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We analyze shallow water wind waves in Currituck Sound, North Carolina and experimentally confirm,
for the first time, the presence of soliton turbulence in ocean waves. Soliton turbulence is an exotic form of
nonlinear wave motion where low frequency energy may also be viewed as a dense soliton gas, described
theoretically by the soliton limit of the Korteweg–deVries equation, a completely integrable soliton system:
Hence the phrase “soliton turbulence” is synonymous with “integrable soliton turbulence.” For periodic-
quasiperiodic boundary conditions the ergodic solutions of Korteweg–deVries are exactly solvable by finite
gap theory (FGT), the basis of our data analysis. We find that large amplitude measured wave trains near the
energetic peak of a storm have low frequency power spectra that behave as ∼ω−1. We use the linear Fourier
transform to estimate this power law from the power spectrum and to filter densely packed soliton wave
trains from the data. We apply FGT to determine the soliton spectrum and find that the low frequency ∼ω−1

region is soliton dominated. The solitons have random FGT phases, a soliton random phase approximation,
which supports our interpretation of the data as soliton turbulence. From the probability density of the
solitons we are able to demonstrate that the solitons are dense in time and highly non-Gaussian.
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The physical basis of weak wave turbulence was
developed by Zakharov and Filonenko [1]. They inves-
tigated the theoretical power spectrum for ocean surface
waves and demonstrated that in deep water the direct
cascade of energy—from the spectral peak to higher
frequencies in the spectral tail—should be of the form
EðωÞ ∼ ω−4. This theoretical result was confirmed in
subsequent work [2,3] in which the power law was found
to be an exact solution of the kinetic equation for the waves.
The expansion used in this computation is only up to the
third order in wave steepness and thus the theory is referred
to as “weak turbulence.” Both numerical and experimental
confirmations have been found [4–10]. Zakharov [2,3]
also found the Kolmogorov spectrum for shallow water
weak wave turbulence. The inverse cascade of wave action
to large scale or small frequency is a power law:
Iω ∼Q1=3ω−1, where Q is the flux of action.
The theory of integrable soliton turbulence, as used here

to analyze ocean wave data, is based on the discovery of
complete integrability for the Korteweg–deVries (KdV)
equation:

ηt þ c0ηx þ αηηx þ βηxxx ¼ 0 ð1Þ

(co ¼
ffiffiffiffiffi
gh

p
, α ¼ 3co =2h, β ¼ co h2=6, for h the water

depth, g the gravitational acceleration), valid for small

but finite amplitude, long waves in shallow water. KdV is
integrated by the inverse scattering transform (IST) on the
infinite line [11]. Zakharov has studied this shallow water
case [12,13] for integrable turbulence for a rarified soliton
gas. He derived a soliton-gas kinetic equation for the KdV
equation using the IST. More recently, the kinetic equation
for a dense soliton gas for integrable nonlinear wave
equations has been found by El and Kamchatnov [14]
by taking the thermodynamic limit of the Whitham
equations to obtain a nonlinear integrodifferential equation
for the spectral measure. This result generalizes Zakharov’s
case for a rarified soliton gas.
The other equation we refer to herein is the nonlinear

Schrödinger (NLS) equation which describes nonlinear
wave packet dynamics

iðψ t þ CgψxÞ þ μψxx þ νjψ j2ψ ¼ 0 ð2Þ

(Cg, μ, and ν are depth dependent constants [15]). The NLS
equation is approximately valid in a narrow band about the
spectral peak. We use NLS here mainly to ensure the
separation of long wave (KdV) and short wave (NLS)
scales as discussed below in the data analysis.
Herein we test to ensure that the measured time series

are stationary and ergodic, a standard procedure for the
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analysis of ocean waves. The fast Fourier transform (FFT, a
periodic algorithm) is the most often used method for data
analysis. Likewise finite gap theory [16] (nonlinear Fourier
analysis for KdV which is also periodic) is used to analyze
and interpret the measured Currituck Sound data using the
methods of [17]. This means that we are able to deal, from a
theoretical and data analysis point of view, with the densely
packed solitons found in the data. Herein, our use of the
term soliton turbulence is synonymous with integrable
soliton turbulence as discussed in the theoretical literature
[12–14]. The ω−1 theoretical power law of Zakharov [2,3]
for shallow water weak wave turbulence is not applicable
to high density soliton interactions with strongly non-
Gaussian behavior as addressed experimentally herein.

A confirmation of the theoretical behavior of soliton
dynamics of integrable soliton gases came from numerical
simulations using FGT [18]. The method was applied to
construct realizations of KdV random processes with a
power law spectrum k−γ and uniformly distributed FGT
phases. These highly nonlinear cases consisted of ener-
getic, densely packed solitons in low-level radiation.
Direct experimental verification of soliton turbulence in

the ocean has remained unconfirmed for over four decades.
One obstacle has been the impossibility of distinguishing
by eye solitons from the large radiative (wind) waves in
experimental data. This difficulty was overcome in [19]
using a nonlinear filtering technique—based on FGT for
KdV—to extract solitons from surface wave data obtained
in the Adriatic Sea.

