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Vladimir Zakharov was born in Kazan, Russian SFSR in
1939, to Evgeniy and Elena Zakharov, an engineer and a
schoolteacher. He studied at the Moscow Power
Engineering Institute and at the Novosibirsk State
University, where he received his specialist degree in
physics in 1963 and his Candidate of Sciences degree in
1966, studying under Roald Sagdeev.

Awarded the Dirac Medal in 2003 for his work on
turbulence.




PhySics

spotlighting exceptional research

Home About Browse APS Journals

Focus: New Type of Turbulence on North Carolina’s Coast

Published September 2, 2014 | Physics 7, 89 (2014) | DOI: 10.1103/Physics.7.89

Analysis of sea surface height measurements during a storm in North Carolina’s Outer Banks has led to the first

observation of an unusual form of turbulence.

The chaotic fluid motion known as turbulence is notoriously difficult to
describe precisely and to understand theoretically. In Physical Review
Letters researchers report the first detection of a type of turbulence
posited theoretically several decades ago, in which fluid flow can be
modeled as a collection of the individual wave motions known as
solitons. Such clean observations of predicted phenomena are rare in
the study of turbulence, so experts see it as an important step. But
some theoretical puzzles remain.

A soliton in water is a single *hump” that propagates without changing
shape and can appear when the water depth is not much greater than
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the wave amplitude (see Focus Landmark from 2013). Solitons are
solutions of the Korteweg-deVries (KdV) equation, a nonlinear equation
that governs wave motion in this situation.

Turbulent Times
Synopsis | Jul 29, 2014

What Makes a Droplet Splash?
In general, turbulent flow consists of waves and eddies co-existing on Focus | Jul 11, 2014
many length scales, forming a constantly changing pattern that can't be
represented as a sum of simpler motions. Over 40 years ago, Viadimir
Zakharov, working at what is now the Budker Institute for Nuclear
Physics in Novosibirsk, Russia, conceived of a novel kind of turbulence
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Soliton Turbulence in Shallow Water Ocean Surface Waves

PRL 113, 108501 (2014)
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We analyze shallow water wind waves in Currituck Sound, North Carolina and experimentally confirm,
for the first time, the presence of soliton turbulence in ocean waves. Soliton turbulence is an exotic form of
nonlinear wave motion where low frequency energy may also be viewed as a dense soliton gas, described
theoretically by the soliton limit of the Korteweg—deVries equation, a completely integrable soliton system:
Hence the phrase “soliton turbulence” is synonymous with “integrable soliton turbulence.” For periodic-
quasiperiodic boundary conditions the ergodic solutions of Korteweg—deVries are exactly solvable by finite
gap theory (FGT), the basis of our data analysis. We find that large amplitude measured wave trains near the
energetic peak of a storm have low frequency power spectra that behave as ~»~'. We use the linear Fourier
transform to estimate this power law from the power spectrum and to filter densely packed soliton wave
trains from the data. We apply FGT to determine the soliton spectrum and find that the low frequency ~a ™!
region is soliton dominated. The solitons have random FGT phases, a soliton random phase approximation,
which supports our interpretation of the data as soliton turbulence. From the probability density of the
solitons we are able to demonstrate that the solitons are dense in time and highly non-Gaussian.

DOI: 10.1103/PhysRevLett.113.108501 PACS numbers: 92.10.Hm, 92.10.Lq, 92.10.Sx




week ending

PRL 113, 108501 (2014) PHYSICAL REVIEW LETTERS 5 SEPTEMBER 2014
1 o
0.8 To
€ 06 50
(0] 40
Soall [ g | e 40 i | [ | i
3 1 Y 11 PO I T A Y 1 R R A PO N O
£ 02 " | " I —
i i H H i | ' i lo
g ° ! o
-0.2 Lk I
04! T T T T T T T =30
0 200 400 600 800 1000 1200 1400 1600
Time - sec

