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Abstract

In this essay I will attempt to identify the main events in the history of thought about irrotational flow of viscous fluids.
I am of the opinion that when considering irrotational solutions of the Navier–Stokes equations it is never necessary and
typically not useful to put the viscosity to zero. This observation runs counter to the idea frequently expressed that poten-
tial flow is a topic which is useful only for inviscid fluids; many people think that the notion of a viscous potential flow is an
oxymoron. Incorrect statements like ‘‘. . . irrotational flow implies inviscid flow but not the other way around’’ can be
found in popular textbooks.

Though convenient, phrases like ‘‘inviscid potential flow’’ or ‘‘viscous potential flow’’ confuse properties of the flow
(potential or irrotational) with properties of the material (inviscid or viscous); it is better and more accurate to speak
of the irrotational flow of an inviscid or viscous fluid.
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Every theorem about potential flow of perfect fluids with conservative body forces applies equally to viscous fluids in
regions of irrotational flow.
� 2006 Elsevier Ltd. All rights reserved.
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1. Navier–Stokes equations

The history of Navier–Stokes equations begins with the 1822 memoir of Navier who derived equations for
homogeneous incompressible fluids from a molecular argument. Using similar arguments, Poisson (1829)
derived the equations for a compressible fluid. The continuum derivation of the Navier–Stokes equation is
due to Saint-Venant (1843) and Stokes (1845). In his 1851 paper (Section 49), Stokes wrote that
Let P1, P2, P3 be the three normal, and T1, T2, T3 be the three tangential pressures in the direction of
three rectangular planes parallel to the co-ordinate planes, and let D be the symbol of differentiation with
respect to t when the particle and not the point of space remains the same. Then the general equations
applicable to a heterogeneous fluid (Eqs. (10) of my former (1845) paper) are

q
Du
Dt

� X
� �

þ dP 1

dx
þ dT 3

dy
þ dT 2

dz
¼ 0; ð132Þ
with the two other equations which may be written down from symmetry. The pressures P1, etc. are
given by the equations
P 1 ¼ p � 2l
du
dx

� d

� �
; T 1 ¼ �l

dv
dz

þ dw
dy

� �
; ð133Þ
and four other similar equations. In these equations
3d ¼ du
dx

þ dv
dy

þ dw
dz

. ð134Þ



The equations written by Stokes in his 1845 paper are the same ones we use today:
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q
du

dt
� X

� �
¼ divT; ð1:1Þ

T ¼ �p � 2

3
ldivu

� �
1þ 2lD½u�; ð1:2Þ

du

dt
¼ ou

ot
þ u � rð Þu; ð1:3Þ

D½u� ¼ 1

2
ruþruT
� �

; ð1:4Þ

dq
dt

þ qdivu ¼ 0. ð1:5Þ
Inviscid fluids are fluids with zero viscosity. Viscous effects on the motion of fluids were not understood
before the notion of viscosity was introduced by Navier in 1822. Perfect fluids, following the usage of Stokes
and other 19th century English mathematicians, are inviscid fluids which are also incompressible. Statements
like Truesdell’s (1954),
In 1781 Lagrange presented his celebrated velocity-potential theorem: if a velocity potential exists at one
time in a motion of an inviscid incompressible fluid, subject to conservative extraneous force, it exists at
all past and future times.
though perfectly correct, could not have been asserted by Lagrange, since the concept of an inviscid fluid was
not available in 1781.

2. Stokes theory of potential flow of viscous fluid

The theory of potential flow of a viscous fluid was introduced by Stokes (1851). All of his work on this topic
is framed in terms of the effects of viscosity on the attenuation of small amplitude waves on a liquid–gas surface.
Everything he said about this problem is cited below. The problem treated by Stokes was solved exactly using
the linearized Navier–Stokes equations, without assuming potential flow, was solved exactly by Lamb (1932).

Stokes discussion is divided into three parts discussed in Sections 51–53:

(1) The dissipation method in which the decay of the energy of the wave is computed from the viscous
dissipation integral where the dissipation is evaluated on potential flow (Section 51).

(2) The observation that potential flows satisfy the Navier–Stokes equation together with the notion that
certain viscous stresses must be applied at the gas–liquid surface to maintain the wave in permanent form
(Section 52).

(3) The observation that if the viscous stresses required to maintain the irrotational motion are relaxed, the
work of those stresses is supplied at the expense of the energy of the irrotational flow (Section 53).

Lighthill (1978) discussed Stokes’ ideas but he did not contribute more to the theory of irrotational motions
of a viscous fluid. On page 234 he notes that
Stokes ingenious idea was to recognize that the average value of the rate of working given by sinusoidal
waves of wave number

2lb o/=oxð Þo2/=oxozþ o/=ozð Þo2/=oz2cz¼0
which is required to maintain the unattenuated irrotational motions of sinusoidal waves must exactly
balance the rate at which the same waves when propagating freely would lose energy by internal
dissipation.

Lamb (1932) gave an exact solution of the problem considered by Stokes in which vorticity and boundary
layers are not neglected. He showed that the value given for the decay constant computed by Stokes is twice
the correct value. Joseph and Wang (2004a) computed the decay constant for gravity waves directly as an
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ordinary stability problem in which the velocity is irrotational, the pressure is given by Bernoulli’s equation
and the viscous component of the normal stress is evaluated on the irrotational flow. This kind of analysis
we call viscous potential flow or VPF. The decay constant computed by VPF is one half the correct values
computed by the dissipation method when the waves are longer than critical value for which progressive waves
give way to monotonic waves. For waves shorter than the critical value the decay constant is given by g/2tk;
the decay constant from Lambs exact solution agrees with the dissipation value for long waves and with the
VPF value for short waves.
2.1. The dissipation method
Section 51. By means of the expression given in Art. 49, for the loss of vis viva due to internal friction, we
may readily obtain a very approximate solution of the problem: To determine the rate at which the
motion subsides, in consequence of internal friction, in the case of a series of oscillatory waves propa-
gated along the surface of a liquid. Let the vertical plane of xy be parallel to the plane of motion,
and let y be measured vertically downwards from the mean surface; and for simplicity’s sake suppose
the depth of the fluid very great compared with the length of a wave, and the motion so small that
the square of the velocity may be neglected. In the case of motion which we are considering, udx + vdy
is an exact differential d/ when friction is neglected, and

/ ¼ ce�my sin mx� ntð Þ; ð140Þ

where c, m, n are three constants, of which the last two are connected by a relation which it is not nec-
essary to write down. We may continue to employ this equation as a near approximation when friction is
taken into account, provided we suppose c, instead of being constant, to be parameter which varies
slowly with the time. Let V be the vis viva of a given portion of the fluid at the end of the time t. Then
V ¼ qc2m2

Z Z Z
e�2my dxdy dz. ð141Þ
But by means of the expression given in Art. 49, we get for the loss of vis viva during the time dt,
observing that in the present case l is constant, w = 0, d = 0, and udx + vdy = d/, where / is indepen-
dent of z,

4ldt
Z Z Z

d2/
dx2

� �2

þ d2/
dy2

� �2

þ 2
d2/
dxdy

� �2
( )

dxdy dz;
which becomes, on substituting for / its value,
8lc2m4 dt
Z Z Z

e�2mydxdy dz.
But we get from (141) for the decrement of vis viva of the same mass arising from the variation of the
parameter c,

�2qm2c
dc
dt

dt
Z Z Z

e�2mydxdy dz.
�1
Equating the two expressions for the decrement of vis viva, putting for m its value 2pk , where k is the
length of a wave, replacing l by l 0q, integrating, and supposing c0 to be the initial value of c, we
get

c ¼ c0e
�16p2l0 t

k2 .



In a footnote on page 624, Lamb notes that ‘‘Through an oversight in the original calculation the value
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k2/16p2m was too small by one half.’’ The value 16 should be 8.
1 Tru
vortici
irrotat
equatio
equatio
It will presently appear that the value of
ffiffiffiffi
l0p

for water is about 0.0564, an inch and a second being the
units of space and time. Suppose first that k is 2 in., and t is 10 s. Then 16p2l 0tk�2 = 1.256, and
c:c0::1:0.2848, so that the height of the waves, which varies as c, is only about a quarter of what it
was. Accordingly, the ripples excited on a small pool by a puff of wind rapidly subside when the exciting
cause ceases to act.
Now suppose that k is to fathoms or 2880 in., and that t is 86,400 s or a whole day. In this case
16p2l 0tk�2 is equal to only 0.005232, so that by the end of an entire day, in which time waves of this
length would travel 574 English miles, the height would be diminished by little more than the one
two hundredth part in consequence of friction. Accordingly, the long swells of the ocean are but little
allayed by friction, and at last break on some shore situated at the distance of perhaps hundreds of miles
from the region where they were first excited.
2.2. The distance a wave will travel before it decays by a certain amount

The observations made by Stokes about the distance a wave will travel before its amplitude decays by a
given amount, point the way to a useful frame for the analysis of the effects of viscosity on wave propagation.
Many studies of nonlinear irrotational waves can be found in the literature but the only study of the effects of
viscosity on the decay of these waves known to me is due to Longuet-Higgins (1997) who used the dissipation
method to determine the decay due to viscosity of irrotational steep capillary-gravity waves in deep water. He
finds that the limiting rate of decay for small amplitude solitary waves are twice those for linear periodic waves
computed by the dissipation method. The dissipation of very steep waves can be more than ten times more
than linear waves due to the sharply increased curvature in wave troughs. He assumes that the nonlinear wave
maintains its steady form while decaying under the action of viscosity. The wave shape could change radically
from its steady shape in very steep waves. These changes could be calculated for irrotational flow using VPF as
in the work of Miksis et al. (1982) (see Section 11).

