APPH 4200 Physics of Plasmas: In-Class Worksheet

Answer the following without looking at your notes or textbooks.

Question

Find an expression for fluid flow around a cylinder. Take the fluid to be inviscid, incompressible, and two-dimensional. Then, with $\mathbf{U}=\left\{U_{r}, U_{\theta}, U_{z}\right\}=\left\{0, U_{\phi}(r), 0\right\}$, derive an expression for $U_{\theta}(r)$ having constant circulation.

You may use the velocity potential, $\mathbf{U}=\nabla \phi_{v}$, and the equations

$$
\begin{aligned}
\nabla \cdot \mathbf{U} & =0 \\
\nabla \times \mathbf{U} & =0
\end{aligned}
$$

Define the fluid circulation as

$$
\Gamma \equiv \oint \mathbf{U} \cdot d \mathbf{s}
$$

wher the line integral surrounds the cylinder. What boundary condition did you assume as $r \rightarrow \infty$?

Recall the gradient and Laplacian of a scalar in cylindrical coordinates are

$$
\begin{aligned}
\nabla^{2} \phi & =\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \phi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial \phi}{\partial \theta^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}} \\
\nabla \phi & =\hat{\mathbf{r}} \frac{\partial \phi}{\partial r}+\frac{\hat{\theta}}{r} \frac{\partial \phi}{\partial \theta}+\hat{\mathbf{z}} \frac{\partial \phi}{\partial z}
\end{aligned}
$$

Answer

The steady invisid fluid flow is ...