FIG. 1 (color online). Measured surface wave time series of 8192 points (27.96 min, sampling interval 0.2048 s, black curve) from
Currituck Sound beginning at 21:00 h on 4 February 2002. The significant wave height was 0.52 m in a depth of 2.63 m. The red curve is
the low frequency soliton signal obtained by low pass filtering the (black) measured time series.

Soliton turbulence region: 
Low frequency, large scales

Weak wave 
turbulence: High 
frequency, small 

scales

NLS modulational scales
near peak of spectrum

Spectral minimum 
characterized by water 

depth h = 2.63 m

Benjamin-Feir instability

Zero crossing frequency

P
ow

er
 S

pe
ct

ra
l A

m
pl

itu
de

 -
 m

2

f –1

f –4

FIG. 2 (color online). Power spectrum of the measured time
series in Fig. 1. Validity intervals for KdV (f < 0.22 Hz) and
NLS (0.34 Hz < f < 0.56 Hz) are shown. Exact power laws (red
lines) are shown in the low-frequency soliton turbulent region
(∼f−1) and high-frequency cascade region (∼f−4).
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FIG. 3 (color online). Least squares fit spectral power laws of
the experimentally determined solitonic wave trains at different
hours during a Currituck Sound storm on 04/02/2002. The power
spectra have been vertically shifted for clarity.
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the soliton interpretation of the data. In the second method
(ii) we use the Fourier transform to obtain the power
spectrum to estimate the slope of the power law γ (Fig. 3).
In the third and forth methods (iii),(iv) we apply FGT to
compute the nonlinear spectrum to determine whether the
power law spectrum computed from the linear Fourier
transform arises strictly from solitons: For each elliptic
modulus near 1 we have a soliton component. FGT
demonstrates that the soliton modes saturate the low-
frequency part of the power spectrum, spanning the region
of the ∼f−1 power law.
The nonlinear physics corresponds to a dense soliton gas

as seen in the nonlinear spectrum and probability density
function (Fig. 7). For each of the 14 time series near the
storm peak there are about 120 solitons that appear in
the region of the low frequency power spectra characterized
by a power law γ ∼ 1.043! 0.074. The average full width
at half maximum of each soliton is about 10.5 s
(1258 s=120 solitons): roughly half of the solitons are

smaller (and broader) than the average soliton (6.3 cm
height) and are therefore more densely packed than the
average, while the remaining half of the solitons are larger
(and more narrow) than the average and are thus less dense
and easily seen as the largest solitons in Figs. 1, 4, and 5.
We also find that the FGT phases of the solitons are random
numbers on (0, 2π), thus connecting integrable FGTwith a
statistical description of the data, the solitonic random
phase approximation of FGT [18]: Our data are described
by soliton FGT modes with random phases, which is
soliton turbulence, the random soliton limit of KdV.
Reasons why the Currituck Sound experiment has been

able to successfully measure soliton turbulence include
the following: (i) The shallow water depth allows for the
generation of long wave solitonic components. (ii) The
particular depth of 2.6 m divides the low frequency KdV
region of the spectrum from the high frequency NLS
region. (iii) Large wave conditions occurred at the peak
of the storm on 5/2/2002, thus providing a large range of
nonlinear frequency scale interactions in the spectrum.
(iv) Use of FGT allows us to determine the presence of
soliton turbulence in the spectrum of the data.
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FIG. 6 (color online). Two measured wave trains (black) together with the underlying soliton trains obtained by low pass filtering of
the data (red). The results show how large solitons tend to occur under large packets.

FIG. 7 (color online). FGT Soliton spectrum of the measured
wave train in Fig. 1(a). Histogram of soliton amplitudes from
Fig. 5(b). The highly non-Gaussian nature of the solitons is clear.
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Surface Tension and 
Contact Angle

In 1804, Young developed the theory of capillary phenomena 
on the principle of surface tension. He also observed the 
constancy of the angle of contact of a liquid surface with a 
solid, and showed how from these two principles to deduce the 
phenomena of capillary action. In 1805, Pierre-Simon Laplace, 
the French philosopher, discovered the significance of 
meniscus radii with respect to capillary action. 

In 1830, Carl Friedrich Gauss, the German mathematician, 
unified the work of these two scientists to derive the Young–
Laplace equation, the formula that describes the capillary 
pressure difference sustained across the interface between 
two static fluids.

Thomas Young
1773 – 1829https://en.wikipedia.org/wiki/Thomas_Young_(scientist)
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The work required to detach microparticles from fluid interfaces depends on the shape of the liquid
meniscus. However, measuring the capillary force on a single microparticle and simultaneously imaging
the shape of the liquid meniscus has not yet been accomplished. To correlate force and shape, we combined
a laser scanning confocal microscope with a colloidal probe setup. While moving a hydrophobic
microsphere (radius 5–10 μm) in and out of a 2–5 μm thick glycerol film, we simultaneously measured the
force and imaged the shape of the liquid meniscus. In this way we verified the fundamental equations
[D. F. James, J. Fluid Mech. 63 , 657 (1974); A. D. Scheludko, A. D. Nikolov, Colloid Polymer Sci. 253 ,
396 (1975)] that describe the adhesion of particles in flotation, deinking of paper, the stability of Pickering
emulsions and particle-stabilized foams. Comparing experimental results with theory showed, however,
that the receding contact angle has to be applied, which can be much lower than the static contact angle
obtained right after jump in of the particle.

