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Abstract
More than a century ago, Stokes (1819–1903)pointed out that the attenuation of
surface waves could be exploited to measure viscosity. This paper provides the
link between fluid viscosity and the attenuation of surface waves by invoking
the conservation of energy. First we calculate the power loss per unit area
due to viscous dissipation. Next we calculate the power loss per unit area
as manifested in the decay of the wave amplitude. By equating these two
quantities, we derive the relationship between the fluid viscosity and the decay
coefficient of the surface waves in a transparent way.

1. Introduction

Surface tension and gravity govern the propagation of surface waves on fluids while viscosity
determines the wave attenuation. In this paper we focus on the relation between viscosity and
attenuation of surface waves.

More than a century ago, Stokes (1819–1903) pointed out that the attenuation of surface
waves could be exploited to measure viscosity [1]. Since then, the determination of viscosity
from the damping of surface waves has received much attention [2–10], particularly because
the method presents the possibility of measuring viscosity noninvasively.

In his attempt to obtain the functional relationship between viscosity and wave attenuation,
Stokes observed that the harmonic solutions obtained by solving the Laplace equation for
the velocity potential in the absence of viscosity also satisfy the linearized Navier–Stokes
equation [11]. However, to render the harmonic solutions suitable for viscous fluids, one must
satisfy a new set of boundary conditions, which incorporate the viscous losses. The result is
the introduction of a spatial decay in the wave amplitude.

To extract viscosity from the attenuation data, however, one needs to know the functional
relationship between the decay coefficient of surface waves and the viscosity. Most authors
resort to the result obtained by Stokes more than a century ago as quoted in Lamb [12], and
more recently in Lighthill [11]. The derivations in these texts are based on modifying the
harmonic solutions to satisfy the boundary conditions at the surface. What is more, most
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recent texts perpetuate this problem by simply quoting the old results without providing a
modern derivation. Some texts simply avoid the subject [13].

This paper attempts to provide the link between the fluid viscosity and the decay coefficient
of surface waves by a simple application of conservation of energy. First we calculate the power
loss per unit area due to viscous dissipation. Next we calculate the power loss per unit area
due to the decay of the wave amplitude. By equating these two quantities, we derive the
relationship between the fluid viscosity and the decay coefficient of the surface waves in a
transparent way.

In what follows we first give a brief outline of the potential theory and by a general
argument arrive at the harmonic solutions of the Laplace equation and the associated surface
waves for incompressible and irrotational flow. Next we modify these solutions to represent
surface waves that decay in the presence of viscosity and derive the relation between viscosity
and the decay coefficient of the waves.

2. Surface waves on incompressible and inviscid fluids

Starting with the differential form of the equation of continuity, where ρ is the fluid density
and v is the velocity field, we have

∂ρ/∂ t = −∇ · (ρv) (1)

which, when expanded, takes the form

∂ρ/∂ t + ρ∇ · v + v · ∇ρ = 0. (2)

For an incompressible fluid ρ is constant, which in light of equation (2) implies that the
velocity field is source free, i.e.,

∇ · v = 0. (3)

Furthermore, for irrotational flow the velocity field is also curl free, i.e.,

∇ × v = 0. (4)

Subject to the boundary conditions, equations (3) and (4) completely specify the vector
field v to within a constant. Furthermore, equation (4) implies that the vector field v can be
derived from a scalar potential φ through the relation,

v = ∇φ (5)

which immediately leads to,

∇2φ = 0. (6)

Equation (6), first derived by Euler, is now known as Laplace’s equation.
Laplace’s equation is not a wave equation; however, it does admit of harmonic solutions

with one caveat: it cannot describe the propagation of waves in an incompressible fluid if
the system is either bounded by stationary surfaces or is infinite in extent. This is because a
harmonic function of the form

φ = ϕ0ei(ωt±k·r) (7)

is a solution of the Laplace equation only if the wavevector k satisfies the relation k · k = 0.
Therefore, except for the trivial case of k = 0, k must be complex. Here ϕ0 is the potential
amplitude, ω is the angular frequency, r is the position vector, and t stands for time.

However, when the system is bounded by fixed surfaces, a complex k is inadmissible
because one cannot satisfy the boundary conditions. This is so because at a fixed boundary
the velocity v must vanish, i.e.

v = ∇φ = kφ = 0

which returns us to the trivial k = 0 solution. Physically, a finite system with fixed boundaries
cannot support waves because the potential energy of the system is a constant.
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For an infinite system with no boundaries, a complex wavevector presents another obstacle;
it causes the velocity potential to grow without bound as r in equation (7) approaches infinity.
But when the system is partly bounded by a free surface a complex k vector is admissible
since the free surface allows a change in the potential energy of the system as the surface level
moves up and down due to the wave motion.