Stokes (1880) studied the motion of nonlinear irrotational gravity waves in two dimensions which are prop-
agated with a constant velocity, and without change of form. This analysis led to the celebrated maximum
wave whose asymptotic form gives rise to a pointed crest of angle 120�. The effects of viscosity on such extreme
waves has not been studied but they may be studied by the dissipation method or same potential flow theory
used by Stokes (1851) for inviscid fluids with the caveat that the normal stress condition that p vanish on the
free surface be replaced by the condition that
p þ 2loun=on ¼ 0
on the free surface with normal n where the velocity component un = o//on is given by the potential.

2.3. The stress of a viscous fluid in potential flow
Section 52. It is worthy of remark, that in the case of a homogeneous incompressible fluid, whenever
udx + vdy + wdz is an exact differential, not only are the ordinary equations of fluid motion satisfied,1

but the equations obtained when friction is taken into account are satisfied likewise. It is only the equa-
tions of condition which belong to the boundaries of the fluid that are violated. Hence any kind of
motion which is possible according to the ordinary equations, and which is such that udx + vdy + wdz
is an exact differential, is possible likewise when friction is taken into account, provided we suppose a
esdell (1950) discussed Bernoulli’s theorem for viscous compressible fluids under some exotic hypothesis for which in general the
ty is not zero. He notes ‘‘. . . Long ago Craig 1890 noticed that in the degenerate and physically improbable case of steady
ional flow of a viscous incompressible fluid. . . the classical Bernoulli theorem of type (A) still holds. . .’’ Type (A) is a Bernoulli
n for a compressible fluid which holds throughout the fluid. Craig does not consider the linearized case for which the Bernoulli
n for compressible fluids has an explicit dependence on viscosity which is neither degenerate or improbable.
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certain system of normal and tangential pressures to act at the boundaries of the fluid, so as to satisfy
Eqs. (133). Since l disappears from the general equations (1), it follows that p is the same function as
before. But in the first case the system of pressures at the surface was P1 = P2 = P3 = p,
T1 = T2 = T3 = 0. Hence if DP1, etc. be the additional pressures arising from friction, we get from
(133), observing that d = 0, and that udx + vdy + wdz is an exact differential d/,

DP 1 ¼ �2l
d2/
dx2

; DP 2 ¼ �2l
d2/
dy2

; DP 3 ¼ �2l
d2/
dz2

; ð142Þ

DT 1 ¼ �2l
d2/
dy dz

; DT 2 ¼ �2l
d2/
dzdx

; DT 3 ¼ �2l
d2/
dxdy

. ð143Þ
0 0 0
Let dS be an element of the bounding surface, l , m , n the direction-cosines of the normal drawn
outwards, DP, DQ, DR the components in the direction of x, y, z of the additional pressure on a plane
in the direction of dS. Then by the formula (9) of my former paper applied to Eqs. (142), (143) we
get

DP ¼ �2l l0
d2/
dx2

þ m0 d
2/

dxdy
þ n0

d2/
dxdz

� �
; ð144Þ
with similar expressions for DQ and DR, and DP, DQ, DR are the components of the pressure which must
be applied at the surface, in order to preserve the original motion unaltered by friction.
2.4. Viscous stresses needed to maintain an irrotational wave. Viscous decay of the free wave
Section 53. Let us apply this method to the case of oscillatory waves, considered in Art. 51. In this case
the bounding surface is nearly horizontal, and its vertical ordinates are very small, and since the squares
of small quantities are neglected, we may suppose the surface to coincide with the plane of xz in calcu-
lating the system of pressures which must be supplied, in order to keep up the motion. Moreover, since
the motion is symmetrical with respect to the plane of xy, there will be no tangential pressure in the
direction of z, so that the only pressures we have to calculate are DP2 and DT3. We get from (140),
(142) and (143), putting y = 0 after differentiation,

DP 2 ¼ �2lm2c sin mx� ntð Þ; DT 3 ¼ 2lm2c cos mx� ntð Þ. ð145Þ
If u1, v1 be the velocities at the surface, we get from (140), putting y = 0 after differentiation,
u1 ¼ mc cos mn� ntð Þ; v1 ¼ �mc sin mx� ntð Þ. ð146Þ
It appears from (145) and (146) that the oblique pressure which must be supplied at the surface in order
to keep up the motion is constant in magnitude, and always acts in the direction in which the particles
are moving.
The work of this pressure during the time dt corresponding to the element of surface dxdz, is equal to
dxdz(DT3 Æ u1dt + DP1 Æ v1dt). Hence the work exerted over a given portion of the surface is equal to

2lm3c2 dt
Z Z

dxdz.
In the absence of pressures DP2, DT3 at the surface, this work must be supplied at the expense of vis viva.
Hence 4lm3c2 dt

R R
dxdz is the vis viva lost by friction, which agrees with the expression obtained in

Art. 51, as will be seen on performing in the latter the integration with respect to y, the limits being
y = 0 to y = 1.
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3. Irrotational solutions of the Navier–Stokes equations; irrotational viscous stresses

Consider first the case of incompressible fluids divu = 0. If X has a potential w and the fluid is homo-
geneous (q and l are constants independent of position at all times) then it is readily shown that
q
ou

ot
þ 1

2
r uj j2 � u ^ x

� 	
¼ �r p þ wð Þ þ lr2u; ð3:1Þ
where x = curlu. It is evident that x = 0 is a solution of the curl (3.1). In this case
u ¼ r/; r2/ ¼ 0. ð3:2Þ

Since l$2u = l$$2/ = 0 independent of l, for large viscosities as well as small viscosities, (3.1) shows
that
r q
o/
ot

þ q
2
r/j j2 þ p þ w

� �
¼ 0; ð3:3Þ
and p = pI is determined by Bernoulli’s equation
q
o/
ot

þ q
2
r/j j2 þ pI þ w ¼ F ðtÞ. ð3:4Þ
Potential flow u = $/, $2/ is a solution of the homogeneous, incompressible Navier–Stokes with a pressure
p = pI determined by Bernoulli’s equation, independent of viscosity. All of this known, maybe even well
known, but largely ignored by the fluid mechanics community from the days of Stokes up till now.

Much less well known, and totally ignored, is the formula (1.2) for the viscous stress evaluated on potential
flow u = $/,
T ¼ �p1þ 2lr�r/. ð3:5Þ

The formula shows directly and with no ambiguity that viscous stresses are associated with irrotational flow.
This formula is one of the most important that could be written about potential flows. It is astonishing, that
aside from Stokes (1851), this formula which should be in every book on fluid mechanics, cannot be found in
any.

The resultants of the irrotational viscous stresses (3.5) do not enter into the Navier–Stokes equations (3.1).
Irrotational motions are determined by the condition that the solenoidal velocity is curl free and the evolution
of the potential is associated with the irrotational pressure in the Bernoulli equation. However, the dissipation
of the energy of potential flows and the power of viscous irrotational stresses do not vanish. Regions of curl
free motions of the Navier–Stokes equations are guaranteed by various theorems concerning the persistence of
irrotationality in the motions of parcels of fluid emanating from regions of irrotational flow (see Section 9). All
flows on unbounded domains which tend asymptotically to rest or uniform motion and all the irrotational
flows outside of vorticity boundary layers give rise to an additional irrotational viscous dissipation which
deserves consideration.

The effects of viscous irrotational stresses which are balanced internally enter into the dynamics of motion
at places where they become unbalanced such as at free surfaces and at the boundary of regions in which vor-
ticity is important such as boundary layers and even at internal points in the liquid at which stress induced
tensions exceed the breaking strength of the liquid. Irrotational viscous stresses enter as an important element
in a theory of stress induced cavitation. In this theory, the field of principal stresses which determine the places
and times at which the tensile stress is greater than the cavitation threshold must be computed (Funada et al.,
2006b; Padrino et al., 2005).

Irrotational flows cannot satisfy no-slip conditions at boundaries when l = 0. No real fluid has l = 0.
Perfect fluids cannot be used to study viscous effects of real fluids in irrotational flow.

Irrotational flows of a viscous fluid scale with the Reynolds number as do rotational solutions of the
Navier–Stokes equations generally. The solutions of the Navier–Stokes equations, rotational and irrotational,
are thought to become independent of the Reynolds number at large Reynolds numbers. They can be said to
converge to a common set of solutions corresponding to irrotational motion of an inviscid fluid. This limit
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should be thought to correspond a condition of flow, large Reynolds numbers, and not to a weird material
without viscosity; the viscosity should not be put to zero.

