APPH 4200
Physics of Fluids

Boundary Layers (Ch. 10)

Answer: A pioneer in the mathematical development of
aerodynamics who conceived the idea of a fluid
"boundary layer”, considered by many as "the
greatest single discovery in fluid dynamics.’

Question: Who was Ludwig Prandtl?



Ludwig Prandtl

uring the week of 8 August 1904, a small group of

mathematicians and scientists gathered in picturesque
Heidelberg, Germany, known for its baroque architecture,
cobblestone streets, and castle ruins that looked as if they
were still protecting the old city. Home to Germany’s old-
est university, which was founded in 1386, Heidelberg was
a natural venue for the Third International Mathematics
Congress.

One of the presenters at the congress was Ludwig
Prandtl, a 29-year-old professor at the Technische
Hochschule (equivalent to a US technical university) in
Hanover. Prandtl’s presentation was only 10 minutes long,
but that was all the time needed to describe a new concept
that would revolutionize the understanding and analysis
of fluid dynamics. His presentation, and the subsequent
paper that was published in the congress’s proceedings one
year later, introduced the concept of the boundary layer in
a fluid flow over a surface. In 2005, concurrent with the
World Year of Physics celebration of, among other things,
Albert Einstein and his famous papers of 1905, we should
also celebrate the 100th anniversary of Prandtl’s seminal
paper. The modern world of aerodynamics and fluid dy-
namics is still dominated by Prandtl’s idea. By every right,
his boundary-layer concept was worthy of the Nobel Prize.
He never received it, however; some say the Nobel Com-
mittee was reluctant to award the prize for accomplish-

ments in classical physics.
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A very satisfactory explanation of the physical
process in the boundary layer [Grenzschicht]
between a fluid and a solid body could be ob-
tained by the hypothesis of an adhesion of the
fluid to the walls, that is, by the hypothesis of
a zero relative velocity between fluid and wall.
If the viscosity was very small and the fluid
path along the wall not too long, the fluid ve-
locity ought to resume its normal value at a
very short distance from the wall. In the thin
transition layer [Ubergangsschicht] however,
the sharp changes of velocity, even with small
coefficient of friction, produce marked results.

Outer edge of
boundary layer

Figure 2. A fluid flow may be viewed as comprising two parts. In a thin
boundary layer (blue) adjacent to the surface, the effects of friction are
dominant. Outside the boundary layer, the flow is inviscid. The blowup of
the boundary layer shows how the flow velocity v changes, as a function of
the normal distance n, from zero at the surface to the full inviscid-flow
value at the outer edge.



In given cases in certain points fully deter-
mined by external conditions, the fluid flow
ought to separate from the wall. That is, there
ought to be a layer of fluid which, having been
set in rotation by the friction on the wall, in-
sinuates itself into the free fluid, transforming
completely the motion of the latter, and there-

fore playing there the same part as the
Helmholtz surfaces of discontinuity.

Figure 3. The boundary layer can separate from the

top surface of an airfoil if the angle of attack is greater Outer edge of
than the so-called stall angle. The upper dark region boundary layer
that trails downstream from the separation point is the

remnant of the boundary layer that originally formed

on the top surface of the airfoil. The lower dark region

that trails downstream from the trailing edge of the air-

foil is the remnant of the boundary layer over the bot- Separation point
tom surface. When separated, these two dark regions
are called shear layers, and they form the
upper and lower boundaries of the sepa-
rated flow region. Between the shear lay-
ers is a dead-air region. Due to the con-
siderable flow separation illustrated here,
the lift of the airfoil is dramatically re-
duced—the airfoil is stalled. The blowup
shows the flow’s velocity profile above
the separation point.




Since the mid-1920s, work aimed at advancing, ex-
tending, and applying boundary-layer theory has in- r -
creased exponentially. Such work has created lifetime ca- | 1
reers for a large number of fluid dynamicists and 33 |
aerodynamicists. The first serious industrial application of
boundary-layer theory occurred in the late 1920s when de-
signers began to use the theory’s results to predict skin-
friction drag on airships and airplanes. Prior to that time,
they had been limited to using empirical data obtained pri-
marily from wind tunnels. Such data usually were for the
total drag, and the effect of skin friction was difficult to
cull out. Furthermore. until the late 1920s. wind-tunnel
data were notoriously inaccurate and the designers, con- e e
servative by nature, were reluctant to hinge their designs e
on them. But since the late 1920s, when the accuracy and ‘
value of skin-friction formulas obtained from boundary-
layer theory became more appreciated, the results of
the theory have become a standard tool of the airplane
designer.

