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| ‘ Superconductivity Experiment

Superconductivity may become one of the most significant innovations of modern
dmes. This is a result of very recent discoveries of high temperature superconductors
which may revolutionize everything from electrical generation and transmission to
high-speed computers to controlled fusion generating plants.

In this experiment, you will investigate the superconductivity of the new Y-Ba-
Cu-O compound system as a function of temperature and magnetic field. The most
important question should should answer is “What is the resistance of the
superconductor as the temperature and applied magnetic field are changed?” Other
questions which you will not be able to answer are related to the determination of

. current density which can pass through the material and the mechanical strength and
elasticity of the material.

Attached to these notes are some articles which describe aspects of
superconductivity and the results of recent measurements of the Y-Ba-Cu-O
compound made by Prof. M. K. Wu and co-workers: These will provide background for
the experiments that you will be performing. Pay particular attention to Prof. Wu’s
article. Their measurements are identical to those that you can obtain with the
equipment supplied in the laboratory. Next, look over the description of type 1 and

type 2 superconductors given by Gennes in Superconductivity in Metals and Alloys. N

Type 1 superconductors have a “correlation length” between conduction electrons
(denoted by the symbol, £p) much longer than the magnetic field penetration length
(denoted by Ag). They generally have a very abrupt critical field, H,, below which the
material is superconducting and excludes all magnetic flux. (H, is a function of
temperature.) This “perfect diamagnetism” is characteristic of the superconducting
state. Type 2 superconductors have Ag > &y and have a more gradual transition to this
superconducting state. They are described by three critical magnetic fields. Below
H.1 (the lowest critical field), a type 2 superconductor has no resistance and, like a
type 1 superconductor, excludes flux. Between H.j and H.y, the resistance is very
low, but finite, and the superconductor partially excludes flux. Between H.3 and H3,
the resistance is low, but no flux is excluded. Finally, above the highest of the three
critical fields, H.3, the material is no longer superconducting.

Description

The Y-Ba-Cu-O compound becomes superconducting between 77 and 85 K.
This makes the cryogenic aspects of these experiment very easy compared with
experiments using more conventional superconductors that require temperatures
below 22 °K. Liquid nitrogen is relatively inexpensive and a styrofoam thermos is all
that is required to store it for several hours.
" We have built three LN> containers for you, and these are large enough to hold
stainless-steel and copper “sample stands”. The sample stands cool the
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superconducting sample and provide a stable base to make your measurements. Also,
attached to each sample is a calibrated temperature sensor so that you can measure
the sample at all times. Be careful to note that if the rate of change of the temperature
is too rapid, then a temperature difference will dcvclop between the superconductor
and the sample.

. The superconductor is provided in two geometries. First, a small disk (with a
small hole drilled into its center) can be used to study the Meissner effect. We have
provided permanent magnetics which can be levitated and an inductor which can be
used to measure changes in the permeability of the superconductor. The second
sample is a short rectangular rod onto which four electrical leads are attached in order
to measure the electrical resistivity. Finally, a very large solenoid has been made
which can provide a 1.2 kG field to the rod enabling measurements of the transition
temperature and resistance as a function of applied magnetic field.

Suggested Experiments

_ The main goal of your experiments will be to characterize the electrical
resistance and the magnetic properties of the Y-Ba-Cu-O samples as a function of
temperature and applied magnetic field strength. A reasonable schedule for your
experiments, accomplishing these goals, is shown below:

g WEEK 1: First, familiarize yourself with the experimental setup,
diagnostics, power supplies, and the temperature and magnetic field monitors.
Then, using the disk-like sample, examine the magnetic properties of Y-Ba-Cu-
O. You should monitor the temperature of the sample while, at the same time,
determining the ability of the sample to levitate a magnet. Next, place the wire
inductor around the sample and determine the change of the coil’s inductance
as a function of temperature. How do these measurements relate to the
Meissner effect? : ho; You should also measure the ability of the

WEEX 2. sample to retain flux. This can be done by first passing current through the coil
while the sample’s temperature is above the critical temperature and then
reducing the field below T after which you can turn off the current in the coil,
retaining flux within the hallow superconductor. Contrast this result with your

- knowledge of the Meissner effect. What is the role of the sample’s geometry?
3

WEEK &: Setup the experiment to measure the resistance of the sample
using the four-point diagnostic. Be Sure you understand the principles of what
you are doing. Measure the resistance as a function of temperature. Don’t
forget to measure the properties of the sample at room temperature before you
begin. It will probably be best first to cool the sample to 77 °K and then to use
the resistive heaters to slowly bring the sample up beyond it’s critical
temperature.

abwe cheve
WEER®:  Repeat the , experiments performed-in-week-2 while at the same
time applying increasing magneuc field strength.with the large solenoid. How
does the critical temperature and resistivity change with applied field?
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Superconductivity at 93 K in a New Mixed-Phase Y-Ba-Cu-O Compound System
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A stable and reproducible superconductivity transition between 80 and 93 K has been unambiguously
observed both resistively and magnetically in a new Y-Ba-Cu-O compound system at ambient pressure.
An estimated upper critical field H,2(0) between 80 and 180 T was obtained.

PACS numbers: 74.70.Ya

The search for high-temperature superconductivity
and novel superconducting mechanisms is one of the
most challenging tasks of condensed-matter physicists
and material scientists. To obtain a superconducting
state reaching beyond the technological and psychologi-
cal temperature barrier of 77 K, the liquid-nitrogen boil-
ing point, will be one of the greatest triumphs of
scientific endeavor of this kind. According to our stud-
ies,! we would like to point out the possible attainment
of a superconducting state with an onset temperature
higher than 100 K, at ambient pressure, in compound
systems generically represented by (L M;),A4,D,. In
this Letter, detailed results are presented on a specific
new chemical compound system with L=Y, M =Ba,
A=Cu, D=0, x=0.4, a=2, b=1, and y=<4 with a
stable superconducting transition between 80 and 93 K.
For the first time, a “zero-resistance” state (p <3x10~%
Q-cm, an upper limit only determined by the sensitivity
of the apparatus) is achieved and maintained at ambient
pressure in a simple liquid-nitrogen Dewar.

In spite of the great efforts of the past 75 years since
the discovery of superconductivity, the superconducting

transition temperature T, has remained until 1986 below

23.2 K, the T, of NbsGe first discovered? in 1973. In
the face of this gross failure to raise the T., nonconven-
tional approaches® taking advantage of possible strong
nonconventional superconducting mechanisms* have
been proposed and tried. In September 1986, the situa-
tion changed drastically when Bednorz and Miiller’ re-
ported the possible existence of percolative superconduc-
tivity in (La;—,Ba,)Cuj_; with x =0.2 and 0.15 in the
30-K range. Subsequent magnetic studies®® confirmed
that high-temperature superconductivity indeed exists in
this system. Takagi et al.® further attributed the ob-
served superconductivity in the La-Ba-Cu-O system to
the K;NiFy phase. By the replacement of Ba with
Sr, 51011 it is found that the La-Sr-Cu-O system of the
K,NiFjy structure, in general, exhibits a higher T, and a
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sharper transition. A transition width!® of 2 K and an
onset!! T, of 48.6 K were obtained at ambient pressure.
Pressure®!? was found to enhance the T, of the La-
Ba-Cu-O system at a rate of greater than 103 K bar ™!
and to raise the onset T, to 57 K, with a “zero-resis-
tance” state'? reached at 40 K, the highest in any known
superconductor until now. Pressure reduces the lattice
parameter and enhances the Cu*3/Cu*? ratio in the
compounds. This unusually large pressure effect on T,
has led to suggestions®!? that the high-temperature su-

pperconductivity in the La-Ba-Cu-O and La-Sr-Cu-O sys-

tems may be associated with interfacial effects arising
from mixed phases; interfaces between the metal and in-
sulator layers, or concentration fluctuations within the
K:NiF4 phase; strong superconducting interactions due
to the mixed valence states; or yet a unidentified phase.
Furthermore, we found that when the superconducting
transition width is reduced by making the compounds
closer to the pure KoNiF4 phase, the onset T, is also re-
duced while the main transition near 37 K remains un-
changed. Extremely unstable phases displaying signals
indicative -of superconductivity in compounds consisting
of phases in addition to or other than the K,NiF, phase
have been observed by us,®'* up to 148 K, but only in
four samples, and in China,'® at 70 K, in one sample.
Therefore, we decided to investigate the multiple-phase
Y-Ba-Cu-O compounds instead of the pure K);NiF,
phase, through simultaneous variation of the lattice pa-
rameters and mixed valence ratio of Cu ions by chemlcal
means at ambient pressure.

The compounds investigated were prepared with nomi-
nal compositions represented by (Y;-,Ba,);CuQq4—s
with x =0.4 through solid-state reaction of appropriate
amounts of Y03, BaCO3, and CuO in a fashion similar
to that previously described.® Bar samples of dimensions
1x0.5%x4 mm? were cut from the sintered cylinders. A
four-lead technique was employed for the resistance (R)
measurements and an ac inductance bridge for the mag-
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liminary x-ray powder diffraction patterns show the ex-
istence of multiple phases uncharacteristic of the K;NiF,
structure in the samples. Detailed analyses are under
way.

The above results demonstrate unambiguously that su-
perconductivity occurs in the Y-Ba-Cu-O system with a
transition between 80 and 93 K. We have determined
the upper critica' field H,»(T) resistively. If the positive

0.80
B B H=00T
A H=07T
0.60 | ® H=30T
T ¥ H=577
=
5 |-
[>%]
z 04C |-
<
=
w
2 i /
b
0.20
poc | ‘

O 50 70 90
TEMPERATURE (K)

FIG. 1. Temperature dependence of resistance determined
in a simple liquid-nitrogen Dewar.

netic susceptibility (X) determinations. The temperature
was measured by means of Au+0.07% Fe~Chromel and
Chromel-Alumel thermocouples in the absence of a mag-
netic field. and a carbon-glass thermometer in the pres-
ence of a field The latter was calibrated against the
former without a field. Magnetic fields up to 6 T were
generated by a superconducting magnet.