To obtain the harmonic solutions resulting from a complex wavevector, it is convenient
to choose a coordinate system in which the fluid surface forms the x–z-plane, and the y-axis
is normal to the fluid surface. Without loss of generality we consider waves travelling along
the x-axis. With this choice of coordinates, the harmonic potential of equation (7) satisfies the
Laplace equation if we choose a complex wavevector of the form

k = kxi + ikyj (8)

in which case,

k · k = 0 = k2
x − k2

y. (9)

This choice ofkhas the requisite virtue in that kx is real and thus it allows wave propagation
in the x-direction, while the presence of the imaginary term, iky , ensures that the harmonic
solution satisfies Laplace’s equation. In light of equation (9), we have

kx = ky = ±k (10)

where k = 2π/λ is the (positive) wavenumber. Thus the harmonic solution takes the form

φ = ϕ0e±kyei(ωt±kx) . (11)

However, since the y-coordinate is negative for points below the surface, only the eky solution
guarantees a finite velocity potential as y increases with depth.

Consequently, the velocity potential representing a sinusoidal wave moving in the +x-
direction may be written as

φ = ϕ0eky cos(ωt − kx). (12)

Evidently, under wave action, the velocity of a fluid element whose equilibrium position is at
(x, y) is given by

v = ∇φ = v0eky[sin(ωt − kx)i + cos(ωt − kx)j]. (13)

Here v0 = kϕ0 is the velocity amplitude at the surface.
Furthermore, the displacement ψ of a fluid element from its equilibrium position (x, y)

is related to its velocity by

∂ψ/∂ t = v. (14)

Therefore, the displacement of a fluid element relative to its equilibrium position due to the
wave motion is given by

ψ = aeky[− cos(ωt − kx)i + sin(ωt − kx)j] (15)

where a = v0/ω is the magnitude of the displacement of a water element at the free surface
from its equilibrium. Note that a is also the wave amplitude at the surface. Furthermore, the
displacement and velocity of a water element diminish exponentially with depth below the
surface.

Equation (15) is a right-handed circular wave travelling in the positive x-direction with
the wave speed of ω/k. Figure 1 is a representation of such a wave on the surface. In this
schematic diagram the amplitude of the wave has been exaggerated for clarity. The solid
arrows represent the velocity of a fluid element; the dashed arrows show the displacement of
a fluid element from its equilibrium position. Each fluid element moves clockwise around a
circular path of radius aeky, centred on its equilibrium position.
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Figure 1. A schematic diagram of a right-handed circular wave travelling in the +x-direction. The
dashed arrows show the displacement of the fluid elements from their equilibrium positions at the
centre of each circle. The solid arrows represent the velocity of the displaced fluid elements. Each
fluid element moves clockwise around a circular path of radius aeky , centred on its equilibrium
position. The wave amplitude is vastly exaggerated for clarity.

3. Harmonic solutions and the equation of motion

We may well ask whether the harmonic solutions as expressed in equation (15) satisfy the
equation of motion for a fluid element. To answer this question, let us consider the forces
acting on a fluid element under wave action.

In the absence of viscosity, the net force on a closed volume element is due to pressure
and gravity and is given by

fnet = −
∮

S
p dS +

∫
ρg dV =

∫
(−∇p + ρg) dV . (16)

Here p is the pressure, and g is the acceleration of gravity. Evidently, the net force per unit
volume is given by the expression (−∇p + ρg). Under hydrostatic equilibrium, the net force
per unit volume is zero, i.e., ∇p = ρg. But under wave action, the pressure experienced by a
fluid element within the liquid departs from its hydrostatic value by an excess pressure pe. This
excess pressure is due to the vertical displacement of the fluid element from its equilibrium
position. In other words, pe = ρgψ j , where g is the magnitude of the acceleration of gravity
and ψ j is the vertical component of the displacement of a fluid element from its equilibrium
position due to the wave motion.

Under the wave action, equation (15) gives the displacement of a fluid element from its
equilibrium position, where the vertical component of this displacement is

ψ j = aeky sin(ωt − kx).