DOI: 10.1103/PhysRevLett.121.048002

Most micro- and nanoparticles spontaneously attach to
liquid interfaces. Particle attachment and colloidal assembly
at fluid interfaces [1–6] are of broad interest. For example,
particles at fluid interfaces stabilize Pickering emulsions
[7–10], foams [11,12], and liquid marbles [13–15]. The
efficiency of mineral flotation or the deinking of paper is
largely determined by the detachment probability of particles
from bubble surfaces [16–18].
Since capillary forces are so relevant, they have been

studied intensely, primarily with spherical particles as a
model. When pulling a particle out of a liquid-fluid
interface, a meniscus is formed which causes a retracting
capillary force. This capillary force has been measured for
millimeter-sized particles [16,19–21] down to 0.3 mm
diameter [22]. Here, the size of the particle is comparable
to the capillary length κ ¼

ffiffiffiffiffiffiffiffiffiffi
γ=ρg

p
; γ is the surface tension

of the liquid, ρ is the density of the liquid, and g ¼
9.81 m=s2 is the gravitational acceleration. For water,
κ ¼ 2.7 mm. Experiments with macroscopic spheres,
where gravitation is usually significant, showed that the
contact line slides over the surface at constant contact angle
when the particle is retracted from the interface. Most
applications are, however, concerned with microscopic
particles. Size matters. For microparticles, where gravity
is usually negligible as compared to capillary forces, the
capillary force has not been experimentally correlated with
the shape of a meniscus. So far capillary forces with
microparticles have been measured using the colloidal probe
technique for particle-bubble interaction [17,23–25],
particles in thin liquid films [26–28] or at extended planar

liquid-fluid interfaces [29–31]. In these measurements,
however, the shape of the liquid-fluid interface remained
unknown. In other experiments, microscopic menisci could
be imaged, e.g., by environmental scanning electron micros-
copy [32–34] or confocal microscopy [35,36], but not
correlated with a force. Therefore, many questions are still
open: How are the shape of the meniscus and the capillary
force related? Does the contact line slide over the particle
surface or is it pinned when a force acts on the particle? The
fact that we know little about the detachment of micro-
particles from interfaces is unfortunate, because particles
with diameter below 100 μm are relevant for applications. In
contrast to large particles, which are dominated by gravity
and inertia, microparticles are dominated by capillary forces.
Here, we measured the force on individual microspheres

and a liquid film versus distance using the colloidal probe
technique. Simultaneously, the shape of the liquid meniscus
was imaged by laser scanning confocal microscopy
[Fig. 1(a)]. In this way we can quantitatively correlate the
shape of the meniscus, the diameter of the contact line, and
the capillary force for individual spherical microparticles.
In addition, we can compare observations to theory.

Therefore, we give a brief outline of the fundamental theory.
The capillary force acting on a sphere normal to a liquid-fluid
interface is given by the direct action of the surface tension γ
integrated around the three-phase contact line [37,38]:

F ¼ 2πγR sin β sin α ¼ 2πγR sin β sinðΘ þ βÞ: ð1Þ

Here, R is the radius, β describes the position of the three-
phase contact line on the particle surface, Θ is the contact

PHYSICAL REVIEW LETTERS 121, 048002 (2018)
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0031-9007=18=121(4)=048002(6) 048002-1 © 2018 American Physical Societyangle, α is the angle of the liquid surface with the horizontal
[Fig. 1(b)].R sinβ is the radius of the contact line. The angles
are related by α ¼ 180° − β− Θ.
Of particular relevance for most applications is the

detachment force. The detachment force, also called
adhesion force, is the force required to remove a particle
out of the liquid-fluid interface. It is calculated by varying β
in Eq. (1) at constant contact angle Θ. The maximal force
is reached at βmax ¼ ðπ − ΘÞ=2. Inserting βmax into Eq. (1)
we obtain the detachment force of a sphere [38]:

Fmax ¼ 2πγRcos2
Θr

2
: ð2Þ

The physical picture behind Eq. (2) is the following:
When pulling on a sphere that is attached to a liquid-fluid
interface a meniscus is formed and more and more
stretched. While the meniscus extends, the contact line
slides over the surface of the particle at constant contact
angle Θ. β decreases and the capillary force increases until
β reaches ðπ − ΘÞ=2. Then the force decreases again.
Finally, the liquid meniscus becomes unstable and ruptures.
In Eq. (2) we take the receding contact angle Θr because
when pulling the particle into the vapor phase, the contact
line recedes over the particle surface. For millimeter sized
spheres, Eqs. (1) and (2) have been confirmed experimen-
tally [19,21,22,38,39]. The main aim of this work is to test
if the theory and its main assumptions also hold for
processes at length scales 2 orders of magnitude smaller.
To measure the force directly, spherical borosilicate glass

particles (Duke Scientific Corp., radii 6–10 μm) were glued
(Uhu Plus Endfest300, 2K Epoxy glue) to the end of
rectangular, tipless silicon cantilevers (AppNano, SPM
Probe ACL, spring constant kc ¼ 36–90 N=m) with the
help of a micromanipulator (Narishige, MM0-203). For
better reflectivity, the back sides of cantilevers were sputter
coated with 2 nm Cr and 30 nm Au. Prior to adding the
particle, we calibrated the spring constant with a reference
cantilever (CLFC, Bruker AFM probes) on a JPK