Stokes thought that the motion of perfect fluids is an ideal abstraction from the motion of real fluids with
small viscosity, like water. He did not mention irrotational flows of very viscous fluids which are associated
with normal stresses
sn ¼ 2ln � ðr � r/Þ � n
in situations in which the dynamical effects of shear stresses in the direction t,
ss ¼ 2lt � ðr � r/Þ � n
are negligible. The irrotational purely radial motion of a gas bubble in a liquid (the Rayleigh–Poritsky bubble
(Poritsky, 1951), usually incorrectly attributed to Rayleigh–Plesset (Plesset, 1949)) is a potential flow. The
shear stresses are zero everywhere but the irrotational normal stresses scale with the viscosity for any viscosity,
large or small.

Another exact irrotational solution of the Navier–Stokes equations is the flow between rotating cylinders in
which the angular velocities of the cylinders are adjusted to fit the potential solution in circles with
u ¼ ehu;

u ¼ a2xa=r ¼ b2xb=r.
The torques necessary to drive the cylinders are proportional to the viscosity of the liquid for any viscosity,
large or small. This motion may be realized approximately in a cylinder of large height with a free surface
on top anchored in a bath of mercury below.

A less special example is embedded in almost every complex flow of a viscous fluid at each and every stag-
nation point. The flow at a point of stagnation is a purely extensional flow, a potential flow with extensional
stresses proportional to the product of viscosity times the rate extension there. The irrotational viscous exten-
sional stresses at points of extension can be huge even when the viscosity is small.

A somewhat more complex set of flows of viscous fluids which are very nearly irrotational are generated by
waves on free surfaces. The shear stresses on the free surfaces vanish but the normal stresses generated by the
up and down motion of the waves do not vanish; gravity waves on highly viscous fluids are greatly retarded by
viscosity. It is not immediately obvious that the effects of vorticity on such waves are so well approximated by
purely irrotational motions (see Lamb, 1932; Wang and Joseph, 2006c). Many theories of irrotational flows of
a viscous fluid which update and greatly improve conventional studies of perfect fluids are assembled and can
be downloaded from PDF files at http://www.aem.umn.edu/people/faculty/joseph/ViscousPotentialFlow/.
4. Irrotational solutions of the compressible Navier–Stokes equations and the equations of motion for certain

viscoelastic fluids

The velocity may be obtained from a potential provided that the vorticity x = curlu = 0 at all points in a
simply connected region. This is a kinematic condition which may or may not be compatible with the equa-
tions of motion. For example, if the viscosity varies with position or the body forces are not potential, then
extra terms, not containing the vorticity will appear in the vorticity equation and x = 0 will not be a solution
in general. Joseph and Liao (1994) formulated a compatibility condition for irrotational solutions u = $/ of
(1.1) in the form
du

dt
þ gradv ¼ 1

q
divT½u�. ð4:1Þ
If
1

q
divT r/½ � ¼ �rw; ð4:2Þ
then x = 0 is a solution of (4.1) and

http://www.aem.umn.edu/people/faculty/joseph/ViscousPotentialFlow/
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q
o/
ot

þ 1

2
r/j j2 þ v

� �
þ w ¼ f tð Þ ð4:3Þ
is the Bernoulli equation.
Consider first (Joseph, 2003a) the case of viscous compressible flow for which the stress is given by (1.2).

The gradient of density and viscosity which may generate vorticity do not enter the equations which perturb
uniform states of pressure p0, density q0 and velocity U0.

To study acoustic propagation, the equations are linearized; putting v = 0 and
½u; p; p� ¼ ½u0; p0 þ p0; q0 þ q0�; ð4:4Þ

where u 0, p 0 and q 0 are small quantities, we obtain
T ij ¼ � p0 þ p0 þ 2

3
l0 divu

0
� �

dij þ l0

ou0i
oxj

þ
ou0j
oxi

� �
; ð4:5Þ

q0

ou0

ot
¼ �rp0 þ l0 r2u0 þ 1

3
rdivu0

� �
; ð4:6Þ

oq0

ot
þ q0 divu

0 ¼ 0; ð4:7Þ
where p0, q0 and l0 are constants. For acoustic problems, we assume that a small change in q induces small
changes in p by fast adiabatic processes; hence
p0 ¼ C2
0q

0; ð4:8Þ

where C0 is the speed of sound.

Forming now the curl of (4.6) we find that curlu 0 = 0 is a solution and u 0 = $/. This gives rise to a viscosity
dependent Bernoulli equation
o/
ot

þ p0

q0

� 4

3
m0r2/ ¼ 0. ð4:9Þ
After eliminating p 0 in (4.5), using (4.9), we get
T ij ¼ � p0 � q0

o/
ot

þ 2l0r2/

� �
dij þ 2l0

o2/
oxi oxj

.

To obtain the equation satisfied by the potential /, we eliminate q 0 in (4.7) with p 0 using (4.8), then
eliminate u 0 = $/ and p 0 in terms of / using q0

o/
ot þ p0 � 4

3
l0r2/ ¼ 0 to find
o
2/
ot2

¼ C2
0 þ

4

3
v0

o

ot

� �
r2/; ð4:10Þ
where the potential / depends on the speed of sound and the kinematic viscosity v0 = l0/q0.
The theory of irrotational motion of a viscous compressible fluid was applied by Funada et al. (2006a) to

the study of the stability of a liquid jet in a high Mach number air stream.
Joseph and Liao (1994) showed that most models of a viscoelastic fluid do not satisfy the compatibility con-

dition (4.2) in general but it may be satisfied for particular irrotational flows like stagnation point flow of any
fluid. The equations of motion satisfy the compatibility equation (4.2) in the case of inviscid, viscous and linear
viscoelastic fluids for which w = 0 is the usual Bernoulli pressure and the second order fluid model (Joseph,
1992, extending results of Pipkin, 1970) for which
w ¼ p � b̂ r�r/ð Þ2;

where b = n2 � n1/2 and n1 and n2 are the coefficients of the first and second normal stress difference.
5. Irrotational solutions of the Navier–Stokes equations: viscous contributions to the pressure

A viscous contribution to the pressure in irrotational flow is a new idea which is required to resolve the
discrepancy between the direct VPF calculation of the decay of an irrotational wave and the calculation based
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on the dissipation method. The calculation by VPF differs from the calculation based on potential flow of an
inviscid fluid because the viscous component of the normal stress at the free surface is included in the normal
stress balance. The viscous component of the normal stress is evaluated on potential flow. The dissipation cal-
culation starts from the evolution of energy equation in which the dissipation integral is evaluated on the irro-
tational flow; the pressure does not enter into this evaluation. Why does the decay rate computed by these two
methods give rise to different values? The answer to this question is associated with a viscous correction of
the irrotational pressure which is induced by the uncompensated irrotational shear stress at the free surface;
the shear stress should be zero there but the irrotational shear stress, proportional to viscosity, is not zero. The
irrotational shear stress cannot be made to vanish in potential flow but the explicit appearance of this shear
stress in the traction integral in the energy balance can be eliminated in the mean by the selection of an
irrotational pressure which depends on viscosity.

The idea of a viscous contribution to the pressure seems to have been first suggested to Moore (1963) by
Batchelor as a method of reconciling the discrepancy in the values of the drag on a spherical gas bubble cal-
culated on irrotational flow by the dissipation method and directly by VPF (Section 11). The first successful
calculation of this extra pressure was carried out for the spherical bubble by Kang and Leal (1988a,b). Their
work suggested that this extra viscous pressure could be calculated from irrotational flow without reference to
boundary layers or vorticity.

Lamb (1932, Sections 348 and 349) performed an analysis of the effect of viscosity on free gravity waves. He
computed the decay rate by a dissipation method using the irrotational flow only. He also constructed an exact
solution for this problem, which satisfies both the normal and shear stress conditions at the interface.

Joseph and Wang (2004a) studied Lamb’s problem using the theory of viscous potential flow (VPF) and
obtained a dispersion relation which gives rise to both the decay rate and wave-velocity. They also computed
a viscous correction for the irrotational pressure and used this pressure correction in the normal stress balance
to obtain another dispersion relation. This method is called a viscous correction of the viscous potential flow
(VCVPF). Since VCVPF is an irrotational theory the shear stress cannot be made to vanish. However, the
corrected pressure eliminates this uncompensated shear stress from the power of traction integral arising in
an energy analysis of the irrotational flow.

Wang and Joseph (2006c) find that the viscous pressure correction of the irrotational motion gives rise to a
higher order irrotational correction to the irrotational velocity which is proportional to the viscosity and does
not have a boundary layer structure.