The temperature dependence of R determined in a
simple liquid-nitrogen Dewar is shown in Fig. 1. R ini-
tially drops almost linearly with temperature 7. A devi-
ation of R from this T dependence is evident at 93 K and
a sharp drop starts at 92 K. A “zero-R" state is
achieved at 80 K. The variation of X with T is shown in
Fig. 2. It is evident that a diamagnetic shift starts at 91
K and the size of the shift increases rapidly with further
cooling. At 4.2 K, the diamagnetic signal corresponds to
24% of the superconducting signal of a Pb sample with
similar dimensions. In a magnetic field, the R drop is

shifted toward lower 7. At our maximum field of 5.7 T, .

the “zero-R™ state remains at a T as high as 40 K. Pre-
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FIG. 2 Temperature dependence of magnetic. susceptibility.

curvature at very low fields is neglected, one gets a value
of dH.5/dT near T, of 3 T/K or 1.3 T/K, depending on
whether H,,(T,) is taken at the 10% or the 50% drop
from the normal-state R. In the weak-coupling limit,
H.5(0) is thus estimated to be between 80 and 180 T in
the Y-Ba-Cu-O system investigated. We believe that the
value of H,5(0) can be further enhanced as the material
is improved. The paramagnetic limiting field at 0 K for
a sample with a 7,~90 K is 165 T. Because of the
porous and multiphase characteristics of the samples, it
is therefore difficult to extract any reliable information
about the density of states from the slope of H.»(T) at
T, on the basis of the dirty-limit approximation.

On the basis of the existing data, it appears that the
high-temperature superconductivity above 77 K reported
here occurs only in compound systems consisting of a
phase or phases in addition to or other than the K,;NiF,
phase. While it is tempting to attribute the supercon-
ductivity to possible nonconventional superconducting
mechanisms as mentioned earlier, ali present suggestions
are considered to be tentative at best, especially in the
absence of detailed structural information about the
phases in the Y-Ba-Cu-O samples. However, we would
like 1o point out here that the lattice parameters, the
valence ratio, and the sample treatments all play a cru-
cial role in achieving superconductivity above 77 K. The
role of the different phases present in superconductivity
is yet to be determined. ~

The work at the University of Alabama at Huntsville
is supported by NASA Grants No. NAG8-032 and No.
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FIG. 3. Maénetic field effect on resistance.
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THE MEASUREMENT OF TEMPERATURE

Temperature can be accurately measured with thermometers designed and calibrated for yse in the
temperature range of interest, For all experiments in this manual using Colorado Superconductor Ing,’s
family of Superconductor kits, a fange from room temperature to that of llquid nitrogen is of lntereét
Sophisticated thermometers typically do not operate over such a wide range. Thermocouple thermometers;
however are fairly accurate over this great a range of temperature variation. )

A thermocouple consists of a mechanical junction of two dissimilar metals. This junction generates a small
electrical potentiaf (voltage), the value of which depends upon the temperature Lfthe ]ur?ctlon‘ Thusscv‘;h
callbratlor_\. and an appropriate cholice of metals, one can obtain a thermometer for the desired temperature
range. For our range (300 Kelvin 0 77 Kelvin), atype T, or Copper-Constantan thermocouple Is used. A -
0.16mV reading indicates room temperature (298K), and +6.43mV is 77K

The thermocouple junction has been carefully attached to the superconductors In our kits, and thermally
balanced and calibrated. A simple digital millivoltmeter attached to the leads can be used to determine the
Voltage of this junction. Note that thermocouple leads must be connected to the voltmeter via wires of the
Same material and the junction to the thermocouple leads must be at room temperature. This voltage can
be converted to the equivalent temperature with the help of the conversion chart below.

Conversion from mV to Kelvin

o Y »

K 0 1 2 3 4 5 6 ’. _7 S 8 9 10 oK
601 760 753 748 740 733 726 719 712 705 699 6.92 60
701 692 685 678 671 664 656 649 @j@ 637 633 629 70
80| 629 625 621 617 613 “Boo 605 601 597 593 599 80
90/ 590 58 58 679 575 572 568 &64 568 - 5§56 552 90
100] 552 548 544 547 537 534 530 527 573 g5 5.16 100

10| 516 513 509 506 502 499 495 491 488 484 481 110
120; 481 477 474 470 467 463 460 456 453 449 448 120
130[ 446 442 439 435 432 428 425 421 418 414 4y 130
140[ 411 407 404 400 397 393 390 386 383 379 378 140
150 3.76 373 369 366 363 380 - 356 353 350 347 343 150

160l 343 340 337 334 330 327 324 321 318 315 312 160
170 312 309 306 303 300 297 294 291 288 28 282 170
180 282 279 278 273 270 267 264 261 258 253 282 180
190 252 249 246 243 240 237 234 231 229 226 223 190
200, 223 220 217 214 211 208 205 202 199 196 193 200

2100 193 190 187 184 181 178 175 172 168 166 1.64 210
220 184 169 150 "156 154 151 149 146 144 141 130
230 139 136 134 131 129 126 124 1.21 119 116 1.14
2401 114 111 109 1.07 104 102 o099 097 094 092 os9
250] 0.89 087 o084 082 079 077 074 072 069 067 065

270} 040 038 o036 034 032 030 .028 02 024 022 020
280, 020 0.8 016 Q.14 012 010 008 006 004 002 0.00
2901 000 002 -0.04 -0.06 0.08 010 012 014

220
230
240
250
260f 065 - 062 060 0.58 055 053 050 048 045 o042 0.40 260
270
280
3000 020 022 024 026 028 030 032 034 036 038 0.40 300
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Precautions,

1. When pouring liquid nitrogen be carefu to prevent any splashing. Read the section on safety & hanc
starting page 12 before beginning this experiment.

2. Be careful not to touch the device or wires when they are cold. Follow the safety directions.

3. No more than 0.5 Amp of current should pass through the device or wires at any time,

4. Use a halr dryer to carefully dry the Four Point Probe device after use. Store It with a dessicant.
5. The probe and thermocouple wires are very brittle when cold. Please handle them with care,

Some Questions.

1. What effect would one expect ¥f the Critical Temperature Is measured with the device placed Insic
functioning electromagnet?

2. Why is the transition in reslistance gradual at the Critical Temperature?

3. A simple two-probe measurement of device resistance below its Critical Temperature exhibits a non-;
value. Why?

Determination of the Critical Temperature

The Critical Temperature, Tc is obtained during the measurement of the electrical resistance as functio:
the Temperature of the superconductor on the previous page. The Critical Temperature of

B1,CaSr,Cu,04 superconductor is about 108 Kelvin versus about 95 Kelvin for the YBa,Cu;0, mate
These resuits are shown below in figure 4,

e} s
S
14 YBa Cus0;
~0F -— Temperature
© o © Kelvin
O o O o©
3 R & o 2 ¥ «

Figure 4: Resistance versus Temperature
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SOLIDS—

14-1

14-2

14-3

14-4

14-5

SUPERCONDUCTORS

AND MAGNETIC
PROPERTIES

SUPERCONDUCTIVITY "

review of independent electron motion theories of conductivity: tempera-
ture dependence of conductivity: resistanceless current in superconductors:
critical temperature; Meissner effects and their relation to resistanceless
current; critical field; isotope effect evidence for importance of lattice vi-
brations; attractive electron-electron interactions by means of phonon ex-
change; conditions for formation of Cooper pairs: ordered pair motion
under applied electric field; pair binding energy: origin of energy gap: gap
width and relation to critical temperature: estimate of size- and density
of pairs; applications of superconductivity: Tvpe II superconductors: flux
quantization

MAGNETIC PROPERTIES OF SOLIDS

relations between magnetic induction. magnetization. magnetic field
strength, and magnetic susceptibility: diamagnetism and Lenz's law: com-
parison of diamagnetic, paramagnetic. and ferromagnetic susceptibilities

PARAMAGNETISM

role of independent permanent magnetic dipole moments: calculated sus-
ceptibility of system of atoms with two spin orientations: Curie’s law as an
approximation; comparison with experiment: paramagnetic susceptibility
in metals -

FERROMAGNETISM

Curie temperature; failure of classical dipole-dipole interaction explana-
tion; role of exchange interactions: structure of 3d bands in transition
elements; partial bands; origin of ferromagnetism; domains; hysteresis: per-
manent magnetism

ANTIFERROMAGNETISM AND FERRIMAGNETISM

properties; role of exchange interactions

"QUESTIONS

PROBLEMS
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14-1 SUPERCONDUCTIVITY

Shortly after the discovery of the electron it was recognized that the high electrical
and thermal conductivities of metals could be attributed to the motion of electrons
in the metal. Classical theories of metallic conduction treated these electrons as a gas
of independent particles within the metals colliding with lattice imperfections. Using
methods of the classical kinetic theory, many experimental facts of electrical and
thermal conductivity could be explained. With the advent of quantum mechanics, it

Chap. 14 SOLIDS—SUPERCONDUCTORS AND MAGNETIC PROPERTIES 484

- of solids, which accounted for the wide range in conductivities observed in normal

_ tron-phonon interaction which scatters conduction electrons and causes further re-

became possib‘l‘e‘to*take'into—a'ccount*t'he‘wavc—nat-uref)f-eleet-rons—and—theexclusion__-'
principle. A number of phenomena not previously explainable then became clear. f
For example, the need to use the Fermi distribution for free electrons led to an under-
standing of the electronic contribution to the specific heats of solids. The further
application of wave ideas led to quantization of energy levels and the band theory

solids. The free-electron model approximation averaged out variations in the inter-
actions of electrons with one another and with the lattice ions, and it could account
for resistance to electron flow under normal conditions. A major failure of thjs}
independent particle model, however, is its inability to explain superconductivity. To
understand that phenomenon requires taking into account the collective behavior of
electrons and ions, or the so-called many-body effects, in solids. Let us now examine
superconductivity.

