y2 = const.

Sketch the flow pattern, and convince yourself that it represents an irrotational flow
in a 90° comer.

2. Consider a steady axisymmetrc flow of a compressibla fluid. The equation
of continuity in cylindrcal coordinates (R, cp, x) isa a

-(pRUR) + -(pRux) = O.aR ax
Show how we can define" a streamfnction so that the equation of contiuity is satisfied
automatically.

3. !fa velocity field is given by u = ay, compute the circulation around a circle
of radius r = i about the origin. Check the result by using Stokes' theorem.

4. Consider a plane Couette flow of a viscous fluid confined between two flat
plates at a distance b apar (see Figure 9.4c). At steady state the velocity distrbution is

u = Uy/b v = w = 0,



Problem 3.1

Problem 3.3

Kinematics

terms of the streamfunction.
nctions of rand e, the chain

t (:~)e'

se + u sine. (3.41)

quation (3.40) implies a1//ar

Therefore, the polar velocity

t the derivative of 1/ gives the
he direction of differentiation.

irdinates. The chain rule gives

sin e a1/---
r ae

,,/

..
x

ne polar coordinates.

Exercise 77

Differentiating this with respect to x, and following a similar rule, we obtain

a21/ = cose~ (cose a 1/ _ sine a1/J _ sine ~ (cose a1/ _ sine a1/J.
ax2 ar ar r ae r ae ar r ae

(3.42)

In a similar manner,

a21/ . e a (. ea1/ cose a1/J cose a (. a1/ cose a1/J-=sm - sm -+-- +-- sme-+-- .ay2 ar ar r ae r ae -ar r ae
(3.43)

The addition of equations (3.41) and (3.42) leads to

a21/ a21/ i a (a1/) i a21/
ax2 + ay2 = -; ar ra; + r2 ae2 = 0,

which completes the transformation.

Exercises
1. A two-dimensional steady flow has velocity components

u =y v =x.

Show that the streamines are rectangular hyperbolas

x2 _ y2 = const.

Sketch the flow pattern, and convince yourself that it represents an irrotational flow
in a 90° comer.

2. Consider a steady axisymmetrc flow of a compressibla fluid. The equation
of continuity in cylindrcal coordinates (R, cp, x) isa a

-(pRUR) + -(pRux) = O.aR ax
Show how we can define" a streamfnction so that the equation of contiuity is satisfied
automatically.

3. !fa velocity field is given by u = ay, compute the circulation around a circle
of radius r = i about the origin. Check the result by using Stokes' theorem.

4. Consider a plane Couette flow of a viscous fluid confined between two flat
plates at a distance b apar (see Figure 9.4c). At steady state the velocity distrbution is

u = Uy/b v = w = 0,



Problem 3.3

Problem 3.4

Kinematics

terms of the streamfunction.
nctions of rand e, the chain

t (:~)e'

se + u sine. (3.41)

quation (3.40) implies a1//ar

Therefore, the polar velocity

t the derivative of 1/ gives the
he direction of differentiation.

irdinates. The chain rule gives

sin e a1/---
r ae

,,/

..
x

ne polar coordinates.

Exercise 77

Differentiating this with respect to x, and following a similar rule, we obtain

a21/ = cose~ (cose a 1/ _ sine a1/J _ sine ~ (cose a1/ _ sine a1/J.
ax2 ar ar r ae r ae ar r ae

(3.42)

In a similar manner,

a21/ . e a (. ea1/ cose a1/J cose a (. a1/ cose a1/J-=sm - sm -+-- +-- sme-+-- .ay2 ar ar r ae r ae -ar r ae
(3.43)

The addition of equations (3.41) and (3.42) leads to

a21/ a21/ i a (a1/) i a21/
ax2 + ay2 = -; ar ra; + r2 ae2 = 0,

which completes the transformation.

Exercises
1. A two-dimensional steady flow has velocity components

u =y v =x.

Show that the streamines are rectangular hyperbolas

x2 _ y2 = const.

Sketch the flow pattern, and convince yourself that it represents an irrotational flow
in a 90° comer.

2. Consider a steady axisymmetrc flow of a compressibla fluid. The equation
of continuity in cylindrcal coordinates (R, cp, x) isa a

-(pRUR) + -(pRux) = O.aR ax
Show how we can define" a streamfnction so that the equation of contiuity is satisfied
automatically.

3. !fa velocity field is given by u = ay, compute the circulation around a circle
of radius r = i about the origin. Check the result by using Stokes' theorem.