The effect of viscosity on the decay of a free gravity wave can be approximated by a purely irrotational
theory in which the explicit dependence of the power of traction of the irrotational shear stress is eliminated
by a viscous contribution pv to irrotational pressure. The kinetic energy, potential energy and dissipation of
the flow can be computed using the potential flow solution u = $/ where / = Aent+ky+ikx. The potential flow
solution is inserted into the mechanical energy equation
d

dt

Z
V
q juj2=2dV þ

Z k

0

qgg2=2dx
� �

¼
Z k

0

½vð�p þ syyÞ þ usxy �dxþ
Z
V
2lD : DdV ; ð5:1Þ
where g is the elevation of the surface, p = pI + pv and pv is the pressure correction, satisfying $2pv = 0 and the
correction formula
Z k

0

vð�pvÞdx ¼
Z k

0

usxy dx. ð5:2Þ
The pressure correction
pv ¼ �2lk2Aentþkyþikx
can be balanced by a purely irrotational velocity.
The corrected velocity depends strongly on viscosity and is not related to vorticity; the whole package is

purely irrotational. The corrected irrotational flow gives rise to a dispersion relation which is in splendid
agreement with Lamb’s exact solution, which has no explicit viscous pressure. The agreement with the exact
solution holds for fluids even 107 times more viscous than water and for small and large wave numbers where
the cutoff wave number kc marks the place where progressive waves give rise to monotonic decay. They find
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that VCVPF gives rise to the same decay rate as in Lamb’s exact solution and in his dissipation calculation
when k < kc. The exact solution agrees with VPF when k > kc. The effects of vorticity are sensible only in a
small interval centered on the cutoff wave number.

6. Irrotational solutions of the Navier–Stokes equations: classical theorems

An authorative and readable exposition of irrotational flow theory and its applications can be found in
Chapter 6 of the book on fluid dynamics by Batchelor (1967). He speaks of the role of the theory of flow
of an inviscid fluid. He says
In this and the following chapter, various aspects of the flow of a fluid regarded as entirely inviscid (and
incompressible) will be considered. The results presented are significant only inasmuch as they represent
an approximation to the flow of a real fluid at large Reynolds number, and the limitations of each result
must be regarded as information as the result itself.
Most of the classical theorems reviewed in Chapter 6 do not require that the fluid be inviscid. These the-
orems are as true for viscous potential flow as they are for inviscid potential flow. Kelvin’s minimum energy
theorem holds for the irrotational flow of a viscous fluid. The theory of the acceleration reaction leads to the
concept of added mass; it follows from the analysis of unsteady irrotational flow. The theory applies to viscous
and inviscid fluids alike.

Jeffreys (1928) derived an equation (his (20)) which replaces the circulation theorem of classical (inviscid)
hydrodynamics. When the fluid is homogeneous, Jeffrey’s equation may be written as
dC
dt

¼ � l
q

I
curlx � dl; ð6:1Þ
where
CðtÞ ¼
I

u � dl
is the circulation round a closed material curve drawn in the fluid. This equation shows that
. . . the initial value of dC/dt around a contour in a fluid originally moving irrotationally is zero, whether
or not there is a moving solid within the contour. This at once provides an explanation of the equality of
the circulation about an aeroplane and that about the vortex left behind when it starts; for the circula-
tion about a large contour that has never been cut by the moving solid or its wake remains zero, and
therefore the circulations about contours obtained by subdividing it must also add up to zero. It also
indicates why the motion is in general nearly irrotational except close to a solid or to fluid that has
passed near one.
Saint-Venant (1869) interpreted the result of Lagrange about the invariance of circulation dC/dt = 0 to
mean that
vorticity cannot be generated in the interior of a viscous incompressible fluid, subject to conservative
extraneous force, but is necessarily diffused inward from the boundaries.
The circulation formula (6.1) is an important result in the theory of irrotational flows of a viscous fluid. A
particle which is initially irrotational will remain irrotational in motions which do not enter into the vortical
layers at the boundary.
7. Critical remarks about the ‘‘The impossibility of irrotational motions in general’’

This topic is treated in Section 37 of the monograph by Truesdell (1954). The basic idea is that, in general,
irrotational motions of incompressible fluids satisfy Laplace’s equation and the normal and tangential veloc-
ities at the bounding surfaces cannot be simultaneously prescribed. The words ‘‘in general’’ allow for rather
special cases in which the motion of the bounding surfaces just happens to coincide with the velocities given by
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the derivatives of the potential. Such special motions were studied for viscous incompressible fluids by Hamel
(1941). A bounding surface must always contact the fluid so the normal component of the velocity of the fluid
must be exactly the same as the normal component of the velocity of the boundary. The no-slip condition can-
not then ‘‘in general’’ be prescribed. Truesdell uses ‘‘adherence condition’’ meaning ‘‘sticks fast’’ rather than
the usual no-slip condition of Stokes. The no slip condition is even now a topic of discussion and the mech-
anisms by which fluids stick fast are not clear. Truesdell does not consider liquid–gas surfaces or, more exactly,
liquid–vacuum surfaces on which slip is allowed.

Truesdell’s conclusion
. . . that the boundary condition customarily employed in the theory of viscous fluids makes irrotational
motion is a virtual impossibility.
is hard to reconcile with the idea that flows outside boundary layers, are asymptotically irrotational. Many
examples of irrotational motions of viscous fluids which approximate exact solutions of the Navier–Stokes
equations and even agree with experiments at low Reynolds numbers are listed on Joseph’s web based archive.

8. The drag on a spherical gas bubble

As in the case of irrotational waves, the problem of the drag on gas bubbles in a viscous liquid may be
studied using viscous potential flow directly and by the dissipation method and the two calculations do not
agree.

The idea that viscous forces in regions of potential flow may actually dominate the dissipation of energy
was first expressed by Stokes (1851), and then, with more details, by Lamb (1932) who studied the viscous
decay of free oscillatory waves on deep water (Section 348) and small oscillations of a mass of liquid about
the spherical form (Section 355) using the dissipation method. Lamb showed that in these cases the rate of
dissipation can be calculated with sufficient accuracy by regarding the motion as irrotational.

8.1. Dissipation calculation

The computation of the drag D on a sphere in potential flow using the dissipation method seems to have
been given first by Bateman (1932) (see Dryden et al., 1956) and repeated by Ackeret (1952). They found that
D = 12palU where l is the viscosity, a is the radius of the sphere and U its velocity. This drag is twice the
Stokes drag and is in better agreement with the measured drag for Reynolds numbers in excess of about 8.

The same calculation for a rising spherical gas bubble was given by Levich (1949). Measured values of the
drag on spherical gas bubbles are close to 12palU for Reynolds numbers larger than about 20. The reasons for
the success of the dissipation method in predicting the drag on gas bubbles have to do with the fact that vor-
ticity is confined to thin layers and the contribution of this vorticity to the drag is smaller in the case of gas
bubbles, where the shear traction rather than the relative velocity must vanish on the surface of the sphere. A
good explanation was given by Levich (1949) and by Moore (1959, 1963); a convenient reference is Batchelor
(1967). Brabston and Keller (1975) did a direct numerical simulation of the drag on a gas spherical bubble in
steady ascent at terminal velocity U in a Newtonian fluid and found the same kind of agreement with exper-
iments. In fact, the agreement between experiments and potential flow calculations using the dissipation
method are fairly good for Reynolds numbers as small as 5 and improves (rather than deteriorates) as the
Reynolds number increases.

The idea that viscosity may act strongly in the regions in which vorticity is effectively zero appears to con-
tradict explanations of boundary layers which have appeared repeatedly since Prandtl. For example, Glauert
(1943) says (p. 142) that
. . .Prandtl’s conception of the problem is that the effect of the viscosity is important only in a narrow
boundary layer surrounding the surface of the body and that the viscosity may be ignored in the free
fluid outside this layer.
According to Harper (1972), this view of boundary layers is correct for solid spheres but not for spherical
bubbles. He says that
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. . .for R � 1, the theories of motion past solid spheres and tangentially stress-free bubbles are quite dif-
ferent. It is easy to see why this must be so. In either case vorticity must be generated at the surface
because irrotational flow does not satisfy all the boundary conditions. The vorticity remains within a
boundary layer of thickness d = O(aR�1/2), for it is convected around the surface in a time t of order
a/U, during which viscosity can diffuse it away to a distance d if d2 = O(mt) = O(a2/R). But for a solid
sphere the fluid velocity must change by O(U) across the layer, because it vanishes on the sphere, whereas
for a gas bubble the normal derivative of velocity must change by O(U/a) in order that the shear stress be
zero. That implies that the velocity itself changes by O(Ud/a) = O(UR�1/2) = o(U). . .
In the boundary layer on the bubble, therefore, the fluid velocity is only slightly perturbed from that of
the irrotational flow, and velocity derivatives are of the same order as in the irrotational flow. Then the
viscous dissipation integral has the same value as in the irrotational flow, to the first order, because the
total volume of the boundary layer, of order a2d, is much less than the volume, of order a3, of the region
in which the velocity derivatives are of order U/a. The volume of the wake is not small, but the velocity
derivatives in it are, and it contributes to the dissipation only in higher order terms. . .
The drag on a spherical gas bubble in steady flow at modestly high Reynolds numbers (say, Re > 50) can be
calculated using the dissipation method assuming irrotational flow without any reference to boundary layers
or vorticity. The dissipation calculation gives D = 12palU or CD = 48/R where R = 2aUq/l.