Many factors contribute to the electrical resistivity of a solid, as we have seen. -
Electrons are scattered by the deviations from a perfect lattice due to structural
defects or impurities in a crystal. In addition, there are vibrations of the lattice ions
in normal modes that constitute something like sound waves traveling through the
solid; we refer to such waves as phonons. The higher the temperature is, the more
phonons there are present in the lattice. When phonons are present, there is an elec-

sistance. Hence, the electrical resistance of a solid should decrease as the temperature
decreases, but we expect a residual resistance even near absolute zero due to the
crystal imperfections. It therefore seems, remarkable that the electrical resistance of
some solids disappears completely at sufficiently low temperatures.

In 1911, Kammerlingh-Onnes found that the electrical resistance of solid mercury
drops to an immeasurably small value when cooled below a certain temperature,
called the critical temperature T.. Mercury goes from a normal state to a supercon-
ducting state as the temperature drops below T, = 4.2°K. Many other elements, and
many compounds and alloys, have since been found to be superconductors with
critical temperatures as high as 23°K. But not all materials superconduct. Figure 14-1
shows the resistivity at very low temperatures for a superconductor, tin, and a non-
superconductor, silver. In a superconductor, currents can be set up which persist for
years with no detectable decay.

In 1933, Meissner and Oschenfeld found that as a superconducting substance is
cooled below its critical temperature in the presence of an applied magnetic field, it
expels all magnetic flux from its interior. If the field is applied after the substance
has been cooled below its critical temperature, the magnetic flux is excluded from
the superconductor. Hence, a superconductor acts like a perfect diamagnet. Both
Meissner effects are illustrated in Figure 14-2. According to Lenz’s law, when the
magnetic flux through a circuit is changing, an induced current is established in such
a direction as to oppose the change in flux. In a diamagnetic atom, the orbital elec-
trons adjust their rotational motion to produce a net magnetic moment opposite to
the externally applied magnetic field. We can say analogously that an external mag-
netic field does not penetrate the interior of a superconducting substance because in
a superconductor the conduction electrons, whose motion is as unimpeded as in an
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Figure 14-1 A plot of resistivity p versus temperature 7, showing the drop to zero at the
critical temperature T, for a super-conductor, and the finite resistivity of a normal metal at
absolute zero.

atom, adjust their motion to produce a counteracting magnetic field. The entire super-

_conductor behaves like a single diamagnetic atom in this respect. Hence, the two prin-

cipal characteristics of superconductors, namely the exclusion of magnetic flux and
the absence of resistance to current flow, are related to one another. It is necessary
to have a persisting (resistanceless) current to maintain the flux exclusion when the
external field is on. :

Figure 14-3shows 2 photograph of superconducting levitation. If a small permanent magnet
is placed over a perfectly conducting surface, it will float there. If the magnet is placed on a
surface which thereafter is made superconducting (by lowering its temperature), it will rise and
float. A repulsive force large enough to overcome the weight of the magnet exists between the
magnet and the diamagnetic superconductor, because the superconducting body excludes the
magnetic lines of flux associated with the magnet. Serious engineering studies have indicated
the feasibility of using this phenomenon to provide very smooth support for high-speed pas-
senger trains.

Tt is found that if the external field is increased beyond a certain value, called the
critical field H,, the metal ceases to be superconducting and becomes normal. The
value of this critical field for a given material depends on the temperature, as shown
for the case of lead in Figure 14-4. As the external magnetic field increases, therefore,
the critical temperature is lowered until when H > H,(0°K) there is no supercon-
ductivity for that material at any temperature. We can understand this as follows.

Suppose that at some temperature below T, we turn on a magnetic field; the super-.

conductor will act to exclude this field (the Meissner effect). The energy decrease
of the magnetic field appears as increased energy of the electrons that make up the
superconducting current. As the strength of the external magnetic field is increased,
the energy acquired by the superconductor also increases. At the critical value of the
field, H,, the energy of the superconducting state becomes higher than the energy of
the normal state, so that the material becomes normal.

e
— 0 C 0L U
H#+0,T>Te H#0T<LT: H=0T<T. H#0, T <T,

Figure 14-2 Left: A schematic illustration of expulsion. Right: The exclusion of magnetic
fiux in a superconductor. Both are cailed Meissner effects.
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Figure 14-3 A permanent magnet floating over a superconducting surface.

Evidence that the lattice vibrations play an important role in the phenomenon of
superconductivity came in 1950 when experiment revealed that the critical temper-
ature of crystals made from different isotopes of the same element depends on the
isotopic mass. The dependence, given by

M'2T, = const (14-1)
in which M is the average isotopic mass of the solid, is called the isotope effect. This
relation shows that the critical temperature would go to zero (hence, no supercon-
ductivity) in the absence of lattice vibrations (when M — ). The importance of
lattice vibrations suggests that an electron-phonon interaction is responsible for
superconductivity. We can no longer ignore those very interactions which were ne-
glected in the independent particle model of a solid—the electron-phonon and also
the electron-electron interactions—if we hope to get a theoretical explanation of

6
< Normal
=3
=4
g
“é Superconducting
=,
i | 1 | |
0 2 4 6 T. 8

T (CK)
Figure 14-4 The variation with temperature of the critical field H, for lead. Note that H, is
zero when the temperature T equals the critical temperature 7.




superconductivity. In 1957, Bardeen, Cooper, and Schrieffer proposed a detailed

microscopic theory, now known as the BCS theory, in which these interactions are

included. The predictions of the BCS theory are in excellent agreement with experi-
mental results. Let us now consider a qualitative picture of it.

An electron in a solid passing by adjacent ions in the lattice can act on these ions

with a set of Coulomb attractions which gives each of them momentum that causes

_‘_"t‘tﬁrrx_t'O'move%‘li-gh'd-y—toget—hc-rr—Becauserof—t-he-clasticppropcrﬁcs__oﬁthej,attioe. this

region of increased positive charge density will then propagate as a wave, which
carries momentum, through the lattice. The electron has emitted a phonon! The mo-
mentum the phonon carries is supplied by the electron, whose momentum changed
when the phonon was emitted. If a second electron subsequently passes by the
moving region of increased positive charge density, it will experience an attractive
! Coulomb interaction, and thereby it can absorb all the momentum the moving region
carries. That is, the second electron can absorb the phonon, thereby absorbing the
momentum supplied by the first electron. The net effect is that the two electrons have
exchanged some momentum with each other, and thus they have interacted with each
other. Although the interaction was a two-step one, involving a phonon as an inter-
mediary, it certainly was an interaction between the two electrons. Furthermore, it
was an attractive interaction, since the electron involved in each of the steps partici-
pated in an attractive Coulomb interaction. The BCS theory shows that in certain
conditions the attraction between two electrons due to a succession of phonon ex-
changes can exceed slightly the repulsion which they exert directly on each other
because of the (shielded) Coulomb interaction of their like charges. Then the elec-
trons will be weakly bound together, and form a so-called Cooper pair. We shall see
that Cooper pairs are responsible for superconductivity.

The conditions for their formation, in numbers large enough to allow supercon-
ductivity, are (1) that the temperature be low enough to make the number of random
thermal phonons present in the lattice small (they would inhibit the ordered processes v
involved in superconductivity); (2) that the interaction between an electron and a
phonon be strong (so that a substance which has a relatively low resistance at room
temperature, because its conduction electrons interact weakly with thermal lattice
vibrations, will not be a possible superconductor at low temperature); (3) that the
number of electrons in states lying just below the Fermi energy be large (these are
the electrons which are energetically able to form Cooper pairs); (4) that the two
electrons have “antiparallel” spins (then their space eigenfunction will be symmetric
in a label exchange, which means that they will be close enough together to form a
pair); and (5) that, in the absence of an externally applied electric field, the two
electrons of a pair have linear momenta of equal magnitude but opposite direction
(as will be explained next, this facilitates the participation of the maximum number
of electrons in pair formation).

Because Cooper pairs are weakly bound, they are constantly breaking up and then
reforming, usually with different partners. Also, because they are weakly bound they
are large. (In Example 14-2 we shall estimate the typical separation of two electrons
in a pair to be of the order of 10 A) Thus, within the region occupied by the electrons
of a pair, there are very many other electrons that would also like to participate in the
pairing process. The system will be most tightly bound, and therefore most stable, if
they can do so. The system achieves this by having the total linear momentum of each
pair equal to zero, in the absence of an applied electric field. The discussion of the
formation of a pair shows that the total momentum of any pair is a constant, since
the net result of exchanging a phonon between the two electrons is to preserve the
total momentum of the pair. If all the pairs have the same constant total momentum,
then there will be no inhibition to the unavoidable process of old pairs breaking up
and new pairs reforming, because any pair can be converted to any other pair by
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phonon exchange, and so the maximum number of pairs will be present. This con-
clusion is plausible from the qualitative argument we have given. It is put on a com-
pletely firm foundation by the quantitative calculations of the BCS theory, which
show that the wave functions describing pair formation are in phase, and thus add
constructively and lead to a large total probability for pair formation, when the pairs
all have the same total momentum. In the absence of an applied electric field, sym-
metry considerations obviously demand that the common value of the pair total mo-
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HeNti be zero. So we see why the two electrons of each pair have linear momenta
of equal magnitude, but opposite direction, in such circumstances. We also see that
the ground state of the system is very highly ordered, in that all the pairs in the lattice
are doing exactly the same thing as far as the motion of their centers of mass is
concerned. This order extends through the lattice, and not just through the region
occupied by a pair, because the pairs are relatively large and there are many of them
so there is multiple overlapping. The order propagates through adjacent overlapping
regions.