Therefore, for a liquid element whose equilibrium position is located at the point (x, y), the
excess pressure pe is given by

pe = ρgψ j = ρgaeky sin(ωt − kx). (17)

However, by equation (16) the net force per unit volume due to this excess pressure is −∇pe.
Therefore, the equation of motion for a fluid element is simply given by

ρ dv/dt = ρ[∂v/∂ t + (v · ∇)v] = −∇pe. (18)

When the amplitude of the wave is small relative to the wavelength, the nonlinear term in
equation (18) may be dropped to obtain the linearized Euler equation.

ρ[(∂v/∂ t)] = −∇pe. (19)

Does the harmonic wave solution satisfy the linearized Euler equation? Substitution of
equations (13) and (17) in (19) gives

ρ[(∂v/∂ t)] = ρωv0eky[cos(ωt − kx)i− sin(ωt − kx)j]

−∇pe = ρgak[eky[cos(ωt − kx)i− sin(ωt − kx)j]].
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Since v0 = aω, the two expressions are equal if

ω2 = kg. (20)

This is indeed the dispersion relation for gravity waves on deep water [14]. Thus the harmonic
wave solution as given by equation (15) satisfies the linearized equation of motion of a fluid
element.

To take account of the viscous drag forces,equation (18) must be modified. The net viscous
force per unit volume is given by the expression η∇2v, where η stands for viscosity [15].
Equation (18) may thus be generalized to

ρ[(∂v/∂ t) + (v · ∇)v] = −∇pe + η∇2v. (21)

This is, of course, the Navier–Stokes equation for incompressible flow. When the amplitude
of the wave is small relative to the wavelength, the nonlinear term in equation (21) may be
dropped to yield the linearized version of the Navier–Stokes equation.

ρ(∂v/∂ t) = −∇pe + η∇2v. (22)

Does the harmonic wave solution given in equation (15) satisfy the linearized Navier–Stokes
equation? Stokes was first to observe [11] that the viscous term, η∇2v, vanishes identically
when equation (13) represents the velocity field v, a fact that can be verified easily by using v
as given in equation (13) to evaluate the expression ∇2v [16].

4. Viscosity and wave attenuation

Equations (13) and (15) represent irrotational wave motion in an incompressible fluid when
the fluid depth is larger than the wavelength λ. They are the harmonic solutions of Laplace’s
equation for irrotational flow and, as discussed above, do satisfy the linear version of the
equation of motion for a fluid element,

Furthermore, even in the presence of viscosity these same harmonic solutions satisfy the
linearized Navier–Stokes equation. However, in this case the amplitude of the wave decays
due to viscous losses. The energy dissipation, manifested in the amplitude decay, is due to
viscous forces. Stokes was first to recognize that this energy loss is numerically equal to the
work of an external force which, when applied to the free surface of the fluid, would counteract
the viscous drag forces and assure unattenuated irrotational motion [11]. One can appreciate
Stokes’ insight by observing wind driven waves on lakes.

The external applied force must balance only two components of the stress tensor σi j . The
shear stress is given by σxy , which points in the x-direction, while the normal stress is given by
σyy , which points in the y-direction. Note that there is no shear stress in the x–z-plane along
the z-direction as there is no z-dependence in the equations of motion. More explicitly,

σxy = −η[(∂vy/∂x) + (∂vx/∂y)], (23)

and

σyy = pe − 2η[(∂vy/∂y)]. (24)

When the expression for v as given in equation (13) is used in equations (23) and (24),
the results are

σxy = −2ηaωkeky cos(ωt − kx)i (25)

and

σyy = [pe + 2ηaωkeky sin(ωt − kx)]j. (26)

Consequently, the net power dissipated per unit surface area as the wave moves on is simply
given by the vector product of these two stress components and the fluid velocity at the surface.
This may be written most conveniently as

dP/d A = (σxy + σyy) · v. (27)
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When equations (13), (17), (25), and (26) are substituted into equation (27), one obtains

dP/d A = −2ηa2ω2ke2ky cos2(ωt − kx)

+ [−aωρga cos(ωt − kx) sin(ωt − kx)− 2ηa2ω2ke2ky sin2(ωt − kx)]

which simplifies to the following expression for the average power dissipation per unit area at
the surface:

〈dP/d A〉 = −2ηa2ω2k. (28)

Note that equation (28) implies that when viscosity is negligible, the power loss per unit
area is zero as expected. On the other hand, in the presence of viscosity, the wave amplitude
decays exponentially with distance according to a = a0e−αx , where a0 is the wave amplitude
at x = 0 and α is the decay coefficient. Therefore the power loss per unit area is a function of
position. More explicitly,

〈dP/d A〉 = −2ηa2
0e−2αxω2k. (29)

Consequently, since the wave energy diminishes as the wave moves along, the wave energy
per unit area E is also a function of position.