8.2. Direct calculation of the drag using viscous potential flow (VPF)

Moore (1959) calculated the drag directly by integrating the pressure and viscous normal stress of the
potential flow. The irrotational shear stress is not zero but is not used in the drag calculation. The shear stress
which is zero in the real flow was put to zero in the direct calculation. The pressure is computed from
Bernoulli’s equation and it has no drag resultant. Moore’s direct calculation gave D = 8palU or CD = 32/R
instead of CD = 48/R.

8.3. Pressure correction (VCVPF)

The discrepancy between the dissipation calculation leading to CD = 48/R and the direct VPF calculation
leading to CD = 32/R led Batchelor, as reported in Moore (1963), to suggest the idea of a pressure correction
to the irrotational pressure. In that paper, Moore performed a boundary layer analysis and his pressure
correction is readily obtained by setting y = 0 in his Eq. (2.37):
pm ¼
4

R sin2 h
ð1� cos hÞ2ð2þ cos hÞ; ð8:1Þ
which is singular at the separation point where h = p. The presence of separation is a problem for the appli-
cation of boundary layers to the calculation of drag on solid bodies. To find the drag coefficient Moore
calculated the momentum defect, and obtained the Levich value 48/R plus contributions of order R�3/2 or
lower.

The first successful calculation of a viscous pressure correction was carried out by Kang and Leal (1988a).
They calculated a viscous correction of the irrotational pressure by solving the Navier–Stokes equations under
the condition that the shear stress on the bubble surface is zero. Their calculation could not be carried out to
very high Reynolds numbers, and it was not verified that the dissipation in the liquid is close to the value given
by potential flow. They find indications of a boundary layer structure but they do not establish the existence of
properties of a layer in which the vorticity is important. They obtain the drag coefficient 48/R by direct inte-
gration of the normal stress and viscous pressure over the boundary. This shows that the force resultant of the
pressure correction does indeed contribute exactly the 16/R which is needed to reconcile the difference between
the dissipation calculation and the direct calculation of drag.

Kang and Leal (1988a) obtain their drag result by expanding the pressure correction as a spherical har-
monic series and noting that only one term of this series contributes to the drag, no appeal to the boundary
layer approximation being necessary. Kang and Leal (1988b) remark that
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In the present analysis, we therefore use an alternative method which is equivalent to Lamb’s dissipation
method, in which we ignore the boundary layer and use the potential flow solution right up to the
boundary, with the effect of viscosity included by adding a viscous pressure correction and the
viscous stress term to the normal stress balance, using the inviscid flow solution to estimate their
values.
The VCVPF approach to problems of gas–liquid flows taken by Joseph and Wang (2004a,b) and Wang and
Joseph (2006c), in which the viscous contribution to the pressure is selected to remove the uncompensated
irrotational shear stress ss from the traction integral as was done in (5.2), is different than that used by Kang
and Leal (1988a,b).

For the case of a gas bubble rising with the velocity U in a viscous fluid, it is possible to prove that the drag
D1 computed indirectly by the dissipation method is equal to the drag D2 computed directly by our formula-
tion of VCVPF. Suppose that the drag on the bubble is given as D1 ¼ D=U , where D is the dissipation. Then
D1 ¼ D=U ¼
Z
V
2lD : DdV =U ¼

Z
A
n � 2lD � udA=U ¼

Z
A
ðsnun þ ssusÞdA=U ¼

Z
A
ð�pv þ snÞun dA=U

¼
Z
A
ex � enð�pv � pi þ snÞdA ¼

Z
A
ex � T � en dA ¼ D2;
where we have used the normal velocity continuity un = Uex Æ en, the zero-shear-stress condition at the gas–
liquid interface and the fact that the Bernoulli pressure does not contribute to the drag.

Dissipation calculations for the drag on a rising oblate ellipsoidal bubble was given by Moore (1965) and
for the rise of a spherical liquid drop, approximated by Hill’s spherical vortex in another liquid in irrotational
motion, by Harper and Moore (1968). The drag results from these dissipation calculations were obtained by
Joseph and Wang (2004a), using the irrotational viscous pressure.

8.4. Acceleration of a spherical gas bubble to steady flow

A spherical gas bubble accelerates to steady motion in an irrotational flow of a viscous liquid induced by a
balance of the acceleration of the added mass of the liquid with the Levich drag. The equation of rectilinear
motion is linear and may be integrated giving rise to exponential decay with decay constant 18mt/a2 where m is
the kinematic viscosity of the liquid and a is the bubble radius. The problem of decay to rest of a bubble mov-
ing initially when the forces maintaining motion are inactivated and the acceleration of a bubble initially at
rest to terminal velocity are considered (Joseph and Wang, 2004b). The equation of motion follows from
the assumption that the motion of the viscous liquid is irrotational. It is an elementary example of how poten-
tial flows can be used to study the unsteady motions of a viscous liquid suitable for the instruction of under-
graduate students.

Consider a body moving with the velocity U in an unbounded viscous potential flow. Let M be the mass of
the body and M 0 be the added mass. Then the total kinetic energy of the fluid and body is
T ¼ 1

2
ðM þM 0ÞU 2. ð8:2Þ
Let D be the drag and F be the external force in the direction of motion. Then the power of D and F should be
equal to the rate of the total kinetic energy,
ðF þ DÞU ¼ dT
dt

¼ ðM þM 0ÞU dU
dt

. ð8:3Þ
We next consider a spherical gas bubble, for which M = 0 and M 0 ¼ 2
3
pa3qf . The drag can be obtained by di-

rect integration using the irrotational viscous normal stress and a viscous pressure correction: D = �12plaU.
Suppose the external force just balances the drag, then the bubble moves with a constant velocity U = U0.
Imagine that the external force suddenly disappears, then (8.3) gives rise to
�12plaU ¼ 2

3
pa3qf

dU
dt

. ð8:4Þ
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The solution is
U ¼ U 0e
�18m

a2
t
; ð8:5Þ
which shows that the velocity of the bubble approaches zero exponentially.
If gravity is considered, then F ¼ 4

3
pa3qf g. Suppose the bubble is at rest at t = 0 and starts to move due to

the buoyant force. Eq. (8.3) can be written as
4

3
pa3qf g � 12plaU ¼ 2

3
pa3qf

dU
dt

. ð8:6Þ
The solution is
U ¼ a2g
9m

1� e�
18m
a2
t


 �
; ð8:7Þ
which indicates the bubble velocity approaches the steady state velocity
U ¼ a2g
9m

. ð8:8Þ
8.5. The rise velocity and deformation of a gas bubble computed using VPF

The shape of a rising bubble, or of a falling drop, in an incompressible viscous liquid was computed numer-
ically by Miksis et al. (1982), omitting the condition on the tangential traction at the bubble or drop surface.
The shape is found, together with the flow of the surrounding fluid, by assuming that both are steady and axi-
ally symmetric, with the Reynolds number being large. The flow is taken to be a potential flow and the viscous
normal stress, evaluated on the irrotational flow, is included in the normal stress balance. This study is exactly
what we have called VPF; it follows the earlier study of Moore (1959), but it differs markedly from Moore’s
study because the bubble shape is computed.

When the bubble is sufficiently distorted, its top is found to be spherical and its bottom is found to be rather
flat. Then the radius of its upper surface is in fair agreement with the formula of Davies and Taylor (1950).
This distortion occurs when the effect of gravity is large while that of surface tension is small. When the effect
of surface tension is large, the bubble is nearly a sphere. The difference in these two cases is associated with
large and small Morton numbers.

8.6. The rise velocity of a spherical cap bubble computed using VPF

Davies and Taylor (1950) studied the rise velocity of a lenticular or spherical cap bubble assuming that
motion was irrotational and the liquid inviscid. The spherical cap is round at the top and rather flat at the
bottom. These are the shapes of large volume bubbles of gas rising in the liquid. They measured the bubble
shape and showed that it indeed had a spherical cap when rising in water. Brown (1965) did experiments which
shows the cap is very nearly spherical even when the liquid in which the gas bubble rises is very viscous.