“ When an external electric field is applied, the pairs, which behave rather like parti-
cles with two electron charges, move through the lattice under the influence of the field.
But they do it in such a way as to continue to maintain the order, because that will
maintain their number at a maximum. Thus they carry current by moving through
the lattice with all of their centers of mass having exactly the same momentum. The
motion of each pair is locked into the motion of all the rest, and so none of them
can be involved in the random scatterings from lattice imperfections that cause low-

L_temperature electrical resistance. This is why the system is a superconductor.

It is tempting to think of a Cooper pair as acting like a boson, since it contains two fermions.

If this could be done, superconductivity would be simply another example of Bose condensa-
tion, as in the superfluidity of liquid helium. That is, it would be the completely correlated
motion of a set of bosons all in the same quantum state due to the effect of the (1 + n) boson
enhancement factor discussed in Chapter 11. Theories which preceded the BCS theory tried
unsuccessfully to use this approach. The reason why it is not valid is that the individual
electrons in each pair are weakly bound to the pair, which also means the pair is large. As a
consequence, the eigenfunction for the system of overlapping pairs must take into account the
exchange of labels of one electron from one pair and one electron from another pair, as well as
the exchange of labels of one complete pair and another complete pair. In the latter exchange
the system eigenfunction will not change sign because two fermion labels are being exchanged,
but in the former the eigenfunction does change sign since only one fermion label is being
exchang@mpairs are neither purely bosonlike (no sign change), nor purely fermj@
like (sign change) with respect to all eigenfunction label exchanges that must be considered.{In
a system of tightly bound helium atoms, the only type of label exchange that must be
considered is an exchange of the label of one atom with the label of another. Such an exchange
actually involves an even number of fermion label exchanges (each atom contains two elec-
trons, two protons, and two neutrons), so the eigenfunction does not change sign and the atoms
of the system act like bosons.

According to the BCS theory, the binding energy of a Cooper pair at absolute zero
is about 3kT,. As the temperature rises, the binding energy is reduced, and goes to
zero when the temperature equals the critical temperature T.. Above T, a Cooper
pair is not bound. o ’

With a binding electron-electron interaction at absolute zero, it is energetically
advaritageous for two electrons, each in single-particie states just below the Fermi
energy, &, to promote themselves to vacant states just above &, where they can
interact in such a way as to form a Cooper pair. The energy required to put the elec-
trons into the higher single-particle states is more than compensated for by the energy




made available by the binding of the Cooper pair they form. Thus the zero tempera-
ture Fermi distribution of a superconductor is unstable, in the sense that electrons in
states within a range of the order of kT, below the Fermi energy will leave those states
and enter states within a similar range above the Fermi energy, where they will form
pairs. The result is that the T = 0 distribution of occupied states of a superconductor
looks something likea T = T, Fermi distribution for a normal conductor. The reason
why the electrons must be above & to be able to freely form pairs is that a large
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number of unoccupied states are found only above &, and unoccupied states must
be available for the two electrons of a pair to enter after they change their momenta
by one emitting and the other absorbing a phonon.

Although there is an almost continuous distribution of single particle states avail-
able to each electron in a superconductor at T = 0, the distribution of states available
to the system is anything but continuous. As far as the system is concerned, there is
its superconducting ground state, then an energy gap of width &, in which there are
no states at all, and above the gap a set of states which are nonsuperconducting. The
gap width &, equals the binding energy of a Cooper pair. The gap arises because if
one electron of the system in a single particle state in the region of width ~kT, sur-
rounding & absorbs energy from some source, so that it makes a transition from
that state to another single particle state only infinitesimally different in energy, then
the pair of which it bad been a member will be broken and the binding energy of the
pair will be lost to the system. Thus the source must be able to supply an energy
equal to a pair binding energy before an electron near &y can make a transition to
the energetically nearest state. (Even more energy must be supplied to excite an elec-
tron well below &, despite the fact that it is not in a pair, since all the nearby states
are already occupied.) Therefore the minimum energy that can be accepted by the
ground state system, which is the width of its energy gap, is the binding energy of a
Cooper pair. The states which begin at the top of the gap are not superconducting
since in them the system has enough energy for pairs to be broken.

The width of the gap at T =0 is &, ~ 3kT,. But it narrows as the temperature
rises, and it becomes of zero width at T = T, where the pairs are no longer bound.
At temperatures below T, the superconducting ground state corresponds to a large
scale quantum state in which the motions of all the electrons and ions are highly
correlated. It takes the gap energy &, to excite the system to the next higher state,
which is not superconducting, and this is more energy than the thermal energy avail-
able to the system. For instance, at T = 0.1T, the valué of the gap energy is still
about &, = 3kT,, while the thermal energy is about kT = 0.1kT..

For most superconductors near T = 0 the energy needed to bridge the gap corre-
sponds to photons in the very far infared, or microwave, portion of the electromag-
netic spectrum. The existenceé and width of the gap is established experimentally by
the abrupt change in absorption of far infared or microwave radiation when the
photon energy hv drops below the gap energy.

Example 14-1. The critical temperature of mercury is 4.2°K.
(a) What is the energy gap in electron volts at T = (?
P As stated earlier, the Cooper pair binding energy, or gap energy, is

&, = 3kT,
So
&, =3 x 14 x 10723 joule/’K x 42°K = 1.8 x 10722 joule
~11x1073ev Lo«

(b) Calculate the wavelength of a photon whose energy is just sufficient to break up Cooper
pairs in mercury at T = 0. In what region of the electromagnetic spectrum are such photons
found?

ALIALLONANOOHIINS




»The energy is

So the wavelength is

,_hc _66x 10734 joule-sec x 3 x 10® m/sec
& 1.8 x 1022 joule

These photons are in the very short wavelength part of the microwave region. <
(c) Does the metal look like a superconductor to electromagnetic waves having wavelengths

=11x10"m
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shorter than that found in part (b)? Explain.

» No, since the energy content of shorter wavelength photons is sufficiently high to break up
the Cooper pairs, or excite the conduction electrons through the energy gap into the non-
superconducting states above the gap. <

Example 14-2. (a) Estimate the size of a Cooper pair of binding energy &,.
» The wave function of a Cooper pair is made up of waves, describing its two component
electrons, with wave numbers drawn from a range Ak corresponding to an energy range
A& ~ &, The energy range is centered on &, and the wave number range is centered on the
corresponding kg. Since the energy of one of the electrons is :

p? B2
° T om* T 2m*
we have
A = K22k Ak
2m*
and

& mRE ko k
Setting & = &, k = kg, and A& = &, we have

Ak ~ﬁ
' kp & //
As 8,/6; ~ 10™* in a typical case, we obtain
Ak ~ 10-4k,.-

Since we saw in Chapter 13 that at the top of a band k = n/q, if the zeros of k and & are
taken at the bottom of the band as we do here, we can set kr ~ 1/a. We also know that the
lattice spacing is a ~ 1 A. Thus we find that
104
Ak ~
1A

is the range of wave numbers contained in the wave function for a Cooper pair. A very general
property of waves ((3-14), which leads to the uncertainty principle) then immediately tells us
that the extent in space of the wave function is

1 4
~—— ~ A
Ax Ak 10

This is the size of a typical Cooper pair. ‘ <
(b) Estimate the density of Cooper pairs in a superconductor.

» Example 13-1 shows that the density of conduction electrons in a metal is n ~ 10%%/cm”.

The fraction that will form Cooper pairs in a superconductor is of the order of Ak/kr ~ 1074,

So

) Ncooper pairs ™ 1018/cn]3
Note that the volume of one pair is ~(10* A)® = (10™*cm)® = 107*2 cm®. So each such
volume contains ~ 10° overlapping pairs! . <

The width of the forbidden gap, and the density of quantum states, in a super-
conductor can be determined from the current-voltage characteristic of a tunnel




——--millivolts)-is--applied,-an-alternating _current-of_frequency-in-the-microwave-range

junction. In such junctions a thin oxide layer (~10~% m thick) separates a normal
and a superconductidg metal. Electrons tunnel through the barrier, which the non-
conducting oxide layer represents, with the aid of an applied voltage. In 1962,
Josephson predicted that if the metals on both sides of the junction are supercon-
ducting, a current can flow when no voltage is supplied. If a small voltage (~ a few

L6y
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results.f These effects can be used to detect extremely small voltage difierences andJ
to measure with enormous precision the ratio e/h used in determination of the fun-

: l damental physical constants.[Other superconducting effects predicted by Josephson
permit 2 number of quantum properties to be seen in a very simple way, particularly
the quantization of magnetic flux, discussed below.

There are many important applications of superconductivity. An obvious applica-
tion is to superconducting electromagnets, whose fields arise from resistanceless cur-
rents flowing through the magnet windings, for use in electric motors and generators.
A difficulty is that magnetic fields tend to be induced in the wires of the windings,
which tends to destroy their superconductivity. But progress is being made in finding
what are called Type 11 superconductors, which have Cooper pairs whose dimensions
are small enough to allow a magnetic field to thread its way through the length
of a wire in a set of localized channels. These channels lose their superconductivity,
but the channels in between them do not. Several niobium-titanium alloys have been
found which are Type II superconductors, and they also have the convenience of
relatively high critical temperatures (T, ~ 20°K).

The absence of power dissipation in superconducting elements makes possible
many electronic applications in which space requirements and transmission time re-

uirements are limited, as in computgg.%ause superconductors are diama IC, 1
they can be used to shield out unwanted magnetic ﬂux.miﬁt’in
shaping the magnetic lens system of an electron microscope, for example, to eliminate
stray field lines and to greatly improve the practical resolving power of the instru-
ment thereby.