Prandtl’s boundary-layer idea revolutionized how sci-
entists conceptualized fluid dynamics. Before Prandtl,
there was much confusion about the role of viscosity in a
fluid flow. After Prandtl’s paper, the picture was made
clear; in most cases, viscosity only played a role in the thin
layer of flow immediately adjacent to a surface. What a
breakthrough in the analysis and understanding of a vis-
cous flow! Before Prandtl, there was no mathematically
based, quantitative means to calculate the drag due to fric-
tion on a surface immersed in a fluid flow. After Prandtl’s
paper, the fluid dynamicist could quantitatively calculate
the skin-friction drag.



Extensions of Prandtl’s work

If Prandtl had presented his paper in our electronic age of
almost instant information dissemination, his boundary-
layer concept would quickly have spread throughout the
aerodynamics community. But at the turn of the century,
information flowed much more slowly. Also, the Third In-
ternational Mathematics Congress was an obscure setting
for such an important contribution, and Prandtl’s idea
went virtually unnoticed by anybody outside of Gottingen
for several years. It surfaced again in 1908 when Prandtl’s
student, Heinrich Blasius, published in the respected jour-

nal Zeitschrift fiir Mathematik und Physik, his paper

“Boundary Layers in Fluids with Little Friction,” which
discussed 2D boundary-layer flows over a flat plate and a
circular cylinder.’

u(Ou/ox) + v(ou/dy) = v(0*u/dy*) (1)

Ou/0x+ 0v/dy =0 (2)

Fig. 1. Blasius in 1962, after retiring



Uniform Flow Across a Stationary Flat Plate
(Blasius, 1908)
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How big is the boundary layer?
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What are the magnitudes of
the terms in Navier-Stokes?
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Blasius Flat Plate Solution
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Boundary Conditions
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Finding the self-similar
S’rream function...
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What is f(n)?
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Describing the boundary layer...

Wi £(n)  HArowe, Tk Boorsoanz CA~gn DEScApNow

(S (.On-/(/&h{_.‘

2 _ M
Lf(»c,'r)t (//;,3—([‘») U, = 2 = oo &n
x - .e@"[ N4
’}) - rS(fB b(r - ;’; L/oo dr ‘F 7
\
dj= '(Y 3 = T
PR 4&5 2Jr )
Cre pr STRESS AT Ao 2y £7,
T (v= )= PY 2y = PY 2¢t
2
_ 0.222 p U, P
Ur e Rz ™,
l?e(f-)
CoeEFiccesT oF DrAg T (z=0) . @ éalf*

% P L(,: ‘ J Ro(ﬁj

S7roaey Floo, C -~ —

14



Numerical Solution

ng.= Plot[gBlasius[n], {n, 0, nBig/ 2},
PlotLabel -» "g[n]", PlotRange - All, AxesLabel - {"n", "u/U,"}]
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Long Flat Plates:

Transition to Turbulence
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Figure 10.11 Schematic depiction of flow over a semiinfinite flat plate.

First occurrence of
growth of disturbance
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Long Flat Plates:

Transition to Turbulence
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Figure 10.12 Measured drag coefficient for a boundary layer over a fiat plate. The continuous line shows
the drag coefficient for a plate on which the flow is partly laminar and partly turbulent, with the transition
taking place at a position where the local Reynolds number is 5 x 10°. The dashed lines show the behavior
if the boundary layer was either completely laminar or completely turbulent over the entire length of the
plate.
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On-Line Video

Fluid Mechanics (Boundary Layers part 1)
(From Harvard’s Abernathy: http://www.seas.harvard.edu/directory/fha)
http://www.youtube.com/watch?v=7SkWxEUXIloM&feature=related

Fluid Mechanics (Boundary Layers part 2)
http://www.youtube.com/watch?v=49UsvAFKm40&feature=related

Fluid Mechanics (Boundary Layers part 3)
http://www.youtube.com/watch?v=WEX72jeXTGM&feature=related
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Summary

® Prandtls thin boundary layer resolved the
apparent contradiction between the
usefulness of Eulers inviscid flow and the
reality of the no-slip boundary condition

® For Reynolds numbers up to around 10°,
the boundary layer is laminar

® For faster flows, or longer objects, the
flow becomes turbulent.
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