Joseph (2003b) and Funada et al. (2004a) applied the theory of viscous potential flow VPF to the problem
of finding the rise velocity U of a spherical cap bubble. The rise velocity is given by
Uffiffiffiffiffiffi
gD

p ¼ � 8

3

vffiffiffiffiffiffiffiffi
gD3

p þ
ffiffiffi
2

p

3
1þ 32v2

gD3

� 	1=2
; ð8:9Þ
where R = D/2 is the radius of the cap and v is the kinematic viscosity of the liquid. Davies and Taylor’s (1950)
result follows from (8.9) when the viscosity is zero. Eq. (8.9) may be expressed as a drag law
CD ¼ 6þ 32=Re. ð8:10Þ
This drag law is in excellent agreement with experiments at large Morton numbers reported by Bhaga and
Weber (1981) after the drag law is scaled so that the effective diameter used in the experiments and the spher-
ical cap radius of Davies and Taylor (1950) are the same (see Fig. 1).
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Fig. 1. Comparison of the empirical drag law with the theoretical drag law (8.10) scaled by the factor 0.445 required to match the
experimental data reported by Bhaga and Weber (1981) with the experiments of Davies and Taylor (1950) at large Re. The agreement
between theory and experiment based on the irrotational flow of a viscous fluid is excellent even for Reynolds numbers as small as 0.1.
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Viscous potential flow VPF works well in the case of spherical cap bubbles, but a viscous pressure correc-
tion VCVPF is required to bring theory and experiment together in the case of small spherical gas bubbles.
This is like the problem of the effect of viscosity on the decay of irrotational gravity waves studied by Lamb
(1932) and Wang and Joseph (2006c) in which the decay of long waves is correctly predicted by VCVPF and
the decay of short waves is correctly predicted by VPF.

9. Dissipation and drag in irrotational motions over solid bodies

Contrived examples of irrotational motions of viscous fluids over solid bodies are those in which it is imag-
ined that the boundary of the solid moves with exactly same velocity as the potential flow. These irrotational
motions are exactly the same as those in which the viscous fluid is allowed to slip at the boundary of the solid.
Some authors claim that the drag on a solid body exerted by a viscous liquid in potential flow can be obtained
by equating the product DU of drag time’s velocity to the total dissipation in the liquid evaluated on the
potential; other authors say the drag is zero. The relation of drag to dissipation in irrotational flow is subtle
and its utility as theoretical tool depends critically on understanding what to do with unphysical irrotational
shear stress at the boundary of the body.

9.1. Energy equation

Consider the motion of a body in a fluid at rest at infinity. If there are no body forces and the fluid is homo-
geneous, the evolution of the mechanical energy is given by
1

2

d

dt

Z
V
qjuj2 dV ¼

Z
S
½�pu � nþ 2lu �D � n�dS �D; ð9:1Þ
where D = D[u],
D ¼ 2l
Z
V
D : DdV ð9:2Þ
is the dissipation, V is the region exterior to the body with surface S and normal n drawn into the body. The
stress vector on S is given by
s ¼ 2lD � n ¼ snnþ sst; ð9:3Þ
where sn = 2ln Æ D Æ n is the component of the component of the stress vector normal to S and ss = 2lt Æ D Æ n is
the component of stress vector tangent to S. We may write (9.1) as
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dE
dt

¼
Z
S
½ð�p þ snÞn � uþ sst � u�dS �D; ð9:4Þ
where E ¼ 1
2

R
V qjuj

2dV .
If the body a solid moving with a velocity u = Uex and the no-slip condition applies; it can be shown using

divu = 0, that sn = 0 and
dE
dt

¼ DU �D; ð9:5Þ
where
D ¼
Z
S
½�pnx þ sstx�dS ð9:6Þ
is the drag. For steady flow
DU ¼ D ð9:7Þ

the rate of working of the drag force is balanced by dissipation.

9.2. d’Alembert paradox

If l = 0, then D ¼ 0 and D = 0. The drag of a body in an inviscid flow vanishes. However, for irrotational
flow of a viscous fluid
D ¼ 2l
Z
V

o2/
oxi oxj

o2/
oxi oxj

dV ¼ l
Z
S
n � rjr/j2 dS ð9:8Þ
is not zero. However, if the fluid is viscous and the flow is irrotational, then, using u = $/ and (9.8) we find
that
 Z

S
uiDijnj dS �

Z
V
DijDij dV ¼ 0. ð9:9Þ
Hence, for steady flow, using (9.1) and u = Uex + v, where v Æ n = 0, we get
U
Z
S
pnx dS ¼ UD ¼ 0.
It follows that in the irrotational flow of a viscous fluid over a body
D ¼ 0; ð9:10Þ
even though D 6¼ 0. Now we have two paradoxes instead of one.

9.3. Different interpretations of the boundary conditions for irrotational flows over solids

Finzi (1925) calculated the dissipation due to the irrotational motion of a viscous fluid when the fluid is
allowed to slip at the boundary of a solid of unspecified shape. His goal was to compute the drag associated
with the dissipation of the irrotational flow. He computes the dissipation as the sum of the usual volume inte-
gral of the square of the rate of strain over the fluid times the viscosity plus the power of the irrotational vis-
cous stresses on the boundary. He shows that the dissipation so defined vanishes when the velocity is harmonic
as is the case for irrotational flow. Thus in Finzi’s theory there is no dissipation of energy in irrotational flow
(cf. Bateman in Dryden et al., 1956, p. 158).

Bateman (1932) computed D = 12plaU from (9.7) for a solid sphere of radius amoving forward with veloc-
ity U in a potential flow motionless at infinity. Exactly the same value for drag on a spherical gas bubble was
computed in exactly the same way by Levich (1949). Levich justified his result by arguing that the drag due to the
weak vorticity boundary layer at the gas–liquid interface is much smaller than the drag due to the dissipation of
the irrotational flow. There are two ways to interpret Bateman’s result: (1) the fluid slips at the solid and the
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dissipation is balanced by the power of the traction leading to zero drag (9.10) or (2) the fluid does not slip, there
is a region at the boundary which may be small or large in which vorticity is important and 12plaU approxi-
mates the additional drag due to the viscous dissipation in the irrotational flow outside the boundary layer.

Some German researchers (Hamel, 1941; Ackeret, 1952; Romberg, 1967; Zierep, 1984) considered the prob-
lem of dissipation and drag on solid bodies in contrived irrotational motions of a viscous fluid. Hamel (1941)
noted that though the resultants of the viscous irrotational stresses vanish, the work done by these stresses do
not vanish. This observation motivated his discussion of dissipation and drag. The papers of Hamel and Ack-
eret are very similar; they both use the formula (9.7) relating dissipation and drag for solid bodies under the
assumption that the boundary of the solid moves with the velocity of the irrotational flow. Ackeret gives drag
results for circular cylinders in a uniform stream with circulation, for elliptic cylinders, for spheres and other
bodies. Zierep (1984) in a paper on viscous potential flow discusses the dissipation and drag associated with
the moving wall calculations of Hamel and Ackeret; he calls this a pseudo drag which ‘‘originates from fric-
tion.’’ He says that ‘‘. . . A real drag does not appear in potential flows including those with friction.’’ Zierep’s
claim that the drag on a solid body in irrotational flow vanishes is a consequence of d’Alembert’s principle for
flows with a non-zero dissipation embodied in (9.10). The assumption that the boundary of the solid moves
with the velocity of the irrotational flow could be interpreted to mean that the edge of the boundary layer on
the body moves with the velocity of the irrotational flow because the velocity is continuous there. The differ-
ence between the dissipation in the irrotational flow outside the boundary layer on a rigid body and the dis-
sipation outside the same body whose velocity is contrived to move at the velocity of the irrotational flow
could be close if the boundary layer is not too thick and the dissipation in regions of strong vorticity arising
from boundary layer separation is ignored. The dissipation in the irrotational flow outside a moving body is
exactly the same when the fluid slips and when the motion of the boundary of the body is imagined to move
with the slip velocity.

Zierep’s discussion of viscous potential flow is confused: he says that viscous potential flow is independent
of the Reynolds number; he did not discuss the irrotational viscous stresses which scale with the Reynolds
number. He notes that the drag on a sphere with a moving wall computed from (9.7) is the same as the drag
on a spherical gas bubble computed by Levich (1949). He notes that drag on the bubble is in good agreement
with experiment and he attributes this difference to the fact that the shear stress on the bubble surface vanishes
and the gas liquid is like moving wall. He does not confront the discrepancy posed by the non-zero viscous and
irrotational shear stress in the theory and the zero shear stress condition required in practice.

9.4. Viscous dissipation in the irrotational flow outside the boundary layer and wake

The paper on dissipation and drag by Romberg (1967) is important and deserves to be better known. In this
paper
The connection between drag and dissipation in incompressible flows is derived. Two cases are consid-
ered: Firstly the surface of the body is at rest and secondly the surface elements can move.In the further
case the flow outside the boundary layer and the wake contributes a term to the drag coefficient which is
proportional to Reynolds number to the minus one (high Reynolds number assumed). The coefficient of
this term is completely fixed by the frictionless flow.
The dissipation in the irrotational flow of a viscous fluid outside the boundary layer had not been consid-
ered before Romberg. I learned about this paper from Zierep (1984) that discussed the first two topics but
ignored the flow outside the boundary layer. Much later and independently, Wang and Joseph (2006a) pre-
pared a work on pressure corrections for the effects of viscosity on the irrotational flow outside Prandtl’s
boundary layer; in one chapter they calculated the additional drag on a Joukowski airfoil at an angle of attack
by the dissipation method.