FIG. 1 (color online). Measured surface wave time series of 8192 points (27.96 min, sampling interval 0.2048 s, black curve) from
Currituck Sound beginning at 21:00 h on 4 February 2002. The significant wave height was 0.52 m in a depth of 2.63 m. The red curve is

the low frequency soliton signal obtained by low pass filtering the (black) measured time series.
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FIG. 6 (color online). Two measured wave trains (black) together with the underlying soliton trains obtained by low pass filtering of  FIG. 2 (color online). Power spectrum of the measured time

the data (red). The results show how large solitons tend to occur under large packets.

series in Fig. 1. Validity intervals for KdV (f < 0.22 Hz) and

NLS (0.34 Hz < f < 0.56 Hz) are shown. Exact power laws (red
lines) are shown in the low-frequency soliton turbulent region

(~f~") and high-frequency cascade region (~f~*).

Surface Tension and
Contact Angle

In 1804, Young developed the theory of capillary phenomena
on the principle of surface tension. He also observed the
constancy of the angle of contact of a liquid surface with a
solid, and showed how from these two principles to deduce the
phenomena of capillary action. In 1805, Pierre-Simon Laplace,
the French philosopher, discovered the significance of
meniscus radii with respect to capillary action.

In 1830, Carl Friedrich Gauss, the German mathematician,
unified the work of these two scientists to derive the Young-
Laplace equation, the formula that describes the capillary
pressure difference sustained across the interface between
two static fluids.

Thomas Young
1773 - 1829

https://en.wikipedia.org/wiki/Thomas_Young_(scientist)
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Editors' Suggestion

Detaching Microparticles from a Liquid Surface

Frank Schellenberger,1 Periklis Papadopoulos,2 Michael Kappl,1 Stefan A.L. Weber,
Doris Vollmer,' and Hans-Jiirgen Butt"”
'Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
2University of loannina, Department of Physics, P.O. Box 1186, 45110 loannina, Greece
3 Johannes Gutenberg University, Department of Physics, Staudingerweg 10, 55128 Mainz, Germany

‘W (Received 23 February 2018; revised manuscript received 30 May 2018; published 27 July 2018)

The work required to detach microparticles from fluid interfaces depends on the shape of the liquid
meniscus. However, measuring the capillary force on a single microparticle and simultaneously imaging
the shape of the liquid meniscus has not yet been accomplished. To correlate force and shape, we combined
a laser scanning confocal microscope with a colloidal probe setup. While moving a hydrophobic
microsphere (radius 5-10 xm) in and out of a 2—5 um thick glycerol film, we simultaneously measured the
force and imaged the shape of the liquid meniscus. In this way we verified the fundamental equations
[D. FE. James, J. Fluid Mech. 63, 657 (1974); A. D. Scheludko, A. D. Nikolov, Colloid Polymer Sci. 253,
396 (1975)] that describe the adhesion of particles in flotation, deinking of paper, the stability of Pickering
emulsions and particle-stabilized foams. Comparing experimental results with theory showed, however,
that the receding contact angle has to be applied, which can be much lower than the static contact angle
obtained right after jump in of the particle.

DOI: 10.1103/PhysRevLett.121.048002

F =2nayRsinfsina = 2zyRsin fsin(® + f). (1)

(@) (b)

Particle

Liquid

Particle

o N\ Liquid film
Objective Cover slide
lens —
Beam
. Detector
splitter

Scanning I
mirrors I

Laser Pinhole

FIG. 1. (a) Schematic setup combining a colloidal probe setup
with a confocal microscope. Position sensitive device (PSD).
(b) Schematic of a particle in contact with a liquid film on a solid
substrate.




Scalars, Vectors, &Tensors

® Scalars: mass density (p), temperature (T),
concentration (S), charge density (pq)

® Vectors: flow (U), force (F), magnetic field (B),
current density (J), vorticity (Q)

® Tensors: stress (1), strain rate (¢), rotation (R),
identity (I)

How to work and operate with tensors...

What is a Tensor?
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Ch 2: Problem 4

4, Show that
c.C'=cT.c=3,

where C is the direction cosine matrix and § is the matrix of the Kronecker delta.
Any matrix obeying such a relationship is called an orthogonal matrix because it
represents transformation of one set of orthogonal axes into another.