4. Consider a plane Couette flow of a viscous fluid confined between two flat
plates at a distance b apar (see Figure 9.4c). At steady state the velocity distrbution is

u = Uy/b v = w = 0,
78 Kinef1atic.~

where the upper plate at y = b is moving parallel to itself at speed U, and the lower
plate is held stationary. Find the rate of linear strain, the rate of shear strain, and
vorticity. Show that the streamfunction is given by

Uy2
1/ = - +const.2b

5. Show that the vortcity for a plane flow on the xy-plane is given by

_ (a21/ a21/)
Wz - - ax2 + ay2 .

Using this expression, find the vorticity for the flow in Exercise 4.

6. The velocity components in an unsteady plane flow are given by

xu=-1+ t
2yand v = -.2+t

Describe the path lines and the streamlines. Note that path lines are found by following
the motion of each paricle, that is, by solving the differential equations

dx/dt = u(x, t) and dy/dt = vex, t),
subject to x = Xo at t = O.

7. Determne an expression for 1/ for a Rankine vortex (Figure 3.17b), assuming
that ue = U at r = R.

8. Take a plane polar element of fluid of dimensions dr and r de. Evaluate the
right-hand side of Stokes' theorem

f w. dA = f u. ds,
and thereby show that the expression for vorticity in polar coordinates is

i ( a aUr JWz=- -(rue)-- .r ar ae
Also, find the expressions for Wr and we in polar coordinates in a similar manner.

9. The velocity field of a certain flow is given by

u = 2xy2 + 2xi, v = x2y, w = x2z.

Consider the fluid region inside a spherical volume x2 + y2 + z2 = a2. Verify the
validity of Gauss' theorem

f V .UdV=:I u.dA,

by integrating over the sphere.

r



Problem 3.4

Problem 3.5

78 Kinef1atic.~

where the upper plate at y = b is moving parallel to itself at speed U, and the lower
plate is held stationary. Find the rate of linear strain, the rate of shear strain, and
vorticity. Show that the streamfunction is given by

Uy2
1/ = - +const.2b

5. Show that the vortcity for a plane flow on the xy-plane is given by

_ (a21/ a21/)
Wz - - ax2 + ay2 .

Using this expression, find the vorticity for the flow in Exercise 4.

6. The velocity components in an unsteady plane flow are given by

xu=-1+ t
2yand v = -.2+t

Describe the path lines and the streamlines. Note that path lines are found by following
the motion of each paricle, that is, by solving the differential equations

dx/dt = u(x, t) and dy/dt = vex, t),
subject to x = Xo at t = O.

7. Determne an expression for 1/ for a Rankine vortex (Figure 3.17b), assuming
that ue = U at r = R.

8. Take a plane polar element of fluid of dimensions dr and r de. Evaluate the
right-hand side of Stokes' theorem

f w. dA = f u. ds,
and thereby show that the expression for vorticity in polar coordinates is

i ( a aUr JWz=- -(rue)-- .r ar ae
Also, find the expressions for Wr and we in polar coordinates in a similar manner.

9. The velocity field of a certain flow is given by

u = 2xy2 + 2xi, v = x2y, w = x2z.

Consider the fluid region inside a spherical volume x2 + y2 + z2 = a2. Verify the
validity of Gauss' theorem

f V .UdV=:I u.dA,

by integrating over the sphere.

r



Problem 3.5

Problem 3.7

78 Kinef1atic.~

where the upper plate at y = b is moving parallel to itself at speed U, and the lower
plate is held stationary. Find the rate of linear strain, the rate of shear strain, and
vorticity. Show that the streamfunction is given by

Uy2
1/ = - +const.2b

5. Show that the vortcity for a plane flow on the xy-plane is given by

_ (a21/ a21/)
Wz - - ax2 + ay2 .

Using this expression, find the vorticity for the flow in Exercise 4.

6. The velocity components in an unsteady plane flow are given by

xu=-1+ t
2yand v = -.2+t

Describe the path lines and the streamlines. Note that path lines are found by following
the motion of each paricle, that is, by solving the differential equations

dx/dt = u(x, t) and dy/dt = vex, t),
subject to x = Xo at t = O.

7. Determne an expression for 1/ for a Rankine vortex (Figure 3.17b), assuming
that ue = U at r = R.

8. Take a plane polar element of fluid of dimensions dr and r de. Evaluate the
right-hand side of Stokes' theorem

f w. dA = f u. ds,
and thereby show that the expression for vorticity in polar coordinates is

i ( a aUr JWz=- -(rue)-- .r ar ae
Also, find the expressions for Wr and we in polar coordinates in a similar manner.