The existence of an added drag due to viscosity in the irrotational flow outside the very small vorticity layer
at the bubble surface is widely accepted by fluid mechanics researchers. The situation there and in other gas–
liquid free surface problems is complicated by the uncompensated irrotational shear stress at the interface
which is intimately connected to the viscous action in the irrotational flow. This complication does not appear
in the equivalent formulation in which the irrotational effects of viscosity are computed using the dissipation



Fig. 2. Added drag due to the viscous dissipation in the irrotational flow outside the boundary layer. This drag is negligible at very high
Reynolds numbers.
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method. It is hard to envisage a situation in which the viscous effects associated with irrotational gas–liquid
flows do not occur in other irrotational flows, like those outside Prandtl’s boundary layer. The effects of the
shear stress at the surface of a rigid body are well described with traditional boundary layer theory but in flows
in which the irrotational shear stresses at the edge of the boundary layer are not the same as the ones obtained
from boundary layer analysis there is mismatch which begs for resolution. Indeed we can think that the body
plus the boundary moves through the irrotational flow like a bubble in which the resolution of discontinuous
velocity derivatives rather than the resolution of a discontinuous velocity is at issue. The simplest kind of anal-
ysis to try for the boundary layer problem is the dissipation method where the dissipation would be computed
in the region outside the boundary layer. This approach is difficult to implement because there is no definite
end to the boundary layer and for other reasons. To avoid these difficulties, the viscous dissipation of the irro-
tational flow could be computed everywhere outside and inside the boundary layer, right up to the boundary
as was done by Romberg (1967) and Wang and Joseph (2006a). If this approach has merit, all the calculations
of the drag and dissipation in irrotational motions around solids given by Hamel (1941) and Ackeret (1952)
which I called contrived might actually give an approximation to the added drag due to the irrotational flow
outside the boundary layer.

Romberg calculated the additional drag due to viscosity in the irrotational flow over an ellipse at a zero
angle of attack. He finds that the coefficient of the drag is given by
Cd ¼ 4pð1þ sÞ2=Re;

where s is the aspect ratio of the ellipse. The drag coefficient tends to 4p/Re as the ellipse collapses onto its
major axis. This is the flow over a flat plate. Romberg notes that the dissipation integral (9.8) remains finite
because the integrand is singular at the front at the front stagnation point.

Wang and Joseph (2006a) computed the additional viscous drag on a Joukowski airfoil in the well-known
irrotational streaming flow obtained from the conformal transformation z = f + c2/f from a circle of radius
a = c(1 + e) with circulation C ¼ 4pU 0a sin b where b is the attack angle and e is the sharpness parameter;
the smaller e the sharper the nose. They calculated this drag from the dissipation integral (12.8) using the
complex potential f(z) = u + iw. The drag coefficient Cd = �2I(e, b)/Re where Re = 4cU0/m is given in the
table in Fig. 2.

10. Major effects of viscosity in irrotational motions can be large; they are not perturbations of potential

flows of inviscid fluids

At the risk of repeating myself, I feel that it is necessary to write this section forcefully because the contrary
opinion is so widespread. The best way to establish this point is to list many examples in which viscous effects
computed from purely irrotational theories are both large and in good agreement with exact theoretical results
and experiments.

10.1. Exact solutions

By exact solutions I mean irrotational solutions which also satisfy commonly accepted boundary conditions
for viscous fluids. Irrotational flows of viscous fluids cannot in general satisfy no-slip conditions at solid–fluid
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surfaces or continuity conditions on the tangential components of velocity and stress at the interface between
liquids. At a gas–liquid surface the tangential component velocity in the liquid is essentially unrestricted as it
would be at a vacuum–liquid surface but the continuity of the shear stress leads to the condition that the shear
stress must be essentially zero in the liquid as it is in the vacuum or nearly in the gas. I know only of two
non-contrived examples of potential flows which satisfy these strict conditions. The first is the purely rotary
flow between rotating cylinders adjusted so that the velocity of the fluid in circles is proportional to c/r.
The second solution arises in purely radial gas–liquid flows of spherical bubbles or drops (Poritsky, 1951).
In these purely radial flows, shear stresses cannot develop but irrotational viscous normal stresses propor-
tional to the viscosity are not zero. The irrotational solutions of these problems work for water and pitch,
independent of viscosity.

10.2. Gas–liquid flows: bubbles, drops and waves

Irrotational studies of gas–liquid flows cannot be made to satisfy the zero shear stress condition on the free
surface. This mismatch leads to the generation of vorticity. Very often the contribution of vorticity is confined
to a boundary layer and the viscous effects in these layers are much smaller than the viscous effects in the
purely irrotational flow. The purely irrotational analysis of the rise velocity of a spherical cap bubble described
in Fig. 1 is in good agreement with experiment at high Morton numbers even at Reynolds numbers of 0.1.
Classical studies of interfacial stability for potential flow of inviscid fluids are as easily done for the potential
flow of viscous and even viscoelastic fluids.

10.3. Rayleigh–Taylor instability

Joseph et al. (1999) studied the breakup of drops in a high speed air stream behind a shock wave. At first
the drop flattens due to high pressure at the front and back of drop. The accelerations can be 105 times gravity;
this huge acceleration is main dynamical feature for generating the RT instability which give rise to the cor-
rugations seen on the front face of the drop before it is set into motion by acceleration (see Fig. 3). The anal-
ysis of RT instability can be done exactly from the linearized Navier–Stokes equations and from viscous
potential flow VPF. The growth rates and the wave length for maximum growth depend strongly on viscosity;
the difference between VPF and the exact solution is about 2% at most for small and large viscosities. Similar
agreement between the irrotational theory, exact solutions and experiments for RT instability were given by
Joseph et al. (2002).
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Fig. 3. Growth rate curves for Rayleigh–Taylor instability for water (1 cp) silicon oil (100 cp). The critical cut off wave number is given by
kc = (qa/c)1/2, where a is acceleration c is surface tension, is independent of viscosity. The maximum value of the growth rate decreases
strongly with viscosity and the maximum value of the growth rate shifts strongly to longer waves. The growth rate curves here computed
from viscous potential flow are less than 2% different than the curves from the exact theory. The irrotational theory agrees with exact
theory and with experiments even when the viscosity is very large.
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10.4. Capillary instability

Wang et al. (2005a) studied capillary instability using VPF and VCVPF; they compared their results to the
exact solution of Tomotika (1935). The differences between the exact solution and VCVPF are at most a few
percent even for viscosities a million times larger than water. A vorticity layer exists at the interface but for
gas–liquid flows, its effect on the linearized dynamics is negligible. It is unexpected that the purely irrotational
analysis of capillary instability of two very viscous liquids like Golden syrup and paraffin should give results
close to the exact solution for the shorter waves in the region of cutoff and maximum growth rates. The effects
of vorticity are not uniform in k, they are more important for long waves (small k) (Fig. 4).

Similar agreements between purely irrotational analysis of capillary instability of viscoelastic fluids and
exact solutions have been obtained by Wang et al. (2005c).

10.5. Kelvin–Helmholtz instability

This is an instability which arises from a discontinuity in the velocity of uniform parallel streams. It is usu-
ally studied using Euler’s equations because the continuity of the tangential components of velocity and stress
required in the Navier–Stokes theory will not allow discontinuities (Basset, 1888, Section 518, Vortex sheets

cannot exist in a viscous liquid, p. 308). However, these discontinuities are compatible with viscous potential
flow. Funada and Joseph (2001) studied KH instability in a channel. Funada et al. (2004b) studied KH insta-
bility of a liquid jet into incompressible gases and liquid using VPF, of the same problem in Funada et al.
(2005) using VCVPF and of a liquid cylinder in a supersonic compressible gas in Funada et al. (2006a).
The instabilities in all these studies depend strongly on viscosity but there are no exact solutions to which they
may be compared.
Fig. 4. Growth rate curves for capillary instability of a liquid cylinder. The growth rates given by VCVPF are in good agreement with the
exact solution for all k in the case of liquids in air (Wang et al., 2005a). The agreement in the two-liquid case (Wang et al., 2005b) is good
for the maximum growth rates but poor for long waves (small k).
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10.6. Free waves on highly viscous liquids

Here we return to the discussion in Section 2 of purely irrotational effects of the viscosity on the decay of
free gravity waves. In Fig. 5 we compare Lamb’s exact solution with the irrotational solutions VPF and
VCVPF in the case when the viscosity of the liquid is 108 larger than water. The exact solution and the irro-
tational solutions are in good agreement uniformly in k except near the critical value kc where progressive
waves change to monotonic decay. The exact solutions agree with VCVPF for long waves and with VPF
for short waves.