Nanowizard1. The particles on the cantilevers were hydro-
phobized by chemical vapor deposition for 1 h with
(1H,1H,2H,2H)-perfluorooctyl trichlorosilane. Glass slides
coated in a similar way showed advancing and receding
contact angles with glycerol of 107 $ 2° and 55 $ 5°,
respectively, as measured with the sessile drop and a
goniometer. To obtain force-displacement curves, the base
of the cantilever was moved up and down at constant
speed (0.3–1 μm=s) with the piezoelectric scanner of an
Asylum MFP-1D (“dynamic case”) or a JPK Nanowizard1
(“quasiequilibrium”). To convert force vs displacement to
force-vs-tip sample-distance curves (“force curves”), the
deflection of the cantilever was subtracted from the vertical
piezo displacement by a custom LabView program or the
JPK SPM data processing software.
The shape of the liquid film surface was imaged with a

homemade inverted laser scanning confocal microscope
(excitation laser wavelength: 473 nm, Cobolt Blue 25 mW)
and an Olympus UPlanSApo 40 × =0.95 dry objective.
Two detectors simultaneously recorded the reflected and
fluorescence lightwith a scanning frequency of 8000 lines=s.
For scanning, the objective was vertically moved by a piezo
stage underneath the sample to avoid affecting the force
measurements. The resolution was <400 nm in the hori-
zontal and <1 μm in the vertical direction.
As a liquid we chose glycerol (measured γ ¼

0.0635 N=m, refractive index n ¼ 1.47, density ρ ¼
1255 kg=m3 for our glycerol at 20 °C) to avoid evaporation
(see SupplementalMaterial [40] for details). To form films, a
dyed drop of a liquid mixture (1:1 vol % glycerol=ethanol þ
Alexa488 1 μg=mL) was deposited on glass slides (Carl
Roth GmbH, 170 μm thick, 24 × 60 mm2, cleaned with
ethanol, followed by 3 min in an oxygen plasma cleaner).
The liquid spread spontaneously. After evaporation of
ethanol, a closed liquid filmof 2–5 μm thickness has formed.
We waited 12 h to exclude dewetting. Within this time, the
glycerol film equilibrated with moisture from the surround-
ing air. The spherical particle on the cantilever was moved
into the focus of the confocal microscope, above the film and
within the range of the piezoelectric scanner. Vertical slices
through the center of the particle were imaged with
4 images=s.
The reflection signal was used to identify the point of

contact between microsphere and liquid. Fluorescence
images were analyzed to obtain the shape of the liquid
meniscus (Fig. S1 [40]). To locate the position of the liquid
surface hðxÞ at a given position x the fluorescence intensity
along a column (vertical direction y) was fitted with I ¼
I0=ð1 þ eðy−hÞ=bÞ after subtracting a low background inten-
sity. Here, I0 is the difference between the background
intensity and the intensity in the liquid. b is the width of the
intensity change. This procedure was repeated for every x
in an image. Finally, every value for the local film thickness
hðxÞ was corrected by the refractive index n ¼ 1.47.
To extract R, a circle was fitted to the data points

FIG. 1. (a) Schematic setup combining a colloidal probe setup
with a confocal microscope. Position sensitive device (PSD).
(b) Schematic of a particle in contact with a liquid film on a solid
substrate.
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where gravitation is usually significant, showed that the
contact line slides over the surface at constant contact angle
when the particle is retracted from the interface. Most
applications are, however, concerned with microscopic
particles. Size matters. For microparticles, where gravity
is usually negligible as compared to capillary forces, the
capillary force has not been experimentally correlated with
the shape of a meniscus. So far capillary forces with
microparticles have been measured using the colloidal probe
technique for particle-bubble interaction [17,23–25],
particles in thin liquid films [26–28] or at extended planar

liquid-fluid interfaces [29–31]. In these measurements,
however, the shape of the liquid-fluid interface remained
unknown. In other experiments, microscopic menisci could
be imaged, e.g., by environmental scanning electron micros-
copy [32–34] or confocal microscopy [35,36], but not
correlated with a force. Therefore, many questions are still
open: How are the shape of the meniscus and the capillary
force related? Does the contact line slide over the particle
surface or is it pinned when a force acts on the particle? The
fact that we know little about the detachment of micro-
particles from interfaces is unfortunate, because particles
with diameter below 100 μm are relevant for applications. In
contrast to large particles, which are dominated by gravity
and inertia, microparticles are dominated by capillary forces.
Here, we measured the force on individual microspheres

and a liquid film versus distance using the colloidal probe
technique. Simultaneously, the shape of the liquid meniscus
was imaged by laser scanning confocal microscopy
[Fig. 1(a)]. In this way we can quantitatively correlate the
shape of the meniscus, the diameter of the contact line, and
the capillary force for individual spherical microparticles.
In addition, we can compare observations to theory.