9. The velocity field of a certain flow is given by

u = 2xy2 + 2xi, v = x2y, w = x2z.

Consider the fluid region inside a spherical volume x2 + y2 + z2 = a2. Verify the
validity of Gauss' theorem

f V .UdV=:I u.dA,

by integrating over the sphere.

r



Problem 3.7

Problem 3.8

78 Kinef1atic.~

where the upper plate at y = b is moving parallel to itself at speed U, and the lower
plate is held stationary. Find the rate of linear strain, the rate of shear strain, and
vorticity. Show that the streamfunction is given by

Uy2
1/ = - +const.2b

5. Show that the vortcity for a plane flow on the xy-plane is given by

_ (a21/ a21/)
Wz - - ax2 + ay2 .

Using this expression, find the vorticity for the flow in Exercise 4.

6. The velocity components in an unsteady plane flow are given by

xu=-1+ t
2yand v = -.2+t

Describe the path lines and the streamlines. Note that path lines are found by following
the motion of each paricle, that is, by solving the differential equations

dx/dt = u(x, t) and dy/dt = vex, t),
subject to x = Xo at t = O.

7. Determne an expression for 1/ for a Rankine vortex (Figure 3.17b), assuming
that ue = U at r = R.

8. Take a plane polar element of fluid of dimensions dr and r de. Evaluate the
right-hand side of Stokes' theorem

f w. dA = f u. ds,
and thereby show that the expression for vorticity in polar coordinates is

i ( a aUr JWz=- -(rue)-- .r ar ae
Also, find the expressions for Wr and we in polar coordinates in a similar manner.

9. The velocity field of a certain flow is given by

u = 2xy2 + 2xi, v = x2y, w = x2z.

Consider the fluid region inside a spherical volume x2 + y2 + z2 = a2. Verify the
validity of Gauss' theorem

f V .UdV=:I u.dA,

by integrating over the sphere.

r



Problem 3.8

Problem 3.10Kinematic.~
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10. Show that the vorticity field for any flow satisfies

V..w=o.
i 1. A flow field on the xy-plane has the velocity components

U = 3x + y v = 2x - 3y.

Show that the circulation around the circle (x - 1)2 + (y - 6)2 = 4 is 4rr.

12. Consider the solid-body rotation

Ue = wor Ur = O.

Take a polar element of dimension r de and dr, and verify that the circulation is
vorticity times area. (In Section i I we performed such a verification for a circular
element surounding the origin.)

13. Using the indicial notation (and without using any vector identity) show that
the acceleration of a fluid particle is given by

au ( I )
a = - + V - q2 + w x u,at 2

where q is the magnitude of velocity u and w is the vorticity.

14. The definition of the streamfunction in vector notation is

u = -k x V1/,

where k is a unit vector perpendicular to the plane of flow. Verify that the vector
definition is equivalent to equations (3.35).

Supplemental Reading
Ars, R. (1962). Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Englewood Cliffs, NJ:

Prentice-HalL. (The distinctions among streamlines, path lines, and streak lines in unsteady flows are
explained; with examples.)

Prandtl, L. and O. C. Tietjens (1934). Fundamentals of Hydro- and Aeromechanics, New York: Dover
Publications. (Chapter V contains a simple but useful treatmnt of kinematics.)

Prandtl, L. and O. G. Tietjens (1934). Applied Hydro- and Aeromechanics, New York: Dover Publications.
(Ths volume contains classic photographs from Prandtls laboratory.)



Problem 3.10

• Continuity (Mass)


• Navier-Stokes (Force, Momentum)


• Energy

Equations of Fluid Dynamics 
(Conservation Laws)



Integral Relations 
(Section 4.2)

(Reynolds Transport Theorem)

Moving volume, V(t), at velocity U

Integral Relations 
(Section 4.2)

Conserved material, ρ



Continuity
Mass

Newton’s Law



Momentum

Models for Stress



Navier & Stokes

George Stokes

(1819-1903)

Claude-Lewis Henri Navier

(1785-1836)

Stokesian Fluid



Navier-Stokes Equation

Navier-Stokes & Euler



Energy

The Importance of Viscosity



Creation of Vorticity

(Note: Flow at thin layer at surface of cylinder vanishes.)

Summary

• The equations of fluid dynamics are 
dynamical conservation equations:


• Mass conservation


• Momentum changes via total forces 
(body and surface forces)


• Energy conservation