10.7. The effect of viscosity on the small oscillations of a mass of liquid about the spherical form

This problem is like the problem of the effect of viscosity on free oscillatory waves on deep water. Both
problems were studied by Lamb (1932). Lamb does not present an exact solution as comprehensive as the
one for free waves on deep water; he presents a detailed analysis of oscillations using the dissipation method.
An exact solution of this problem is embedded in the study by Miller and Scriven (1968) of the oscillations of a
fluid droplet immersed in another fluid. They note that ‘‘. . .the approximation based on inviscid profiles is ade-
quate . . .when the interface is free and either the interior or exterior fluid is a gas of negligible density and
viscosity.’’ The word inviscid in the previous sentence should be replaced by irrotational. Miller and Scriven
say that
Fig. 5.
VPF a
wherea
we plo
Lamb (1932) had previously developed approximate expressions for the rate of damping of oscillations
for such a droplet when its viscosity is small and for a cavity or bubble of low density gas oscillating in a
liquid of low viscosity.
This statement is not correct.
Prosperetti (1977), following his earlier 1975 work on viscous effects on the initial value problem for small-

amplitude surface waves on a deep liquid, studied viscous effects on the perturbed spherical flows. For both
problems he identifies two asymptotic results, for small times and large times. He says irrotational results are
valid for short times and ‘‘. . .on the surface of a liquid of small viscosity.’’ For large times, the solution tends
to the viscous normal mode solution for free waves and spherical oscillations. We have shown that these
normal mode solutions are also essentially irrotational.

Lamb gives results for the dissipation method and places no restrictions on the viscosity. Without actually
carrying out the analysis for the irrotational effects of viscosity, it is clear the results will closely correspond to
those given by Wang and Joseph (2006c) for free waves on deep liquid. For the oscillating sphere, the exact
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solution is well approximated by the dissipation method which probably can also be computed from VCVPF.
When the viscosity is very great the oscillations stop and the surface perturbations will decay monotonically;
the monotonic decay is probably well approximated by VPF.

The following citation from Lamb makes the point about viscosity and irrotationality in oscillations of a
liquid globe. He gives the formula for decay constant s for exp(�t/s) from the dissipation analysis
s = a2/(n � 1)(2n + 1)v and says that
the most remarkable feature of this result is the excessively minute extent to which the oscillations of
a globe of moderate dimensions are affected by such a degree of viscosity as is ordinarily met in
nature. For a globe of the size of the earth, and of the same kinematic viscosity as water, we have,
on the cgs system, a = 6.37 · 108, m = .0178 and the value of s for the gravitational oscillation of longest
period (n = 2) is therefore

s ¼ 1:44� 1011 years.
Even with the value found by Darwin (1878) for the viscosity of pitch near the freezing temperature, viz.
l = 1.3 · 108 · g, we find, taking g = 980, the value
s ¼ 180 h
for the modulus of decay of the slowest oscillation of a globe the size of the earth, having the density of
water and the viscosity of pitch. Since this is still large compared with the period of 1 h 34 min found in
Art. 262, it appears that such a globe would oscillate almost like a perfect fluid.
10.8. Viscosity and vorticity

Vorticity is generated by the no-slip condition at the boundary of solids; it is generated by continuity con-
ditions for the tangential components of velocity and stress at liquid–liquid surfaces and by the zero shear con-
dition at a liquid–gas surface. The effects of viscosity on the formation of regions of vorticity are a topic at the
foundation of boundary layer theory. In solid–liquid flows the major effects of viscosity emanate from regions
of non-zero vorticity. At high Reynolds numbers, the major part of the drag is due to the shear stress at the
boundary; a small contribution to the drag may arise from the viscous contribution to dissipation in the irro-
tational flow outside the boundary layer. Typically, the effects of viscosity arising from the boundary layer at
liquid–gas flows are small because the rates of strain in these layers are no larger than in the irrotational flow
and the layer thickness is small. It is possible to study the effect of viscosity emanating from such layers by
perturbing the irrotational flow of an inviscid fluid with terms emanating from the viscous terms in the normal
stress balance at the free surface for small viscosity as was done by Lundgren and Mansour (1988). This
approach captures the viscous effects from the boundary layer when the viscosity is small. These effects of vis-
cosity due to the formation of boundary layers of vorticity to remove the unphysical irrotational shear stress at
the bubble interface may be added to the direct effects of viscosity on the irrotational flow. In the direct irro-
tational theories which we called VPF and VCVPF the effects of viscosity on vorticity generation are ignored
but there is there is no restriction on the size of the viscosity. The limits of applicability of irrotational theories
are determined by an analysis of the effects of vorticity. This is well known. The new idea is that significant
effects of viscosity arise in regions irrotational flow even in problems in which vorticity is important.

Saffman (1992) in his monograph on vortex dynamics collects results on the classical theory of inviscid
incompressible fluids containing finite regions of vorticity. This approach is consistent with the fact that vortex
sheets cannot exist in a viscous fluid which is perhaps an intuitively obvious result proved in Section 518 of
Basset (1888). In view of the results collected in this essay, a theory of irrotational flow of viscous fluids
containing finite regions of vorticity might be considered.
11. Boundary layers when the Reynolds number is not so large

Prandtl’s boundary layer theory arises when the Reynolds number is very large. The flow in the boundary
layer satisfies the no-slip boundary conditions the solid wall. Vorticity is generated at the wall. At large
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Reynolds numbers the boundary layer is thin and outside this thin layer the flow is irrotational. In the limit of
very large Reynolds numbers the irrotational flow tends to a limit which is independent of Reynolds number.
This flow is sometimes said to be inviscid potential flow which is an unfortunate turn of phrase since the fluid
is not viscous in some places and inviscid in others. It is well known that there is no definite end to the bound-
ary layer; the vorticity decays rapidly away from wall and a criterion can be defined for the place beyond
which the vorticity is so small that the flow out there is effectively irrotational.

The classical high Reynolds theory of Prandtl does not account for the viscous effects of the outer irrota-
tional flow. Viscous effects on the normal stresses at the boundary of a solid cannot be obtained from Prandtl’s
theory. It is very well known and easily demonstrated that as a consequence of the continuity equation, the
viscous normal stress must vanish on a rigid solid. The only way that viscous effects can act a boundary is
through the pressure but the pressure in Prandtl’s theory is not viscous. It is determined by Bernoulli’s equa-
tion in the irrotational flow and is impressed unchanged on the wall through the thin boundary layer. Turning
couples due to viscous stresses as well as the all important pressure drag cannot be computed from Prandtl’s
theory and they have not been computed from the matched asymptotic techniques used in higher order bound-
ary layer theory. The shear stress at the wall is computed by Prandtl’s theory but the mismatch between the
irrotational shear stress and the zero shear stress at the edge of the boundary layer y = d given by Prandtl’s
theory is not resolved.

Typically, at smaller Reynolds numbers, the flow outside some vortical region which can be a thick layer
can become effectively irrotational but viscous. We can think that the solid plus the boundary layer is like a gas
bubble because the shear stress vanishes at the edge of the boundary layer but the irrotational shear stress does
not.

Some recent papers (Padrino and Joseph, 2006; Wang and Joseph, 2006a,b) attempt to deal with problems
of boundary layers at Reynolds numbers which are not so large. They considered the problem of boundary
layers on a rotating and translating cylinder of radius a previously studied by Glauert (1957). This is a good
test problem for boundary layer analysis because wakes may be suppressed by rotation. The order of magni-
tude of the terms in the continuity and momentum equations are estimated inside the boundary layer. When
terms of order d/a and higher are dropped, Glauert’s equations are covered. This procedure follows Prandtl’s
recipe for boundary analysis but by dropping those terms he throws out the baby with the bath water in the
following sense. If the stream velocity is put to zero a boundary layer does not develop because the flow on
circles around the cylinder is a viscous potential flow which requires a torque to maintain the motion.
Glauert’s high Reynolds boundary layer solution gives a zero torque when the steam velocity is zero. To
get a correct result for the torque terms of the order neglected need to be retained. A new boundary layer
for this problem was derived by Wang and Joseph (2006a) and compared with the direct numerical simulation
of Padrino and Joseph (2006).

There are significant differences between the new theory and Glauert’s. In Glauert’s study the pressure is
assumed to be a constant across the boundary layer and the momentum equation in the radial direction is
not used. In the boundary layer solution of Glauert (and Prandtl), the normal stress on a solid is imposed
by the irrotational pressure, independent of the Reynolds number. Viscous effects on the normal stress on
a solid wall, which always exist at finite-Reynolds number, no matter how large, cannot be obtained from
the Glauert theory.

In the new theory, the pressure is an unknown and the momentum equation in the radial direction is
needed. Since there is an extra unknown, an extra boundary condition is needed and found in the requirement
that the shear stress at the outer edge of the boundary layer is continuous. Solutions in power series, like Glau-
ert’s, are obtained. The inertia terms in the momentum equations give rise to the irrotational pressure and the
viscous terms lead to a viscous pressure which contributes to both lift and drag. The solution is good to excel-
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lent agreement with the numerical solution when the boundary layer thickness d is properly chosen. The
boundary layer is relatively thick and the Reynolds numbers are not so large. The new solution is not self
contained because d is not selected internally but is selected to fit data.
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Saffman, P.G., 1992. Vortex Dynamics. Cambridge University Press.
Saint-Venant, A.-J.-C.-B. De., 1843. Note to be added to the memoir on the dynamics of fluids. Compt. Rend. 17, 1240–1243.
Saint-Venant, A.-J.-C.-B., De., 1869. Problème des mouvements que peuvent prendre les divers points d’une masse liquide, ou solide
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