Therefore, we give a brief outline of the fundamental theory.
The capillary force acting on a sphere normal to a liquid-fluid
interface is given by the direct action of the surface tension γ
integrated around the three-phase contact line [37,38]:

F ¼ 2πγR sin β sin α ¼ 2πγR sin β sinðΘ þ βÞ: ð1Þ

Here, R is the radius, β describes the position of the three-
phase contact line on the particle surface, Θ is the contact
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Scalars, Vectors, &Tensors

• Scalars: mass density (ρ), temperature (T), 
concentration (S), charge density (ρq)


• Vectors: flow (U), force (F), magnetic field (B), 
current density (J), vorticity (Ω)


• Tensors: stress (τ), strain rate (ε), rotation (R), 
identity (I)

How to work and operate with tensors…

What is a Tensor?

In other words: a vector has a 
direction and magnitude …



Rotation about the z-Axis

Ch 2: Problem 4

.:.:~~--~~-

50 Cartesian Tensors

The indicial notation avoids all the problems mentioned in the preceding. The

algebraic manipulations are especially simple. The ordering of terms is unneces-

sary because A¡jBkl means the same thing as BkiAij. In this notation we deal with

components only, which are scalars. Another major advantage is that one does not

have to remember formulas except for the product eijkeklm, which is given by equa-

tion (2. 19). The disadvantage of the indicial notation is that the physical meaning of a

term becomes clear only after an examination of the indices. A second disadvantage

is that the cross product involves the introduction of the cumbersome e¡jk. This, how-
ever, can frequently be avoided by writing the i-component of the vector product of 0

and v as (0 x v)¡ using a mixture of boldface and indicial notations. In this book we

shall use boldface, indicial and mixed notations in order to take advantage of each. As

the reader might have guessed, the algebraic manipulations wil be performed mostly

in the indicial notation, sometimes using the comma notation.

Exercises
1. Using indicial notation, show that

.Í a x (b x c) = (a. c)b - (a. b)c.

(Hint: Call d == b x c. Then (a x d)m = epqmapdq = epqmap
e¡jqb¡cj. Using

equation (2.19), show that (a x d)m = (a. c)bm - (a. b)cm.)

2. Show that the condition for the vectors a, b, and c to be coplanar is

e¡jkaibjCk = O.

3. Prove the following relationships:

OijOij = 3
epqrepqr = 6
epq¡epqj = 2oij.

4. Show that
c . CT = CT . C = 8,

,.;

where C is the direction cosine matrx and 8 is the matrx of the Kronecker delta.

Any matrx obeying spch a relationship is called an orthogonal matri because it

represents transformation of one set of ortogonal axes into another.

5. Show that for a second-order tensor A, the following thee quantities are
invarant under the rotation of axes: 

II = A¡¡

/z = I Aii A12 I + I A.2 A23/ + I Aii Al31
A21 A22 A32 A33 A31 A33

13 = det(A¡j).



Rotation Matrix is Orthogonal

Tensors



Vector IdentitiesVECTOR IDENTITIES4

Notation: f, g, are scalars; A, B, etc., are vectors; T is a tensor; I is the unit
dyad.

(1) A ·B×C = A×B ·C = B ·C×A = B×C ·A = C ·A×B = C×A ·B

(2) A × (B × C) = (C × B) × A = (A · C)B − (A · B)C

(3) A × (B × C) + B × (C × A) + C × (A × B) = 0

(4) (A × B) · (C × D) = (A · C)(B · D) − (A · D)(B · C)

(5) (A × B) × (C × D) = (A × B · D)C − (A × B · C)D

(6) ∇(fg) = ∇(gf) = f∇g + g∇f

(7) ∇ · (fA) = f∇ · A + A · ∇f

(8) ∇ × (fA) = f∇ × A + ∇f × A

(9) ∇ · (A × B) = B · ∇ × A − A · ∇ × B

(10) ∇ × (A × B) = A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B

(11) A × (∇ × B) = (∇B) · A − (A · ∇)B

(12) ∇(A · B) = A × (∇ × B) + B × (∇ × A) + (A · ∇)B + (B · ∇)A

(13) ∇2f = ∇ · ∇f

(14) ∇2A = ∇(∇ · A) − ∇ × ∇ × A

(15) ∇ × ∇f = 0

(16) ∇ · ∇ × A = 0

If e1, e2, e3 are orthonormal unit vectors, a second-order tensor T can be
written in the dyadic form

(17) T =
∑

i,j
Tijeiej

In cartesian coordinates the divergence of a tensor is a vector with components

(18) (∇·T )i =
∑

j
(∂Tji/∂xj)

[This definition is required for consistency with Eq. (29)]. In general

(19) ∇ · (AB) = (∇ · A)B + (A · ∇)B

(20) ∇ · (fT ) = ∇f ·T+f∇·T

4

Vector Examples



Scalar Product

Vector Product



Permutation Tensor

εijk Identity



Gradient Operator (Scalar)

