APPH 4200 Physics of Fluids Similarity (Ch. 8)

1. Dimensional analysis

"Dynamic Similarity" (or finding the key dimensionless parameters)

- Wind tunnels (powerful method in experimental fluid mechanics!)
- Physical insights (what governs dynamics and the solutions to equations)
- Convenient; significantly helps validation of models; broadens impact; defines general properties; ...

Dimensional Variables

CONTINUITY: $\frac{\partial p}{\partial t} + \overline{u} \cdot \overline{p} p = -p \overline{v} \cdot \overline{u}$ NAVIEN-STORES: $\frac{\partial \overline{u}}{\partial t} + (\overline{u} \cdot \overline{p})\overline{u} = \overline{g} - \overline{p} \overline{p} p + \frac{h}{p} \overline{v}^2 \overline{u}$

FLOW PROBLEMS AND CHLANACTERIZED BY <u>LENAM SCALE</u> = L^{*} <u>FLOW SPEED</u> = U^{*} THIS SETS A CHLANACTERISTIC TIME $t^* = L^*/u^*$. DIMENSIONLESS UARIABLES:

D'=LD

f'= t/+*

ū'= ū/u*

Dimensionless Equations

CONTINUITY

$$\frac{\partial P}{\partial t'} + \overline{u'} \cdot \overline{P'} p = -p \overline{P'} \cdot \overline{u'}$$

NAVIEN- STORES

$$\frac{2\overline{u}'}{2\tau'} + \overline{u}' \cdot \overline{r}' \overline{u}' = \frac{\overline{g}L^*}{u^{p_2}} - \frac{1}{p^{u^{p_2}}} \overline{v}' p$$
$$+ \left(\frac{\mu}{p}\right) \frac{1}{t^*} t^* \overline{v}' \cdot \overline{u}'$$

IF WE DEFINE A CHARACTERISTIC PRESSURE AS TWICE THE DENAMIC PRESSURP

$$p^* = p u^{*2}$$
 $p' = p^* p$

THEN

Physical Similarity IF KEY DIMENSIONLESS PANAMETERS ANG EQUAL, THEN FLOW PATTERNS AND BERAVIONS ANG SIMILIAN. UENY USEFUL! FROURD NUMBER = FR = UN INOTE: SPEED OF A SUNFACE WAVE $= \begin{pmatrix} CHARACTERISTIC \\ FLOW SPEED \end{pmatrix} \begin{pmatrix} V = \sqrt{9}\frac{\lambda}{271} \\ WAVE \\ V = \sqrt{9}\frac{\lambda}{271} \\ CHARACTERISTIC \\ 9RAVITY WAVE \\ SPEED \end{pmatrix} \begin{pmatrix} \lambda = WAVELENGTH \\ \lambda = WAVELENGTH \\ V = VAVELENGTH \\ V = VAVELENGTH$ $REYNOLDS MUMBER = RE = \frac{pL^*U^*}{L}$ = INERTIAL TERM (U.JU) VISCOUS TERM (MD⁷U)

William Froude

Chelston Cross Tank at Torquay Circa 1871

William Froude (1810–1879)

Boat Models used by William Froude

Boat Length = Speed²

Boat Speed/ Length Ratios

- As speed (in knots) exceeds

 1.34 × √(length, ft),
 then resistance
 increases
 exponentially.
- 1 knot ≈ 0.5 m/s, so critical Froude number is Fr ≈ 0.4

Osborn Reynolds

• Re = $\rho LU/\mu$

- Turbulence when Re > 3000
- Blood flow: Re ≈ 100
- Swimmer: Re ≈ 4,000,000
- HMS QE II: 5,000,000,000

(1842–1910)

Reynolds's Experiment

Reynolds apparatus for investigating the transition to turbulence in pipe flow, with photographs of near-laminar flow (left) and turbulent flow (right) in a clearpipe much like the one used by Reynolds

Drag Force on Sphere

5. Nondimensional Parameters and Dynamic Similarity

Figure 8.2 Drag coefficient for a sphere. The characteristic area is taken as $A = \pi d^2/4$. The reason for the sudden drop of C_D at Re $\sim 5 \times 10^5$ is the transition of the laminar boundary layer to a turbulent one, as explained in Chapter 10.