Rotation Matrix is Orthogonal
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Vector Identities

Notation: f, g, are scalars; A, B, etc., are vectors; T is a tensor; / is the unit
dyad.

(1) A-BXC=AxB-C=B-CxA=BxC-A=C-AxB=CxA-B
2)Ax(BxC)=(CxB)xA=(A-C)B- (A -B)C
B)YAX(BxC)+BXx(CxA)+Cx(AxB)=0

(4) (AxB)-(CxD)=(A-C)(B-D)—(A-D)(B-C)
B)(AxB)x(CxD)=(AxB-D)C—-(AxB-C)D

(6) V(fg) =V(9f) = fVg+gVf

(MV-(fA)=fV-A+A-Vf

B)VX(fA)=fVXA+VfXA

9V - (AxB)=B-VxA-A-VxB

(10) Vx(AxB)=A(V-B)-B(V-A)+(B-V)A—-(A-V)B
(11) Ax(VxB)=(VB)-A—-(A-V)B

(12) VIA-B)=Ax (VxB)+Bx (VxA)+ (A-V)B+ (B-V)A
(13) V2f =V .- Vf

(14) V2ZA=V(V-A) -V XV xA

(15) VX Vf =0

(16) V-VXxA=0
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Scalar Product
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Permutation Tensor
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Gradient Operator (Scalar)
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In class Problem

Ch. 2 Question 10

Prove U .Ut =0 Fon Ay VECD? FECD
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Ch. 2 Question 11
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Ch 2: Problem 5

5. Show that for a second-order tensor A, the following three quantities are
invariant under the rotation of axes:

I = Ay

I, = An A Az Ax An Az
2 An Ap Azp Az A3l Asz
I3=d€t(Aij).

[Hint: Use the result of Exercise 4 and the transformation rule (2.12) to show that
I; = A}, = A;; = I;. Then show that AijAji and A;; A i Ay are also invariants. In
fact, all contracted scalars of the form A; jAjk - -+ Ami are invariants. Finally, verify
that

L =3I} — AijAji)
I3 = AijAjkAri — hAijAji + DA

Because the right-hand sides are invariant, so are /, and /3.]




Ch 2: Problem 5

Iy = Ay

Al Ap n A3 A
Ay Axp Az Ass
I = dCt(A,'j).

Ap A
A3y Asz

Chapter 2 : Problem 5

Kundu & Cohen, Fluid Dynamics A . : : .
ing)= rhs = Expand[(Sum[a[i, j] a[], k] a[k, i], {i, 3}, {j, 3}, {k, 3}] -
ilsum[a[i, j] a[j, i1, {i, 3}, {3, 3}] + i2i1)/3]
= Parta oufe)= -a[l, 3] a[2, 2] a[3, 1] +a[l, 2] a[2, 3] a[3, 1] +a[l, 3] a[2, 1] a[3, 2] -
i~ il = Sum[a[i, i], {i, 3}] afl, 1] a(2, 3] a[3, 2] -a[l, 2] a[2, 1] a[3, 3] +a[l, 1] a[2, 2] a[3, 3]
our- afl, 1] +a[2, 2] +a[3, 3] 10}~ detA - rhs // Simplify
= Partbh out[10}= 0

In2~ Expand[Sum[a[i, j]a[j, i1, {i, 3}, {3, 3}]]
ouz- afl, 11%+2a[l, 2] a[2, 1] +a[2, 2]*+2a[l, 3] a[3, 1] +2a[2, 3] a[3, 2] +a[3, 3]%
inz}= i2 = Expand[(il1"2 - Sum[a[i, j]a[j, i1, (i, 3}, {3, 3}])/2]

oua- -all, 2]af2, 1] +a[l, 1] a[2, 2] -a[1, 3] a[3, 1] -a[2, 3] a[3, 2] +a[l, 1] a[3, 3] +a[2, 2] a[3, 3]