Triple Scalar Product



Co-
Planar 
and Not

Triple Vector Product



In class Problem

Ch. 2 Question 10



Ch. 2 Question 10

Ch. 2 Question 10



Ch. 2 Question 11

Ch. 2 Question 11



Ch. 2 Question 11

Ch 2: Problem 5
.:.:~~--~~-

50 Cartesian Tensors

The indicial notation avoids all the problems mentioned in the preceding. The

algebraic manipulations are especially simple. The ordering of terms is unneces-

sary because A¡jBkl means the same thing as BkiAij. In this notation we deal with

components only, which are scalars. Another major advantage is that one does not

have to remember formulas except for the product eijkeklm, which is given by equa-

tion (2. 19). The disadvantage of the indicial notation is that the physical meaning of a

term becomes clear only after an examination of the indices. A second disadvantage

is that the cross product involves the introduction of the cumbersome e¡jk. This, how-
ever, can frequently be avoided by writing the i-component of the vector product of 0

and v as (0 x v)¡ using a mixture of boldface and indicial notations. In this book we

shall use boldface, indicial and mixed notations in order to take advantage of each. As

the reader might have guessed, the algebraic manipulations wil be performed mostly

in the indicial notation, sometimes using the comma notation.

Exercises
1. Using indicial notation, show that

.Í a x (b x c) = (a. c)b - (a. b)c.

(Hint: Call d == b x c. Then (a x d)m = epqmapdq = epqmap
e¡jqb¡cj. Using

equation (2.19), show that (a x d)m = (a. c)bm - (a. b)cm.)

2. Show that the condition for the vectors a, b, and c to be coplanar is

e¡jkaibjCk = O.

3. Prove the following relationships:

OijOij = 3
epqrepqr = 6
epq¡epqj = 2oij.

4. Show that
c . CT = CT . C = 8,

,.;

where C is the direction cosine matrx and 8 is the matrx of the Kronecker delta.

Any matrx obeying spch a relationship is called an orthogonal matri because it

represents transformation of one set of ortogonal axes into another.

5. Show that for a second-order tensor A, the following thee quantities are
invarant under the rotation of axes: 

II = A¡¡

/z = I Aii A12 I + I A.2 A23/ + I Aii Al31
A21 A22 A32 A33 A31 A33

13 = det(A¡j).
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Supplemental Readitig 51

(Hint; Use the result of Exercise 4 and the transformation rule (2.12) to show that
i; = A;i = Aii = ii. Then show that AijAji and AijAjkAki are a

lso invarants. In

fact, all contracted scalars of the form Aij A jk . . . Ami are invariants. Finally, verify

that

/z = l(ll - AijAji)

h = AijAjkAki - !¡AijAji + /zAii.

Because the right-hand sides are invarant, so are /z and h)

6. If u and v are vectors, show that the products Ui v j obey the transformation

rule (2.12), and therefore represent a second-order tensor.

7. Show that oij is an isotropic tensor. That is, show that O;j = Oij under rotation

of the coordinate system. (Hint: Use the transformation rule (2.12) and the results of

Exercise 4.)

8. Obtain the recipe for the gradient of a scalar function in cylindrical polar
coordinates from the integral definition.

9. Obtan the recipe for the divergence of a vector in spherical polar coordinates

from the integral definition.

10. Proye that div(~urlii) = 0 for any vector u regardless of 
the coordinate

system. (Hit: ùse thë veCtòr integral theorems.)

i 1. Prove that curl (grad Ø) = 0 for any single-valued scalar ø regardless of the
coordinate system. (Hint: use Stokes' theorem.)

Literature Cited

Sommedeld, A. (1964). Mechanics of Deformble Bodies, New York: Academic Press. (Chapter I contans
brief but useful coverage of Caresian tensors.)

Supplemental Reading
Ars, R. (1962). Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Englewood Cliffs, NJ:

Prentice-Hal. (Ts book gives a clear and easy treatment of tensors in Caresian and non-Caresian

coordinates, with applications to fluid mechancs.)
Prager, W. (1961). Introduction to Mechanics.of Continua, New York: Dover Publications. (Chapters 1

and 2 contan brief but useful coverage of Caresian tensors.)
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The indicial notation avoids all the problems mentioned in the preceding. The

algebraic manipulations are especially simple. The ordering of terms is unneces-

sary because A¡jBkl means the same thing as BkiAij. In this notation we deal with

components only, which are scalars. Another major advantage is that one does not

have to remember formulas except for the product eijkeklm, which is given by equa-

tion (2. 19). The disadvantage of the indicial notation is that the physical meaning of a

term becomes clear only after an examination of the indices. A second disadvantage

is that the cross product involves the introduction of the cumbersome e¡jk. This, how-
ever, can frequently be avoided by writing the i-component of the vector product of 0

and v as (0 x v)¡ using a mixture of boldface and indicial notations. In this book we

shall use boldface, indicial and mixed notations in order to take advantage of each. As

the reader might have guessed, the algebraic manipulations wil be performed mostly

in the indicial notation, sometimes using the comma notation.

Exercises
1. Using indicial notation, show that

.Í a x (b x c) = (a. c)b - (a. b)c.