Apart from such technological applications of superconductivity, of which a great
many more can be cited, there is an increasing application of the theoretical ideas
to other fields of physics. For example, these ideas have been applied to analyzing
nuclear structure, with much success in accounting for otherwise unexplained experi-
mental facts. In the next chapter we shall see similarities between the collective model
of the nucleus and the BCS collective model of superconductivity./Some of the
methods of superconductivity theory are being applied to the clementary particles
of high-energy physics, as well; so that the theory suggests a unity underlying the
various areas of quantum physics_.r

The Meissner effect can be stated in another way, namely, that it is possible to induce
currents in a specimen in a time-invariant magnetic field simply by lowering the temperature.
Such a statement contradicts Maxwell’s equation §E +dl = —dbg/dt (or V x E = —B/dt)
and shows that the Meissner effect is not a classical effect but a quantum effect revealing itsell
on a macroscopic scale. This has been confirmed by experiments on a superconducting ring.
If such a ring in a normal state is placed in a uniform magnetic field, and then cooled to the
superconducting state, electric-currents are established that flow in opposite directions on the
inner and outer surfaces of the ring, as in the upper part of Figure 14-5. This excludes the field
from the interior of the ring but does not affect the field inside the hole of the ring. When the
external field is removed, the outside surface current disappears but the inside surface current
persists. We say that the superconducting ring has trapped the original magnetic field in the
hole, as in the lower part of Figure 14-5. When the magnetic flux trapped in the ring is mea-
sured as a function of the strength of the applied magnetic field, it is found that the flux is
quantized, ie., it increases in discrete steps. The system acts very much like a macroscopic
Bohr atom in which one eigenfunction describes the correlated motion of the entire set of
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Figure 14-5 Top: A ring of superconducting material is ¢cooled below the critical temper-
ature in the presence of a uniforrn magnetic field. Currents are established as shown on
the inner and outer surfaces of the ring, thereby excluding the field from the superconduc-
ting material comprising the ring. Bottom: The external field is removed. The outside sur-
face current disappears, and the inside surface current persists. The result is that magnetic
flux is trapped in the hole enclosed by the ring. ’

Cooper pairs traveling around the ring. Flux quantization arises because the eigenfunction
must be single valued. The quantum of flux is 2mhc/q, where ¢ is the charge carried by one
pair. The measurements confirm the BCS prediction that g = 2e.

14-2 MAGNETIC PROPERTIES OF SOLIDS

Materials may have intrinsic magnetic dipole moments, or they may have magnetic
dipole moments induced in them by an applied external magnetic field of induction.
In the presence of a magnetic field of induction, the elementary magnetic dipoles,
whether permanent or induced, will act to set up a field of induction of their own that
will modify the original field. The student will recall that magnetic dipole moments,
which can be regarded as microscopic currents (e.g., in atoms), are a source of mag-
netic induction B just as are macroscopic currents (e.g., in magnet windings).-In fact,
we can write .
B=puH+ p M : (14-2)

in which M, called the magnetization, is the volume density of magnetic dipole mo-
ment, and H, called the magnetic field strength, is associated with macroscopic cur- -
rents only. The magnetic vector H, which can be written as H = (B — poM)/u,o, plays
a role in magnetism that is analogous to the role of D in electricity, since D, the
electric displacement, originates only with free charges, not polarization charges. The
magnetic vector M, which can be written as p/V, the magnetic dipole moment per
unit volume, has the same dimensions as H.

For certain magnetic materials, it is found empirically that the magnetization M
is proportional to H. Hence, we can write

M= yH : . (14-3)
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1
FUNDAMENTAL PROPERTIES

1—1 A NEW CONDENSED STATE

We take a piece of tin and cool it down; at a temperature T, = 3.7°K
we find a specific heat anomaly (Fig. 1-1a). Below T, the tin is ina
new thermodynamical state. What has happened? '

It is not a change in the crystallographic str:ucture, as far as x rays
can tell. It is not a ferromagnetic, or antiferromagnetic, transition.
(It can be seen by magnetic scattering of neutrons, that tin carries no
magnetic moment on an atomic scale.) The striking new property is
that the tin has zero electrical resistance. (For instance, a current in-
duced in a tin ring has been observed to persiét over times > 1 year.)
We say that tin, in this particular phase, is a superconductor, and we
call the permanent current a supercurrent,

A large number of metals and alloys are superconductors, with crit-
ical temperatures T, ranging from less than 1°K to 18°K. Even some
heavily doped semiconductors have been found to be superconductors.

Historically, the first superconductor (mercury) was discovered by
Kammerling Onnes in 1911. :

The free energy Fg in the superconducting phase can be derived
from the specific heat data and is represented on Fig. 1-1b (solid line).
The dotted line gives the corresponding curve j‘n for the normal metal.

The difference (Fg — F, )T=0 is called the ’ondensation energy. It
is not of order kp T, per electron; it is, in {act, much smaller, of

order (kg T, )?/Ep (where Ey is the Fermi energy of the conduction

electrons in the normal metal). Typically E!F ~1eVand kgTy ~

102 eV. Only a fraction kg T,/Egp (~1077) of the metallic electrons

have their energy significantly modified by th? condensation process.
) !
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Figure 1-1

(a) The electronic specific heat C of a superconductor (in
zero magnetic field) as a function of temperature {qualita-
tive plot). Above Ty (in the normal phase) C(per atom) ~

k’BT/EF where E_ is the Fermi energy. At the transition

point Ty, C has a discontinuity. At T <« T, C is roughly
exponential C ~ exp(—1.76 T,/T).

(b) Free energy of the superconducting phase (Fg) and of
the normal phase (Fn) versus temperature. The two curves
meet (with the same slope) at the transition point T = T,.
At T = 0 the difference F, — Fg Is of order (kg To)'/Ep

per atom.

1-2 DIAMAGNETISM

The l.oﬁdon Equation

!
i
i
i
i
!
|

We now extend our energy considerations to s:ituations where there
are supercurrents J; (r) and associated magnetic fields h(r) in the

sample.! We see that in the limit where all fields, currents, and so

on, are weak and have a slow variation in spaceithe condition of min-

imum {ree energy leads to a simple relation between fields and cur-
rents (F. and H. London, 1935).

We consider a pure metal with a parabolic ¢onduction band; the
electrons have an effective mass m. The free energy now has the fol-
lowing form:

= [Fgdr+ By + Emag | (1-1)

where Fg is the energy of the electrons in the condensed state at rest
and Ekin is the kinetic energy associated with the permanent currents.

Let us call v(r) the drift velocity of the electrons at point r. It is re-
lated to the current density i by

ngev(r) = j_(r) (1-2)
l
(where e is the electron charge, and ng the number of superconduct-
ing electrons per cm?). Then we have simply

Egp = Jdr L mving (1-3)

the integral being extended over the sample volume. Equation (1-3)

would be exact for situations of uniform flow (v|= const). It remains

approximately correct for our present problem,
a slowly varying function of r. (We return to t
Finally, Emag is the energy associated with t

h2

Emag =) w

dr

The field is related to j-s by Maxwell’s equation

4
curl h = cjs

\We use h to denote a local field value. H will be r
dynamic field,

provided that v(r) is
his limitation later.)
he magnetic field h(r)

(1-4)

(1-5)

eserved for the thermo-




USINE \1-3), \1~4), ana \1-Y) we rewrite the energy E as

1
E=E,+ 8—"f[hu A2 |curl h|?) dr
(1-6)
E, = [Fg dr
where the length A1, is defined by
_ mc2 172
L~ [m;e‘] a-n

At T =0, ng is equal to n, the total number of conduction electrons
per cubic centimeter. We can then compute AL explicitly. In simple

metals such as Al, Sn, and so on, where m is close to the free elec-
tron mass, we find A~ 500A. For transition metals and compounds

with narrow d bands, m is larger and A, is also larger (up to 20004).

We wish to minimize the free energy (1-6) with respect to the field
distribution h(r). If h(r) changes by 6h(r), E changes by 6F

SE

;}; Jlh-oh + A}, curl h-curl oh] dr

ZJ;T flh + A%, curl curl h}-6h dr (1-8)

where we have integrated the second term by parts. The field con-
figuration, in the interior of the specimen, which minimizes the free
energy, must therefore satisfy the condition

h + )\"i‘ curlcurlh = 0 (1-9)

Equation (1-9) was first proposed (with a slightly different notation)
by F. and H. London. When combined with the Maxwell equation (1-5),
it allows us to calculate the distribution of fields and currents.

Meissner Effect
We now apply the London equation and discuss the penetration of a

fnagnetic field h into a superconductor. We choose the simplest ge-

ometry. The surface of the specimen is the xy plane, the region z <0
being empty (Fig. 1-2). The field h and the current js depend only
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Figure 1-2
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Field penetration in a superconductor. The field be-
comes negligibly small at distanclzs larger than a few

penetration depths A. When the s
tion (1-9) holds, the penetration
hy exp(—z/Ap,).

;imple London equa-

is exponential h =

on z. In addition to the relation (1-9), h and js are always related by

the Maxwell equations

qnjg
c

curl h

divh = 0

Two cases are possible:

(1-10)

' (1-11)

(1) h is parallel to z. Then (1-11) reduces to 8h/3z = 0 and h is

spatially constant. Therefore curlh = 0

Inserting this into Eq. (1-11) we find h =
sible to have a field normal to the surfac

{2) h is tangential (and directed along
is automatically satisfied. From Eq. (1-l

y axis:

Finally, from Eq. (1-9),

and Jg = 0 from Eq. (1-10).

0. Therefore it is not pos-
e of the specimen,

the x axis). Then Eq. (1-11)

10) §g is directed along the

(1-12)




dj

s _ ne? .
dz - me (1-13)
d?h _ h 2 . _mc?
a2 " M7 ame (1-14)

The rolution that remains finite in the superconductor is exponentially
decreasing,

h(z) = h(0) exp(~2/rp,) (1-15)

The field h penetrates only to a depth L1, inside the sample. This re-

sult, established here for a semiinfinite slab, is easily generalized to a
macroscopic specimen of arbitrary shape. As we have seen, the ‘‘pen-
etration depth’’ Aj, is small, Therefore, in all cases, a weak magnetic

field practically does not penetrate at all into a macroscopic speci-
men.? The lines of force are excluded as shown on Fig. 1-3.
The superconductor finds an equilibrium state where the sum of ki-

nelic and magnetic energies is minimum, and this stale, for macro-
scopic samples, corresponds to the expulsion of magnetic flux.

