APPH 4200 Physics of Plasmas: In-Class Worksheet

Answer the following without looking at your notes or textbooks. (These are questions 10 and 11 from Chapter 2.)

Question

With $\phi(x, y, z)$ a scalar function, prove the following

$$
\nabla \times \nabla \phi=0
$$

and with $\mathbf{A}(x, y, z)$ a vector field, prove the following

$$
\nabla \cdot \nabla \times \mathbf{A}=0
$$

You may use Einstein notation (or any other method)

$$
\begin{aligned}
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}) & =\epsilon_{i j k} a_{i} b_{j} c_{k} \\
(\mathbf{a} \times \mathbf{b})_{k} & =\epsilon_{i j k} a_{i} b_{j}
\end{aligned}
$$

with $\epsilon_{i j k}=1$ if $i j k$ are cyclic, $\epsilon_{i j k}=0$ if any $i j k$ are repeated, and $\epsilon_{i j k}=-1$ if $i j k$ are anti-cyclic.

Answer

The proof of the identies is ...