(Hint: Call d == b x c. Then (a x d)m = epqmapdq = epqmap
e¡jqb¡cj. Using

equation (2.19), show that (a x d)m = (a. c)bm - (a. b)cm.)

2. Show that the condition for the vectors a, b, and c to be coplanar is

e¡jkaibjCk = O.

3. Prove the following relationships:

OijOij = 3
epqrepqr = 6
epq¡epqj = 2oij.

4. Show that
c . CT = CT . C = 8,

,.;

where C is the direction cosine matrx and 8 is the matrx of the Kronecker delta.

Any matrx obeying spch a relationship is called an orthogonal matri because it
represents transformation of one set of ortogonal axes into another.

5. Show that for a second-order tensor A, the following thee quantities are
invarant under the rotation of axes: 

II = A¡¡

/z = I Aii A12 I + I A.2 A23/ + I Aii Al31
A21 A22 A32 A33 A31 A33

13 = det(A¡j).

Chapter 2 : Problem 5
Kundu & Cohen, Fluid Dynamics

ü Part a

In[1]:= i1 = Sum@a@i, iD, 8i, 3<D

Out[1]= a@1, 1D + a@2, 2D + a@3, 3D
ü Part b

In[2]:= Expand@Sum@a@i, jD a@j, iD, 8i, 3<, 8j, 3<DD

Out[2]= a@1, 1D2 + 2 a@1, 2D a@2, 1D + a@2, 2D2 + 2 a@1, 3D a@3, 1D + 2 a@2, 3D a@3, 2D + a@3, 3D2
In[3]:= i2 = Expand@Hi1^2 - Sum@a@i, jD a@j, iD, 8i, 3<, 8j, 3<DLê2D

Out[3]= -a@1, 2D a@2, 1D + a@1, 1D a@2, 2D - a@1, 3D a@3, 1D - a@2, 3D a@3, 2D + a@1, 1D a@3, 3D + a@2, 2D a@3, 3D
ü Part c

In[4]:= Array@a, 83, 3<D êê MatrixForm

Out[4]//MatrixForm=
a@1, 1D a@1, 2D a@1, 3D
a@2, 1D a@2, 2D a@2, 3D
a@3, 1D a@3, 2D a@3, 3D

In[5]:= detA = Det@Array@a, 83, 3<DD

Out[5]= -a@1, 3D a@2, 2D a@3, 1D + a@1, 2D a@2, 3D a@3, 1D + a@1, 3D a@2, 1D a@3, 2D -
a@1, 1D a@2, 3D a@3, 2D - a@1, 2D a@2, 1D a@3, 3D + a@1, 1D a@2, 2D a@3, 3D

In[6]:= Expand@Sum@a@i, jD a@j, kD a@k, iD, 8i, 3<, 8j, 3<, 8k, 3<DD

Out[6]= a@1, 1D3 + 3 a@1, 1D a@1, 2D a@2, 1D + 3 a@1, 2D a@2, 1D a@2, 2D + a@2, 2D3 +
3 a@1, 1D a@1, 3D a@3, 1D + 3 a@1, 2D a@2, 3D a@3, 1D + 3 a@1, 3D a@2, 1D a@3, 2D +

3 a@2, 2D a@2, 3D a@3, 2D + 3 a@1, 3D a@3, 1D a@3, 3D + 3 a@2, 3D a@3, 2D a@3, 3D + a@3, 3D3
In[7]:= Expand@i1 Sum@a@i, jD a@j, iD, 8i, 3<, 8j, 3<DD

Out[7]= a@1, 1D3 + 2 a@1, 1D a@1, 2D a@2, 1D + a@1, 1D2 a@2, 2D + 2 a@1, 2D a@2, 1D a@2, 2D + a@1, 1D a@2, 2D2 +
a@2, 2D3 + 2 a@1, 1D a@1, 3D a@3, 1D + 2 a@1, 3D a@2, 2D a@3, 1D + 2 a@1, 1D a@2, 3D a@3, 2D +

2 a@2, 2D a@2, 3D a@3, 2D + a@1, 1D2 a@3, 3D + 2 a@1, 2D a@2, 1D a@3, 3D + a@2, 2D2 a@3, 3D +

2 a@1, 3D a@3, 1D a@3, 3D + 2 a@2, 3D a@3, 2D a@3, 3D + a@1, 1D a@3, 3D2 + a@2, 2D a@3, 3D2 + a@3, 3D3
In[8]:= Expand@ i2 i1D

Out[8]= -a@1, 1D a@1, 2D a@2, 1D + a@1, 1D2 a@2, 2D - a@1, 2D a@2, 1D a@2, 2D + a@1, 1D a@2, 2D2 -
a@1, 1D a@1, 3D a@3, 1D - a@1, 3D a@2, 2D a@3, 1D - a@1, 1D a@2, 3D a@3, 2D - a@2, 2D a@2, 3D a@3, 2D +

a@1, 1D2 a@3, 3D - a@1, 2D a@2, 1D a@3, 3D + 3 a@1, 1D a@2, 2D a@3, 3D + a@2, 2D2 a@3, 3D -

a@1, 3D a@3, 1D a@3, 3D - a@2, 3D a@3, 2D a@3, 3D + a@1, 1D a@3, 3D2 + a@2, 2D a@3, 3D2

