APPH 4200 Physics of Plasmas: In-Class Worksheet

Answer the following without looking at your notes or textbooks. (This is one of the questions at the end of Chapter 3.)

Question

Consider steady axisymmertic flow of a compressible fluid. The equation of mass continuty is given in cylindrical coordinates (r, θ, z) as

$$
\frac{\partial}{\partial r}\left(\rho r U_{r}\right)+\frac{\partial}{\partial z}\left(\rho r U_{z}\right)=0
$$

Question: define a streamfunction for the compressible fluid so that the equation of continuity is satisfied automatically.

You may use the definitions:

$$
\begin{aligned}
\nabla f & =\hat{r} \frac{\partial f}{\partial r}+\frac{\hat{\theta}}{r} \frac{\partial f}{\partial \theta}+\hat{z} \frac{\partial f}{\partial z} \\
\nabla \cdot(\mathbf{A} \times \mathbf{B}) & =\mathbf{B} \cdot \nabla \times \mathbf{A}-\mathbf{A} \cdot \nabla \times \mathbf{B}
\end{aligned}
$$

Answer

The proof of the identies is ...

