APPH 4200
Physics of Fluids
Laminar Flow (Ch. 9)

1. Dimensional analysis (again)
2. Laminar flow (when viscosity exceeds advection)
3. Examples: Poiseuille’s steady flow through a pipe
Dimensional Variables

Continuity:
\[\frac{2\rho}{2t} + \vec{u} \cdot \vec{V} \rho = -\rho \nabla \cdot \vec{u} \]

Navier-Stokes:
\[\frac{2\vec{u}}{2t} + (\vec{u} \cdot \vec{V}) \vec{u} = \vec{u} - \frac{1}{\rho} \nabla \rho + \frac{\nu}{\rho} \nabla^2 \vec{u} \]

Flow problems are characterized by

Length Scale = \(L^* \)

Flow Speed = \(U^* \)

This sets a characteristic time \(t^* = L^*/U^* \)

Dimensionless Variables:

\[t' = \frac{t}{t^*} \quad \vec{D}' = L^* \vec{D} \quad \vec{u}' = \frac{\vec{u}}{U^*} \]
Dimensionless Equations

CONTINUITY

\[
\frac{d\rho}{dt} + \mathbf{u} \cdot \nabla \rho = -\rho \nabla \cdot \mathbf{u}
\]

NAVIER-STOKES

\[
\frac{2\mathbf{u}}{2t} + \mathbf{u} \cdot \nabla \mathbf{u} = \frac{g L^*}{U^*} - \frac{1}{\rho U^*} \nabla \rho \\
+ \left(\frac{\mu}{\rho} \right) \frac{1}{U^*} \nabla^2 \mathbf{u}
\]

IF WE DEFINE A CHARACTERISTIC PRESSURE AS TWICE THE DYNAMIC PRESSURE

\[
\rho^* = \rho U^* \quad \rho' = \rho^* \rho
\]

THEN

\[
\frac{2\mathbf{u}}{2t} + \mathbf{u} \cdot \nabla \mathbf{u} = \frac{g L^*}{U^*} - \nabla \rho' + \left(\frac{\mu}{\rho L^* U^*} \right) \nabla^2 \mathbf{u}
\]

Froude Number

Reynolds Number

Fr = \frac{U^*}{\sqrt{g L^*}}

Re = \frac{U^* \rho L^*}{\mu}
Incompressible NS

\[\frac{\partial U}{\partial t} + U \cdot \nabla U = -\nabla P + \frac{1}{Re} \nabla^2 U \]

Steady Laminar Flow!
Laminar Flow (Ch. 9)

- Two simple examples:
 - Couette Flow (moving top plate)
 - Poiseuille Flow (pressure-driven)

- Steady with viscosity
Maurice Couette

Figure 1. Maurice Couette (1858-1943)

The photograph represents Maurice Couette carrying out a cathetometer observation at the Faculty of Angers.

According to his family, Maurice Couette could not conceive of a measurement being made without taking all the necessary precautions beforehand. He would insist on the experimenter's work top being well organised, with the instruments and the experimenter himself being properly installed.
Couette Flow
In 1838 he experimentally derived and in 1840 and 1846 formulated and published Poiseuille's law for laminar stationary flow of an incompressible uniform viscous liquid (so-called Newtonian fluid) through a cylindrical tube with constant circular cross-section.

He applied his formula to blood flow in capillaries and veins, to air flow in lung alveoli, for the flow through a drinking straw or through a hypodermic needle. The unit of viscosity, Poise was named after him. (Ch. 17 !)
Poiseuille Flow

Fig. 9.14. Establishment of parabolic velocity profile in Poiseuille tube flow (redrawn from Goldsmith and Turitto).
Steady Laminar Flow

\[\begin{align*}
\n\n\n\end{align*} \]

\[\mathbf{\hat{x}} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \mathbf{\hat{y}} p + \frac{\mu}{\rho} \nabla^2 \mathbf{u} \]

\[\mathbf{\hat{y}} : \frac{\partial \mathbf{u}}{\partial y} = 0 \quad \mathbf{\hat{u}} = \chi \mathbf{u}(y) \]

\[\mathbf{\hat{y}} : \frac{\partial \mathbf{u}}{\partial x} = \frac{\partial^2 \mathbf{u}}{\partial y^2} = \frac{\partial^2 \mathbf{u}}{\partial y^2} = \frac{\partial^2 \mathbf{u}}{\partial y^2} \]

Integrate \(\chi \)-component over \(y \)...

\[\frac{\partial}{\partial x} \left(\frac{\partial \mathbf{u}}{\partial y} \right) = \frac{\partial}{\partial x} \left(\frac{\partial \mathbf{u}}{\partial y} \right) = \frac{\partial}{\partial x} \left(\frac{\partial \mathbf{u}}{\partial y} \right) = \frac{\partial}{\partial x} \left(\frac{\partial \mathbf{u}}{\partial y} \right) \]

Again

\[\frac{1}{2} \chi^2 \frac{\partial^2 \mathbf{u}}{\partial x^2} = \mu \mathbf{u} + c_1 \chi + c_2 \quad c_2 = \text{constant} \]