Furthermore, we note that in a travelling wave the kinetic energy represents only half the
total energy of the wave since the wave energy is equally divided between kinetic and potential
forms. This equipartition of energy between the kinetic and potential forms is a general
property of harmonic waves in material media. For water waves the equipartition is most
easily demonstrated by considering the case of a standing wave formed by the superposition of
two travelling waves of the same amplitude and frequency moving in the opposite directions.
Here the entire energy of the standing wave is kinetic when the wave is in the state where the
fluid surface is flat, and the energy is entirely potential when the wave attains its maximum
amplitude. Consequently, in a standing wave the average kinetic and potential energies are
equal. Note, however, that whereas in a standing wave the energy shifts between kinetic
and potential forms, in a travelling wave the energy is divided equally between the kinetic
and potential forms. We mention in passing that in a previous article we have exploited the
transformation of energy from kinetic to potential forms in standing waves to derive the general
dispersion relation of water waves based on conservation of energy [17].

Therefore, since the velocity amplitude at a point (x, y) is given by v = aωe−αxeky , we
conclude

E = 2
∫ −∞

0
(1/2ρv2) dy =

∫ −∞

0
ρa2

0ω
2e−2αx e2ky dy = ρa2

0ω
2e−2αx/2k. (30)

Consequently,

dE/dx = −2αE (31)

and

dE/dt = −2αE dx/dt = −2αEvg = −2α(ρa2
0ω

2e−2αx/2k)vg (32)

where vg is the group velocity.
Comparing equation (32) with the earlier expression for viscous power loss per unit area

(equation (29)) we conclude that

−2α(ρa2
0ω

2e−2αx/2k)vg = −2ηa2
0e−2αxω2k

and thus

η = ρvgα/2k2. (33)
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5. Discussion

In deriving equation (33),we have simply invoked the conservation of energy. First we obtained
the power loss per unit area due to viscous stress components in the surface layer. Next we
calculated the power loss of the wave per unit area due to its amplitude attenuation. By equating
these two losses, we derived the relation between viscosity and decay coefficient.

Equation (33) provides a means for determining the viscosity of a fluid from a measurement
of the decay coefficient of surface waves. However, to complete the task one must also have
the group velocity of the surface waves. The group velocity is defined by the expression

vg = dω/dk.

The simple dispersion relation given in equation (20) is only valid for gravity waves where
the effect of surface tension may be neglected. The more general dispersion relation for surface
waves which takes the effect of surface tension into account is given by the expression

ω2 = kg + σk3/ρ (34)

where σ is the surface tension. The group velocity is therefore given by differentiating
equation (34) to get

vg = (g + 3σk2/ρ)/2(kg + σk3/ρ)1/2. (35)

In practice, equation (33) takes a simpler form depending on the wave regime under
study. For capillary waves the second term on the right-hand side of equation (34) dominates
[k2/g � 1], and the dispersion relation takes the form

ω2 ∼= σk3/ρ

and the group velocity vg = (3ω/2k). So equation (33) takes the form

η = 3ρωα/4k3 (capillary waves).

For gravity waves, the first term on the right-hand side of equation (34) dominates, resulting
in ω2 ∼= kg as the dispersion relation for gravity waves, which in turn results in vg = (ω/2k).
In this case equation (33) takes the form

η = ρωα/4k3 (gravity waves).

In the intermediate wave regime known as capillary-gravity waves, both gravity and surface
tension terms in the dispersion relation must be taken into account. When equation (35) is
used in equation (33), we obtain the viscosity in terms of four measurable quantities, namely
wavenumber k = 2π/λ, surface tension σ , densityρ, and the attenuation coefficientα. Indeed,
we have

η = [αρ/2k2][(g + 3σk2/ρ)/2(kg + σk3/ρ)1/2]. (36)

Experimentally, the attenuation coefficient α is obtained from a plot of the wave amplitude
versus distance travelled. Reference [10] describes how equation (36) is used in practice to
obtain the viscosity of water as a function of temperature by measuring the decay coefficient
of capillary-gravity waves.
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