Experimentally, the expulsion of lines of force was shown by Meiss- .

ner and Ochsenfeld in 1933. The Meissner result was particularly im-
portant in proving that a true equilibrium state was achieved.

Three remarks concerning the above derivation:

(1) Assuming the existence of permanent currents plus thermody-
namic equilibrium, we are led to the diamagnetic properties. It is
more usual to go the other way round: Taking the Meissner effect as
a starting point, conclude that there exist permanent currents. I chose
the first way because I wanted to show you the different contributions
to the energy in a superconductor (Eq. 1-6). This list of energies will
be useful later (Chapter 3).

(2) We obtained Eq. (1-9) from a minimum condition on the free
energy ¥. This is the correct thermodynamic potential when the ex-
ternal field sources are permanent magnets. When the source is a coil,
with a fixed current I, the correct potential is not ¥ but a different
function $ (the *Gibbs potential’’), Fortunately, both potentials can be
shown to lead to the same local equilibrium condition in the sample.
(See Chapter 2 for a discussion of ¥ and §.)

(3) Note that the above calculation is valid only for weak applied
fields. In higher fields it may become energetically more favorable

5 higher field different catastrophes may occur.

Y

Figure 1-3 :
Distortion of the magnetic lines of force around
a macroscopic superconductor (‘macroscopic’’
means dimensions much larger|than the pene-
tration depth). If the fields are|not too strong,
the superconductor expels the lines completely
(Meissner effect).

|
to destroy superconductivity in some parts of the sample and to allow

the flux lines to penetrate, This will be cons[idered in detail in Chap-
ters 2 and 3,

1-3 ABSENCE OF LOW ENERGY EXCITI.IKTIONS

Let us begin by considering a free electron gas without interactions.
The ground state is obtained by placing an electron into each individual
momentum state p, of energy p?/2m, until the Fermi energy Ep =

p¥/2m is reached. Above the Fermi energy Ep, all the levels are
empty. (The condition p = pp defines the Fermi sphere, in momen-

tum space.) In order to construct an excited state of the gas, it suf-
fices to take an electron of momentum p from an initially occupied state
(p = pp) and to place it into a state p’ initially empty (p’ = pg)(Fig.

1-4). The excitation energy of this electron-hole pair is
2 . n2




hole

electron

Figure 1-4
Anexcited state of the electrongas in a normal metal.
One. electron has been taken from a state of momen-
tum p inside the Fermi sphere, to a state of momen-
tum p' outside the Fermi sphere. The excitation en-
ergy(p? ~ p*)/2m is very low if p and p’ are close
to the Fermi momentum PF = hkg.

f both p and p’ are close to the Fermi momentum, E is very

pp’
‘mall; in a free electron gas there are numerous low energy excita-
ions. In a normal metal, this free electron picture is not qualitatively
nodified. The low energy excitations are displayed by the following
xperiments:

a) The specific heat is relatively large and proportional to T (of order
‘g’ kBT/EF) per electron).

b) Strong dissipative effects appear when the electrons are submitted
:0 low frequency external perturbations (electromagnetic waves, ultra-
sonic. waves, nuclear spin precession, and so on).

In most superconductors, the situation is completely different. The
energy Epp’ necessary to create a pair of excitations is no longer

riven by Eq. (1-16). It is necessary to at least furnish a certain ‘‘pair-
ing energy’’ 24A:

Epp' = 24 (1-17)

| Roughly speaking, this ‘‘gap’’ 2A is related to the transition tem-
yerature by 2A = 3.5 kBTo . Thus typically 2A is of order 10°K

"Table 1-1).

excltati‘lon
(hw > 2A)
photon
excitation
(a)
}—————» excitation (hw < 2a)
excitation
(b)
Figure 1-5

Typical dissipative processes in a supercon-
ductor. Fig.1-5a shows the creation jof a pair
of excitations by one photon. This process
can occur only if hw > 2A. Fig. 1-5b shows
the absorption of the photon by a preexisting
excitation. This process can occur| even if
tiw < 2A, but it is weak at low temperatures,
where there are very few thermal| excita-
tions. Similar processes are obtained by re-
placing ‘‘photon’’ by ‘‘phonon’’ in 1-5a and
1-5b.

Note that 2A is the energy needed to create two excitations. The
energy per excitation is A.
Various experiments measure A. Here are some of them:
(a) The low temperature specific heat is now exponential and propor-
tional to exp(--A/kB T).

(b) Absorption of electromagnetic energy. For fiw = 2A a photon of
frequency w can create an electron-hole pair. [ This corresponds to
photons in the far infrared; typical wavelengths are in the 1mm range
(Fig. 1-5a).}
(c) Ultrasonic attenuation. Here the phonon is of low frequency and
cannot decay by creation of a pair of excitations. But it can be ab-

sorbed by collision with a preexisting excitation (Fig. 1-5b). This




Table 1-1
Values of the energy.gap 24 (at 0°K) in *K®

P A T

Zn 3.17

Cd 1.8

Hg 18.4 18.0
Al 6.01 4.4 4.2
In 13.6 11.9 11.9
Ga 4.03

Sn 13.0 12.9
Pb 28.7 30.9
\' 18.0 18.5 18.0
Nb 27.4 37.4 35.0
Ta 15.7 16.1

La

8For a bibliography on energy gas meas-
urements see D. H. Douglas, Jr., and L. M.
Falicov, Low Temperature Physics, Vol. IV,
edited by C. G. Gorter (Amsterdam: North
Holland Publishing Co., 1964). The experi-
ments are classified as follows: P photon
absorption (microwave or far infrared pho-
tons); A ultrasonic attenuation; T tunnel-
ing. The ultrasonic experiments are often
performed in single crystals, in which case,
2A depends slightly on the direction of the
sound wave.

process is proportional to the number of preexisting excitations, thus
to exp(—A/kBT).

(d) Tunnel effect. A superconductor S and a normal metal N are sep-
arated by a thin insulating barrier (typical thickness 25 A) (Fig. 1-6a).
The quantum mechanical tunnel effect allows individual electrons to
pass through the barrier. The electron must have been excited from
the condensed phase, and this requires an energy A. There is no cur-
rent at low temperatures unless we apply a voltage V across the junc-
tion such that the energy gain eV is larger than A, The current volt-
age characteristic has the form shown in Fig. 1-6b.

Question: Is the existence of an energy gap a necessary condition for the
existence of permanent current (superfluidity) ? The answer is no. A num-
ber of situations have been found where superfluidity occurs with no gap in the
one particle excitation spectrum. The simplest example is ‘‘surface super-
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superconductor normal metal
~
\
~254 oxide layer

(a)

rconducting state

/

Ale v

(b) -
F'eure 1-6
A tunneling junction betwe. ~ normal metal and a
superconductor. (a) Shows the geometry. (b) Shows
the current-voltage characteristic when 8 is su-
perconducting (T << T,) and alsowhen 8 is nor-
mal (T > Ty). Typically for a junction 1 mm X
1 mm the resistance V/I when both metals are
normal may range from 10-2 to 10¢ ohms. When
T << Ty, to extract one electron from the super-
conducting condensate requires a minimum energy

A. Essentially no current flows until eV = A.

conductivity’’—certain metals or alloys, in a suitable range of field, are su-
percondueting only in a thin sheath (typically 10001&) near the sample surface.
Excitations from the inner {normal) regions can lelnk up to the surface—there
i8 no gap in the energy spectrum.(This has beenc hecked recently by tunneling
experiments.) However the sheath is superconducting! There are other ex-

amples, some of which we shall discuss later.




-4 TWO KINDS OF SUPERCONDUCTORS

Our derivation of the London equation (1-9) assumes a slow varia-
) in space of v(r) or of the supercurrent js (r). What do we mean

the word *‘slow’’? In the condensed state, the velocities of two elec-
ons (1) and (2) are correlated if the distance between them R,, is
1aller than a certain range. For pure metals, the correlation length
called &,. Our derivation applies when v(r) has a negligible vari-

ion over distances ~&,. To estimate £, we notice that the important
main in momentum space is defined by

‘ne
EF—A<-£%<EF+A : (1-18)

lere EF is the Fermi level. The thickness of the shell in p space
fined by Eq. (1-18) is 6p = (28/vg) (where Vp = pp/m is the ve-

;ity at the Fermi level; we have made use of the fact that A < EF

all cases). A wave packet formed of plane waves whose momentum

5 an uncertainty 8p has a minimum spatial extent 6x ~ (h/6p). This
«ds us to take

ﬁvF

bo = 72 (1-19)

he factor 1/7 is arbitrary but will become convenient later.) The

igth &, defined by Eq. (1~19) is called the cohevence length of the
perconductor. -

Equations (1-15) and {1-13) show that h, js, or v vary on a scale
. Thus our derivation of the London equation holds only if A L 2 ¢,
(1) In simple (nontransition) metals as we have seen, A; is small
300A). The Fermi velocity Ve is large (vF S 10°® cm/sec) and ac-

*ding to Eq. (1-19) £, is also large (£, ~ 10* X for aluminum). Thus
' these metals the London equation does not apply. In fact, they do
1bit the Meissner effect, but in order to calculate the penetration
’th it is necessary to replace Eq. (1-9) by a somewhat more com-
cated relation, the form of which has been suggested by Pippard.
call these first kind (Type I) or Pippard superconductors and dis-
38 them in Chapter 2.
(2) For transition metals and intermetallic compounds of the type
+Sn, V,Ga, the effective mass is very large, AL is large (~2000&)

1 the Fermi velocity is small (~ 10° cm/sec). Also, in these

compounds the transition temperature T, abogve which superconduc~
tivity disappears is found to be high (18°K in Nb,Sn). As we will see
later, A is roughly proportional to T, and istherefore larger. For
all these reasons £, is very small (~50A4). Therefore for this class
of materials Eq. (1-9) is well applicable in weak fields. We call these
second kind (Type II) or London superconductox"s.