Match boundary conditions:

\[U(0) = 0 \quad U(y = 2b) = \mathbf{u}_0 \]

\[U(0) = 0 \Rightarrow \quad c_2 = 0 \]

\[U(2b) = \mathbf{u}_0 = \frac{1}{2\mu} \left(\frac{2\mathbf{u}_0}{\mathbf{a}_x} \right) ^2 - c_1 \mathbf{a}_b \Rightarrow \quad c_1 = \mathbf{b} \frac{2\mathbf{u}_0}{\mathbf{a}_x} - \frac{\mathbf{u}_0 \mathbf{a}_b}{\mathbf{a}_b} \]

\[U(y) = \frac{1}{2\mu} \frac{2\mathbf{u}_0}{\mathbf{a}_x} \chi \left(y - 2b \right) + \mathbf{u}_0 \left(\frac{y}{ab} \right) \]

Poiseuille Term

Coullet Term
Time-Dependance:
Flow Relaxation

$t = 0$

$U(y) = 0$

$t > 0$

$U(y) \neq 0$

$$\frac{2U}{2\tau} = \frac{\mu}{\rho} \frac{2^2 U}{2y^2}$$

Boundary:

$$\begin{cases} U(0) = 0 & t > 0 \\ U(2b) = U_0 & t > 0 \end{cases}$$

With initial condition:
$U(y) = 0$ at $t = 0$

Final condition:
$U(y) = \frac{U_0 y}{2b}$ as $t \to \infty$
Fourier's Method

\[U(y, t) = F(y) G(t) \]

\[\frac{2y}{\varepsilon} = \left(\frac{m}{\rho} \right) \frac{2^2}{2y^2} \]

\[\frac{2}{\varepsilon} (1 = 6) = \frac{m}{\rho} \frac{2^2}{2y^2} (1 = 6) \]

\[\frac{1}{6} \frac{26}{\varepsilon} = \left(\frac{m}{\rho} \right) \frac{2^2 F}{5y^2} = -\gamma \]

Then \[G(t) = G_0 e^{-\theta t} \]

Add \[\frac{m}{\rho} \frac{2^2 F}{2y^2} = -\gamma F \]

Fourier Mode Expansion

\[U(y, t) = \frac{u_0 y}{2b} + \sum_n \xi_n \sin \left(\pi m \frac{y}{2b} \right) \]

\[U(y, 0^+) = 0 \]

\[U(y, t \to \infty) = U_0 \left(\frac{y}{2b} \right) \]

Fourier modes most decay as \(t \to \infty \)
Fourier's Solution

\[U(x, t) = U_0 \left(\frac{x}{2b} \right) + \sum_{n} f_n e^{-\alpha_n t} \sin \left(\pi n \frac{x}{2b} \right) \]

\[\delta_m = \left(\frac{m}{2b} \right)^2 \left(\frac{v}{2b} \right)^2 = \frac{1}{\delta_0} \left(\frac{m^2}{2b} \right) U_0 \]

Fourier modes with short wavelengths decay to zero much more quickly than long wavelengths!!

To find \(f_m \), we use initial condition \(U(x, 0) = 0 \)

\[- U_0 \frac{v}{2b} = \sum_{m} f_m \sin \left(\pi m \frac{x}{2b} \right) \]

\[- \frac{U_0}{2b} \int_{0}^{2b} dy \ y \sin \left(\pi m \frac{x}{2b} \right) = \sum_{m} f_m \int_{0}^{2b} dy \ \sin \left(\pi m \frac{x}{2b} \right) \sin \left(\pi m \frac{x}{2b} \right) \]

\[\frac{U_0}{2b} \frac{(2b)^2 (-1)^m}{m \pi} = f_m b \delta_{mn} \]
Fourier's Solution

Therefor

\[U(y, t) = U_0 \left(\frac{y}{2b} \right) + \sum_{m} \frac{2 U_0 (-1)^m}{m \pi} \sin \left(\pi \frac{m}{2b} \right) e^{-\gamma_m t} \]

\[\gamma_m = \frac{1}{Re} \left(\frac{\pi^2 m^2}{2b} \right) U_0 \]

Section 9.7 gives other solution methods:

Solution in terms of similarity variable

\[\eta \equiv \frac{y}{2 \sqrt{\frac{m}{b} t}} \]

\[U(y, t) = U_0 F(\eta) \]

Laplace Transform
Solution with 10 Fourier Modes

\[U(y) \text{ at } 10^{-5}, 10^{-3}, 10^{-2}, 10^{-1}, 1 \]
Solution with 20 Fourier Modes

$U(y)$ at $10^{-5}, 10^{-3}, 10^{-2}, 10^{-1}, 1$
Solution with 50 Fourier Modes

$U(y)$ at $10^{-5}, 10^{-3}, 10^{-2}, 10^{-1}, 1$
Summary

- When the Reynolds number is not too large, and advective term is much less than viscosity, then steady flow is laminar.

- Some relatively simple problems can be solved analytically to guide our understanding of low Re viscous flow.