In[9]:= rhs = Expand@HSum@a@i, jD a@j, kD a@k, iD, 8i, 3<, 8j, 3<, 8k, 3<D -
i1 Sum@a@i, jD a@j, iD, 8i, 3<, 8j, 3<D + i2 i1Lê3D

Out[9]= -a@1, 3D a@2, 2D a@3, 1D + a@1, 2D a@2, 3D a@3, 1D + a@1, 3D a@2, 1D a@3, 2D -
a@1, 1D a@2, 3D a@3, 2D - a@1, 2D a@2, 1D a@3, 3D + a@1, 1D a@2, 2D a@3, 3D

In[10]:= detA - rhs êê Simplify

Out[10]= 0

2   scalar identities.nb



Rigid Rotation

Symmetric and Antisymmetric



Antisymmetric Tensor

Time Derivative



Vector Fields and Trajectory Lines

Divergence 
of a Vector 

Field



Laplacian

Green’s (or Gauss’) Theorem



Green’s Theorem Variants

Let r = ix + jy + kz be the radius vector of magnitude r, from the origin to
the point x, y, z. Then

(21) ∇ · r = 3

(22) ∇ × r = 0

(23) ∇r = r/r

(24) ∇(1/r) = −r/r3

(25) ∇ · (r/r3) = 4πδ(r)

(26) ∇r = I

If V is a volume enclosed by a surface S and dS = ndS, where n is the unit
normal outward from V,

(27)

∫

V

dV ∇f =

∫

S

dSf

(28)

∫

V

dV ∇ · A =

∫

S

dS · A

(29)

∫

V

dV ∇·T =

∫

S

dS ·T

(30)

∫

V

dV ∇ × A =

∫

S

dS × A

(31)

∫

V

dV (f∇2g − g∇2f) =

∫

S

dS · (f∇g − g∇f)

(32)

∫

V

dV (A · ∇ × ∇ × B − B · ∇ × ∇ × A)

=

∫

S

dS · (B × ∇ × A − A × ∇ × B)

If S is an open surface bounded by the contour C, of which the line element is
dl,

(33)

∫

S

dS × ∇f =

∮

C

dlf

5

Curl of a 
Vector 
Field



Stokes’ Theorem

Stokes’ Theorem Variants

Let r = ix + jy + kz be the radius vector of magnitude r, from the origin to
the point x, y, z. Then

(21) ∇ · r = 3

(22) ∇ × r = 0

(23) ∇r = r/r

(24) ∇(1/r) = −r/r3

(25) ∇ · (r/r3) = 4πδ(r)

(26) ∇r = I

If V is a volume enclosed by a surface S and dS = ndS, where n is the unit
normal outward from V,

(27)

∫

V

dV ∇f =

∫

S

dSf

(28)

∫

V

dV ∇ · A =

∫

S

dS · A

(29)

∫

V

dV ∇·T =

∫

S

dS ·T

(30)

∫

V

dV ∇ × A =

∫

S

dS × A

(31)

∫

V

dV (f∇2g − g∇2f) =

∫

S

dS · (f∇g − g∇f)

(32)

∫

V

dV (A · ∇ × ∇ × B − B · ∇ × ∇ × A)

=

∫

S

dS · (B × ∇ × A − A × ∇ × B)

If S is an open surface bounded by the contour C, of which the line element is
dl,

(33)

∫

S

dS × ∇f =

∮

C

dlf

5(34)

∫

S

dS · ∇ × A =

∮

C

dl · A

(35)

∫

S

(dS × ∇) × A =

∮

C

dl × A

(36)

∫

S

dS · (∇f × ∇g) =

∮

C

fdg = −

∮

C

gdf

DIFFERENTIAL OPERATORS IN
CURVILINEAR COORDINATES5

Cylindrical Coordinates

Divergence

∇ · A =
1

r

∂

∂r
(rAr) +

1

r

∂Aφ

∂φ
+

∂Az

∂z

Gradient

(∇f)r =
∂f

∂r
; (∇f)φ =

1

r

∂f

∂φ
; (∇f)z =

∂f

∂z

Curl

(∇ × A)r =
1

r

∂Az

∂φ
−

∂Aφ

∂z

(∇ × A)φ =
∂Ar

∂z
−

∂Az

∂r

(∇ × A)z =
1

r

∂

∂r
(rAφ) −

1

r

∂Ar

∂φ

Laplacian

∇2f =
1

r

∂

∂r

(
r

∂f

∂r

)
+

1

r2

∂2f

∂φ2
+

∂2f

∂z2

6



Classification of Vector Fields

Irrotational Field



Solenoidal Field

Summary
• Vectors & tensors transform under coordinate rotation like 

position vector


• Vector operators: scalar product, vector product, triple scalar 
product, triple vector product


• Tensors: isotropic, symmetric, antisymmetric, orthogonal


• Calculus of vectors: derivative, gradient, divergence, curl


• Gauss’ & Stokes’ Theorems


• Classification of Vector Fields: irrotational, solenoidal, …


• Next Lecture: Kinematics of fluids