In order to complete this discussion, it is nt:ecessary to mention the
case of superconducting alloys, for which thei coherence length and
penetration depth are modified by mean free path effects, which we
will discuss later. Qualitatively, if the mean friee path due to disorder
in the structure is short, the coherence length becomes smaller than
hivg /TA and Aj, is increased with respect to Eq. (1-7). Therefore it
frequently occurs that the addition of impurities into a Pippard super-

conductor transforms it into a London supercorlnductor.

The distinction here between the two classes is crucial for all ex-
periments made in the presence of external fiellds. Historically, dur-
ing a period of 20 years after the discovery of the Meissner effect,
experiments were mainly carried out in first ikind superconductors.
The detailed study of second kind superconductors is much more re-
cent. Paradoxically, the theory has followed the inverse order. Equa-

tion (1-9) was introduced by the London brothelf‘s in 1935, but the nec-

" essary modifications for first type superconductors was only proposed

by Pippard in 1953. We now study in detail the magnetic properties of
the two types. .
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MAGNETIC PROPERTIES
OF SECOND KIND
SUPERCONDUCTORS

i=1 MAGNETIZATION CURVES OF A LONG CYLINDER
co’:"iy:: :(I) ::I{)t?::?nductors are characterized by the following macro-~

(1) A cylinder placed in a longitudinal field H does not exhibit a

‘perfect’’ total f i ;
< Hg, A lux expulsion (Meissner effect), except for weak field

If one calculates the critical field H, defined by the difference in

reelii Fnergies between the normal and superconducting states in zero

n s 8r (3-1)

ne finds that H, is clearly smaller than H,. For example, for the
ompound V,;Ga, caloric measurements in zero field (giving Fp- Fs)
wdicate (H, )T =g = 6000 G, and magnetic measurements give
e, )T=0 ~ 200 G,

(2) For H > Hg,, lines of force penetrate the cylinder, but even

1 .
The notation Hc, for the first penetration field has been recommended by
1e participants of the Colgate Conference on Superconductivity (1963).

48
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at thermal equilibrium this penetration is no!t complete. The flux ¢
passing through the cylinder remains less thanl\its value when the sam-
ple is in the normal state. This implies the existence of permanent
currents in the specimen, which is thus still? superconducting. This

situation exists for fields H, = H=H_,. H¢, is larger than H, and is

|
sometimes very large—for V;Ga (H, )T___ 0 'T 300,000 G.

(3) For H> H ce & macroscopic sample df)es not show any expul-

sion of flux B = H. However superconductivity is not completely de-
stroyed. In an interval H., < HL HCS there remains on the surface

of the cylinder a superconducting sheath (of typical thickness 10%4).

(In most cases H,  ~ 1.69H,, .) The existence of this sheath can be

shown, for instance, by measuring the resistzjmce between two probes

on the sample surface. It is found that for 1ow; measuring currents the
resistance vanishes. Physically the sheath }Iias the following origin:
1t is easier to nucleate a small superconducti;ng region near the sam-
ple surface —just as it is easier to grow bubbles on the bottom of a
glass of beer than to grow them from an arbitrary point in the beer.
(A somewhat more sophisticated version of this argument will be dis-
cussed in Chapter 5.) ‘ |

The variation with temperature of the fiel(?s He,, HCZ , Hegy is rep-

resented in Fig.3-1. We now focus our atte'ntio:n on the region H, < HKL
H, where partial flux penetration occurs. The existence of this re-

gion of the (H,T) plane was clearly shown for the first time in early
experiments on alloys by Schubnikov {1937). We call it the Schubnikov

phase, or sometimes the vortex state. (The latter name comes from

the microscopic picture to be derived in Séc;tion 3-2.) |

The partial flux penetration in the Schubniklov phase canbedescribed
in terms of a diagram B(H); the aspect of this diagram is shown in
Fig. 3-2. Sometimes, instead of the inductior!x B, the experimentalists
prefer to plot the ‘‘magnetization’”” M defined by

- B-H
= -2
M e (3-2)

The M(H) curve is shown in Fig. 3-3.
(In practice the observation of these curves is often complicated
by difficulties in attaining equilibrium; for, example, structural de-
fects oppose the displacement of the lines of force.)
In Fig. 3-3 the dashed line represents the magnetization curve found
for a first kind superconductor with the same H,. These two curves -

are related by a remarkable property —the areas they subtend are
equal.
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and we conclude that the area subtended by the curve of Fig. 3-
on H,. From the equilibrium magnetization curves, one can t|
mine H, and the condensation energy.

3 depends only
herefore deter-

We now discuss the transition occurring when the applied field H
becomes equal to one of the limiting values H, or ch. Consider first

the transition at H,,. Experimentally this is a second-ordeyr transi-
tion in all cases studied up to now,

(1) Magnetization measurements show that the B(H) curve is con-
tinuous at H = ch.

(2) In the few cases (V,Ga) where thermal measurements have
been performed, it appears that there is no latent heat for the trans-
formation, but only a discontinuity in the specific heat.

It is possible to relate this discontinuity to the magnetization curves
by a purely thermodynamic analysis (Goodman, 1962). Let i and j be
the two phases of interest (for the case at hand i would represent the

Schubnikov phase and j the phase with B = H, where the bulk of the
sample is normal)

BiH
G = Fy(T, By) - 4 (3-11)
—-4rM
y
P ,
/7
, 7
A//
/’(
!
7
A7 |
/ |
N
! [
! [
!
| |
| |
(o] ' JB’ B -
H‘-" HC c? H
Figure 3-3

The reversible magnetization curve of along cylinder
of Type 1 (dotted line) or Type II (solid line) super-
conductor. If the two materials have the same ther-
modynamic field Hc,- the areas OAB and OA’B’ are
equal.

.qm m. :' T ”'
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is the Gibbs function per c¢m? of the ith phase, The relation b.et.we:en
the field H and the induction B in this phase is obtained by minimiz-
ing G for fixed H and T

2 - B (3-12)
the entropy S; is deduced from the relations
s = (261} . _%%i | (3-13)
i T )y T

‘When the field satisfies a certain condition! H = H*(T), there is an
equilibrium between the phases i and j (i.e., for the present case
H* = H.,). On this curve, one has

G. =G (3-14)

i iated with the transforma-
Suppose that there is no latent heat associal
tion. Then, along the curve H = H*(T), the two phases have the same
entropy

S, = 8, (3-15)

We first show that this excludes any discont‘inuity in B at the transi-
tion. To show this, we calculate the variation of F; when one moves

along the equilibrium curve [dH = (dH*/dT) dT]

dFi _ oF; BFi dBi (3-16)

dT ~ oT @ 8B; dT

From this equation and using (3-12) and (3-1 3), we obtain the varia-
"tion of G along the equilibrium curve

d6; . _Biams | (3-17)
ar i 4n 4T

Along the equilibrium curve we have constantly Gy = Gj , therefore
= i = B:;; B

dGi./dT = de /dT; if also 8; -‘Sj we necessarily have By j
is continuous at the transition,
We now calculate the specific heat in constant field
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Figure 3-2
A ' Figure 3"1 The induction (or flux/cm?) in the cylinder as a func-
Phase diagram for a long cylinder of a Type II super- tion of the applied field H. The full cufrve applies
conductor. for a Type Il superconductor, the dotted curve for a
Type L
Proof: Let Gg be the Gibbs function per unit volume for the superconduct-
ing state 8Gg B
- 8H  4r (3-7
Gg = Fg(B) - 7~ (3-3)
L4 and from (3-6)
Gg is a minimum for fixed H, that is, at equilibrium 8Gp H
: BH  4r (3-8)
aGs . 47
25/ = 0 (3-4) 5
H . K- _ _B—-H _ '
oH (G, — Gg) = i M (3-9) .
Let G, be the Gibbs function for the normal state _ l
) We now integrate this relation between H = 0 and H = He,. At H =Hc,, the '
G, =Fp * -g— - %ﬂ (3-5) two phases are in equilibrium and G, = Gg. For H=0, B=0 we have G, =Fp, o
14 v H
Gg = Fg, and by definition |
At thermodynamic equilibrium in the normal phase (aGn/aB)H = 0; therefore, . ) _ B_z‘i ‘
B=H and n” "8'B=0 " gy
. H? a_ The result is therefore
(,n = Fn —_ -é-; {3 6)
[Hea -HE "
‘ = 3-10
Let the field vary from H to H + 6H. From {3-3) and (3-4) H fo MdH B ( )] |
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Co= T <3Si
i BT/y (3-18)

e can transform the second factor by calculating the total derivative
the entropy along the equilibrium curve

at = \3T)y * \3H/; @T , (3-19)
rom (3-15), dS;/dT = de /daT along the equilibrium curve and

C.-C. = 1] - ‘

i~ G = TaT [(an T o T (3-20)

Te transform (3S; /8H)y by using (3-13) and (3-12)

QH T BBi T 8H T BBiBT oH T

_ 1 9H(B; T) <aBi>
4n aT BH, T (3-21)
’inally; we write the va'riation of H* with respect to T in the form
CdH* (eﬂ) +<1H_ dB
AT \eT/p, aBi>T dT | (3-22)

vhere dB/dT = dB; /dT = dBj./dT represents the variation of B along

he equilibrium curve. On inserting (aH/ aT)B from (3-22) into (3-21)
ve find

8\ __1an*(°B)  1dB
oM ) © " 4n T \oH/p ' 47 dT (3-23)

Cr fans\e] (%8 9B,
- - & (Y] () - o2

Therefore, if one knows H*(T) and the permeabilities (2B;/aH)p for

SECOND KIND SUPERCONDUCTORS, 00 -

i
|
!

|
each of the phases, one can predict the discontinuity in the specific
heat. For the transition (i — j) we have a finite permeability (> 1)

in the vortex state (i) from Fig. 3-2 and a permeability equal to 1 in

the normal state (j). Therefore C; > C]- . At this time all the neces-

sary information is not available to compare ;(3-24) to experiment.
However, for V,;Ga, C; — Cj and dch/dT are known and if one makes

a reasonable extrapolation for 8B/2H in order;|to predict its value at
H, one finds an agreement to within about 10% from magnetic and

calorimetric measurements. A similar analylsis can be carried out
in principle for the transitionat H = H, . Here, however, the per-

meability (8B/8H)y=y in the Schubnikov phase is probably infinite,
c1

as shown by the theoretical calculations of Section 3-2. From (3-24)
this leads to an infinite peak in the specific heat at the transition. The
singularity is, in fact, weak and easily masked by hysteresis effects.
It has been observed recently (on Niobium) by the Rutgers group.