271

Drag Force on a Sphere

$$C_{\rm D} = \frac{(DnAq)}{\frac{1}{2}pu^2 A}$$

$$(A = \frac{1}{4}\pi d^2 Fun SPHERE)$$

 $d = diAmeter$

TWO LIMITS!

- STRONG VISCOSITY (NO INERTIAL) EFFECTS
- · SMALL VISCOSITY (ONLY INFRIAL)

LOW RE (STRONG UISCOSITY) (DRAG) ~ f (M, U, d) FORCE

THUS

DAAS ~
$$\left(\frac{1}{R_e}\right) g U^2 A$$

$$R_e = \frac{\rho L U}{m}$$

C_d for a flat plate (Fig. 10.12)

Figure 10.12 Measured drag coefficient for a boundary layer over a flat plate. The continuous line shows the drag coefficient for a plate on which the flow is partly laminar and partly turbulent, with the transition taking place at a position where the local Reynolds number is 5×10^5 . The dashed lines show the behavior if the boundary layer was either completely laminar or completely turbulent over the entire length of the plate.

Dimensionless Numbers in Fluid **Dynamics**

	Name(s)	Symbol	Definition	Significance
	Alfvén, Kármán	Al, Ka	V_A/V	*(Magnetic force/ inertial force) ^{$1/2$}
	Bond	Bd	$(\rho'-\rho)L^2g/\Sigma$	Gravitational force/ surface tension
	Boussinesq	В	$V/(2gR)^{1/2}$	(Inertial force/ gravitational force) ^{$1/2$}
	Brinkman	Br	$\mu V^2/k\Delta T$	Viscous heat/conducted heat
	Capillary	Ср	$\mu V/\Sigma$	Viscous force/surface tension
	Carnot	\mathbf{Ca}	$(T_2 - T_1)/T_2$	Theoretical Carnot cycle efficiency
	Cauchy, Hooke	Cy, Hk	$\rho V^2/\Gamma = M^2$	Inertial force/ compressibility force
	Chandra- sekhar	$\mathbf{C}\mathbf{h}$	$B^2L^2/ ho u\eta$	Magnetic force/dissipative forces
	Clausius	Cl	$LV^3 \rho / k\Delta T$	Kinetic energy flow rate/heat conduction rate
	Cowling	С	$(V_A/V)^2 = \mathrm{Al}^2$	Magnetic force/inertial force
	Crispation	Cr	$\mu\kappa/\Sigma L$	Effect of diffusion/effect of surface tension
	Dean	D	$D^{3/2}V/\nu(2r)^{1/2}$	Transverse flow due to curvature/longitudinal flow
	[Drag coefficient]	C_D	$\frac{(\rho'-\rho)Lg}{\rho'V^2}$	Drag force/inertial force
	Eckert	Е	$V^2/c_p\Delta T$	Kinetic energy/change in thermal energy
	Ekman	Ek	$(\nu/2\Omega L^2)^{1/2} = ({ m Ro}/{ m Re})^{1/2}$	(Viscous force/Coriolis force) ^{$1/2$}
	Euler	Eu	$\Delta p/\rho V^2$	Pressure drop due to friction/ dynamic pressure
•	Froude	Fr	$V/(gL)^{1/2} V/NL$	† (Inertial force/gravitational or buoyancy force) ^{1/2}
	Gay-Lussac	Ga	$1/\beta\Delta T$	Inverse of relative change in volume during heating
	Grashof	Gr	$gL^3\beta\Delta T/\nu^2$	Buoyancy force/viscous force
	[Hall coefficient]	C_H	λ/r_L	Gyrofrequency/ collision frequency
	$*(1)$ $A_{1-2} - 1 - C_{2-2}$:	

From NRL's Plasma Formulary

 (\uparrow) Also defined as the inverse (square) of the quantity shown.