= Partc

inj4j- Array[a, {3, 3}] // MatrixForm
Outf4yMatrixForm
all, 1] all,2] a[l,3])
a2, 1] al2,2] a[2,3]
\a[3, 1] af3,2] a[3,3])

ins)- detA = Det[Array([a, {3, 3}1]

al2, 2]
a

2]a[3, 1] +all, 2] a[2, 3] a[3, 1] +a[l, 3] a[2, 1]
2, 3]

ousl= -af[l, 3]
all, [3,2] -all, 2] a[2, 1] a[3, 3] +a[l, 1] a[2, 2]

a
1] a
in6}= Expand[Sum[a[i, j]a[], k] alk, i], {i, 3}, {3, 3}, {k, 3}]]

ouel- all, 11*+3a[l, 1] a[l, 2] a[2, 1] +3a[l, 2] a(2, 1] a[2, 2] +a[2, 2]%+
3afl, 1] a[l, 3] a[3, 1] +3a[l, 2] a[2, 3] a[3, 1] +3a[l, 3] a[2, 1] a[3, 2] +
3al2,2]al2,3]a[3,2]+3a[l,3]a[3,1]a[3,3]+3a[2,3]a[3,2]a[3,3]+al3,3 3

in7)= Expand[ilSum[a[i, j]a[]j, i], {i, 3}, {3, 3}]]

oup- all, 11°+2a[l, 1] all, 2] al2, 1] +a[1, 1]%a(2, 2] +2a(1, 2] a[2, 1] a[2, 2] +a[l, 1] a[2, 2]° +
a[2,2)*+2a[1, 1]a[l, 3] a[3, 1] +2a[l, 3] a[2, 2] a[3, 1] +2a[l, 1] a[2, 3] a[3, 2] +
2a[2, 2]a(2, 3] a[3, 2] +a[l, 1]%a[3, 3] +2a[l, 2] a[2, 1] a[3, 3] +a[2, 2]%a[3, 3] «

2a[1, 3] al3, 1] a[3, 3] +2a[2, 3] a[3, 2] a(3, 3] +a[l, 1] a[3, 3]*+a[2, 2] a[3, 3]* +a(3, 3]°

s}~ Expand[ i2 il1]

oug- -all, 1]a[l, 2] a[2, 1] +a[l, 1]%a[2, 2] -a[l, 2] a[2, 1] a[2, 2] +a[l, 1] a[2, 2]%-
afl, 1] all, 3] a(3,1]-all, 3] a2, 2]a[3,1]-a[l,1]a[2,3]al3,2]-a[2,2]al2,3]a[3, 2]+
a[1, 1]%a[3, 3] -a[1, 2] a[2, 1] a[3, 3] +3a[l, 1] a(2, 2] a(3, 3] +a(2, 2]%a[3, 3] -
a[l, 3] a[3, 1] a[3, 3] -a[2, 3] a[3, 2] a[3, 3] +a[l, 1]a[3, 3]*+a[2, 2] a[3, 3]°
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Antisymmetric Tensor
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Vector Fields and Trajectory Lines
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Laplacian
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Greens (or Gauss') Theorem
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Greens Theorem Variants

If V is a volume enclosed by a surface S and dS = ndS, where n is the unit
normal outward from V,
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Stokes’ Theorem

M

S

C
ff oxz . 2ds = § Z.4u
s | c

( D‘r Soumn tag /N FfMTESl:M—fc SO FAcE
ELéEm £~‘7‘.\')

Stokes’ Theorem Variants

If S is an open surface bounded by the contour C, of which the line element is
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Classification of Vector Fields
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Solenoidal Field
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Summary

Vectors & tensors transform under coordinate rotation like
position vector

Vector operators: scalar product, vector product, triple scalar
product, triple vector product

Tensors: isotropic, symmetric, antisymmetric, orthogonal
Calculus of vectors: derivative, gradient, divergence, curl
Gauss’ & Stokes’ Theorems

Classification of Vector Fields: irrotational, solenoidal, ...

Next Lecture: Kinematics of fluids