Dimensionless Numbers in Fluid Dynamics (Page 2)

From NRL's Plasma Formulary

Name(s)	Symbol	Definition	Significance
Hartmann	Н	$BL/(\mu\eta)^{1/2} =$ (Rm Re C) ^{1/2}	$\begin{array}{c} (\text{Magnetic force}/\\ \text{dissipative force})^{1/2} \end{array}$
Knudsen	Kn	λ/L	Hydrodynamic time/ collision time
Lewis	Le	κ/\mathcal{D}	*Thermal conduction/molecular diffusion
Lorentz	Lo	V/c	Magnitude of relativistic effects
Lundquist	Lu	$\mu_0 L V_A / \eta = \\ \text{Al Rm}$	$\mathbf{J} \times \mathbf{B}$ force/resistive magnetic diffusion force
Mach	М	V/C_S	Magnitude of compressibility effects
Magnetic Mach	Mm	$V/V_A = \mathrm{Al}^{-1}$	(Inertial force/magnetic force) ^{$1/2$}
Magnetic Reynolds	Rm	$\mu_0 LV/\eta$	Flow velocity/magnetic diffusion velocity
Newton	Nt	$F/ ho L^2 V^2$	Imposed force/inertial force
Nusselt	Ν	lpha L/k	Total heat transfer/thermal conduction
Péclet	Pe	LV/κ	Heat convection/heat conduction
Poisseuille	Ро	$D^2 \Delta p / \mu L V$	Pressure force/viscous force
Prandtl	Pr	$ u/\kappa$	Momentum diffusion/ heat diffusion
Rayleigh	Ra	$gH^3\beta\Delta T/ u\kappa$	Buoyancy force/diffusion force
Reynolds	Re	LV/ν	Inertial force/viscous force
Richardson	Ri	$(NH/\Delta V)^2$	Buoyancy effects/ vertical shear effects
Rossby	Ro	$V/2\Omega L\sin\Lambda$	Inertial force/Coriolis force
Schmidt	\mathbf{Sc}	$ u/\mathcal{D}$	Momentum diffusion/ molecular diffusion
Stanton	\mathbf{St}	$lpha / ho c_p V$	Thermal conduction loss/ heat capacity
Stefan	$\mathbf{S}\mathbf{f}$	$\sigma LT^3/k$	Radiated heat/conducted heat
Stokes	S	$\nu/L^2 f$	Viscous damping rate/ vibration frequency
Strouhal	\mathbf{Sr}	fL/V	Vibration speed/flow velocity
Taylor	Та	${(2\Omega L^2/ u)^2\over R^{1/2}(\Delta R)^{3/2}\over \cdot (\Omega/ u)}$	Centrifugal force/viscous force (Centrifugal force/ viscous force) ^{$1/2$}
Thring, Boltzmann	Th, Bo	$ ho c_p V/\epsilon \sigma T^3$	Convective heat transport/ radiative heat transport
Weber	W	$ ho LV^2/\Sigma$	Inertial force/surface tension

Example 8.1

Viscous Drag on Hull
Viscous Dras =
$$\frac{1}{2}C_{0}gu^{2}A$$

 $\int COEFFICIANT OF VISCOUS DRAG
DEPEnds ON RETAILORS AUNGER
 $R_{e} = \frac{UP}{V}$ $V = 10^{-1} m^{2}/s$ For LATER
 $= \frac{2 \cdot H}{10^{-6}} = 8 \times 10^{6} (model)$
 $= \frac{10 \cdot 100}{10^{-6}} = 1000 \times 10^{6} (FULL SCALE)$
 $C_{0} (model) = 0.003$
 $C_{0} (Foll scale) = 0.0015$
 $V = 10^{-1} m^{2}/s = 0.003 to^{3} 2^{2} (\frac{300}{25^{2}}) = 2.9 \text{ AU}$
 $\frac{1}{2} 0.0015 to^{3} 10^{4} 300 = 23 \times 10^{3} \text{ AU}$$

Wave Drag

WAVE ORAS (FULL SCALE) =
$$\frac{\omega_{AJE}(\omega_{ODEL}) \times \left(\frac{P_{F}}{P_{L}}\right) \left(\frac{P_{F}}{P_{L}}\right)^{2} \left(\frac{U_{F}}{U_{L}}\right)^{2}$$

= $\left(60 - 2.9 \text{ N}\right) \times \left(25\right)^{2} \left(\frac{10}{2}\right)^{2}$
= $9 \times 10^{5} \text{ N}$
So TOTAL DRAS ON FULL SCALS
= $9 \times 10^{5} \text{ N}$ + $0.23 \times 10^{5} \text{ N}$
= 100 TOMP6S forech Equivalent

.

Summary

- Dimensional analysis is a useful tool in many physical problems. Key scaling parameters can be identified and used to understand behaviors as size and velocity change.
- When the Reynolds number is not too large, flow is laminar. Some relatively simple problems can be solved analytically to guide our understanding of viscosity.