32 VORTEX STATE: MICROSCOPIC DESCRIPTION
Negative Surface Energy

We have previously seen that ina London (£ < A) superconductor
the surface tension of a wall separating norn#al and superconducting
regions becomes negative. Under these conditions, we guess that in
the presence of a field a state is created where the N and S regions
are finely divided and where the wall energy gives an important con-
tribution to the thermodynamic potential. This situation is very dif-
ferent from that encountered for a Pippard superconductor where the
walls are less numerous and where their energy can be neglected in
a macroscopic treatment.

Consider, for example, the limit where B is small (that is, few lines
of force penetrate the specimen and only a small fraction of the sam-
ple is normal). There are essentially two p?ssibilities to maximize
the surface to volume ratio for the N regions:

We can form lamina of very small thickness (= ¢) or filaments of
small diameter (~ ). In the case of A > 5,‘ theoretical calculations
show that the second solution is lowest in em:ergy.2 We therefore find
filaments. They are represented in Fig. 3-4a. o

Each filament has a hard core of radius £ where the superconduct-
ing electron density ng falls as is shown in Fig. 3-4c. The lines of

force are not confined to the hard core; thei field is maximum at the
center of the filament but extends a distance A (Fig. 3-4b). Annular

JE—————— g

25ee problem, page T1.
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Flgure 3-4

Structure of one vortex line in a Type II su-
perconductor. The magnetic field is maxi-
mum near the center of the line. Going out-
wards, h decreases because of the screening
in an “electromagnetic region’’ of radius ~A
(the penetration depth) (Fig. 3-4b). On the
other hand, the number of superconducting
electrons per cm® ng is reduced only in a
small *‘core region’’ of radius t (Fig. 3-4c).

currents j encircle the filament and screen out the field for r > A.
For r > ¢, that is, in most of the region of interest, the currents and
fields can be simply calculated by London’s equations. It will be shown
that the radius and exact form of the hard core only appear in the
argument of a logarithm; therefore it will not be necessary to know
them accurately. In the limit ¢ << A we shall, in fact, see that the
properties of a filament are very easy to calculate.

What is the flux ¢ = [hdo carried by a filament?

v
3

i
-

—SECOND KITND SUPERCUNDUTTOULS o il

Experiment and theory show us that if a bulk superconducting an-
nulus surrounds some lines of force the enclosed flux can only take
on discrete values

¢ = ko, (k is an integer)
(3-25)
= Q = -7 2
¢o %2e 2 X 107G em

The explanation of this effect will be given at the end of Chapter 4. The
same result applies here. In order to attain the state of maximum sub-
division, each filament carries one quantum of flux ¢,. This condi-
tion fixes the field scale in Fig. 3-4b, and the structure of the filament
is completely defined.

Such a quantized filament, formed of a very thin hard core sur-
rounded by currents rotating about the axis, |is very analagous to the
vortex lines found in superfluid He? when the helium container is ro-
tated. The only important difference is that the helium atoms are not
charged, making e = 0 in Eq. (1~13). We see that the penetration
depth A in He? is infinite and the particle currents j, instead of de-
creasing exponentially for r > 2, decreaseé very slowly (as in" 1/1)
far from the filament. Historically, vortex lilnes were first discussed
for the He? problem by Onsager and Feynman; the generalization to
superconductivity is due to Abrikosov (1956). When the superconduct-
ing metal contains a finite density of these lines, we say that it is in

the vortex state,

Properties of One Isolated Vortex Line

We now study in detail the structure of one vortex line in the limit
A >> E. The ‘‘hard core’’ of radius ¢ is very small and we shall, for
the moment, neglect completely its contribut;ion to the energy.

Then the line energy is given by the formula

3= f(r> £) dr él;['h2 + A2 (curl h)?) | (3-26)

Equation (3-26) has been derived in Chapter 1 (assuming X >> £).
For a pure superconductor, the penetration depth A has the
London value

mcz '1/2 (3_27)
AL * |@nnge?
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‘or a superconducting alloy, with x > ¢, Eq. (3-26) still applies,
ut with a modified (larger) value of . as explained in Chapter 2 (see
1e discussion after Eq. 2-20). In Eq. (3-26) the integration is car-
ied out in all space outside of the ‘‘hard core’” (r > §). We also
hoose to compute the energy per unit length of line; the resulting en-

rgy per cm J is called the line tension. Demanding that 3 be a min-
mum leads as usual to the London equation

h +x2curlcurlh = 0 irl > ¢ (3-28)
a the interior of the hard core Eq. (3-28) must be replaced by some-
hing more complicated. But, since the hard core has a very small

adius, we can try to replace the corresponding singularity, simply
y a two-dimensional delta function §,(r), and write

h + A% curl curl h = ¢,6,(r) (3-29)

there ¢, is a vector along the line direction. We now show that the
trength ¢, in (3-29) represents the total flux carried by the line.

Integrate (3-29) over the interior surface of a circle C of radius r
ncircling the axis of the cylinder and use the curl formula:

fh-dc + A2 }ﬁcurl h-dt = ¢, (3-30)

[ the circle has a radius r >> X, the currents j(r) = ¢/47 curl h are
ecligible and the line integral along the perimeter of the circle van-
shes. Thus the total flux carried by the filament has the value ¢,.

We now pass on to the explicit solution of (3-30) to- which is added
he Maxwell equation

divh=20 (3-31)

Che field h is directed along the z axis: the current lines are circles
n the xy plane. It is easy to predict the value of curl h, that is, the
:urrent, in the region £ << r << A. In fact. if we reconsider (3-30)
vith a circle C whose radius is in this domain, the term Jh-dr is

regligible (only a fraction r2/a% of the flux ¢, passes through the
rircle C) and we have

A2 2rr|curl h| = &, (3-32)
and

|curl hl= o1

5ax% T (£ < r << ) (3-33)

=51
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Since h is directed along the z axis, we have curl h| = —dh/dr and

upon integrating this relation
= o hin(2 <r < 3-34)
h=353 In o)t const (< r <) (

In order to derive the constant of integration in (3-34), it is necessary
to write the complete solution to (3-30) and (3-32), which is

_9 r 3-35
h—g#K‘,(A) (3-35)

where K, is the zero-order Bessel function of an imaginary argumeflt
defined as in Morse and Feshbach.® The impcl)rtant properties of this
solution are the asymptotic form (3-34) for r << A (it is found that
the constant vanishes) and the asymptotic form for large distances

h = b [TA -T/A

(3-36)
2mA% \/ 2r (e 2> )

Once the fields are determined, it is easy toi calculate the energy J.
On integrating the second term in (3-28) by parts,

_ A% . (3-37)
3—81r fdc h xcurlh _

where the integral [do is to be taken over thel' surface of the hard core

(cylinder of radius ~ £). It is convenient to calculatel 3 per cm of length
along the filament. Then

3 = %:7 2n ¢h(£) | curl h(#)| (3-38)

which is, from (3-34) and (3-33),

KRN (3-39)
3= (E%) ln<£>

DISCUSSION OF THIS FORMULA

(1) 3 only depends upon ¢ logarithmically.
(2) 3 is a quadratic function of the flux. Upon goix?g to a situation
where the flux is 2¢,, it is preferable to have two filaments of flu'x
¢, (total energy 23) than a filament of double flux (energy 43). This

—— s e i

Spethods of Theoretical Physics, (New York: McGraw-Hill, 1953), Chap. 10, p. 1321
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justifies the choice for ¢, of the minimum flux value, that is, the quan-
tum of flux.

(3) 1t is possible to rewrite 3 at T = 0 in a rather different form
by using the relations

ch
p = ’2?’ E=¢ = m (3-40)

and a relation (which will be proven by the microscopic theory) be-
tween the condensation energy and the energy gap A(0):

H2
8—: = 1 N(0)a2(0) (3-41)

where N(0) = m2v/27%K3 is the density of states (for one direction
of spin) at the Fermi energy in the normal state per unit energy and
per cm?. Upon regrouping these formulas, we obtain

s He N :
J = 3 Br £ lnz (T = 0) (3-42)

This formula is interesting for the following reason:

Until now we have neglected the contribution of the hard core to the
line energy. In fact, superconductivity is more or less destroyed in
the hard core section and this takes an extra energy J;. ~ (HZ /8m)E2,

Dimensionally from '(3-42) this energy is comparable to 3. Numer-
ically, however, it is much smaller. A more detailed calculation gives
for the total energy

IRy
- (&)

The numerical constant € includes the effect of the hard core and
is of the order of 0.1.

<ln% + e> aA>8 (3-43)

v

Problem. Discuss the structure of vortices in a thin film, the applied mag-
netic field being normal to the film surface (J. Pearl, 1964).

Solution. Again there is a *‘hard core’ of radius ¢ (which we assume to be
small) surrounded by current rings. But since the currents are restricted to
the thickness d of the film, their screening capacity is weak and the *‘electro-
magnetic region” is more spread out than in a long vortex line.

Mside the film, we apply Eq. (3-29)
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2
h + ﬂrci-curlj = ¢gba(r)n,

where ] is the current density and n_ is'a unit vector normal to the film. It

is convenient to use the vector potential A rather than the field b = curl A. In
the London gauge, we find

2
A+4177\
c

j=@

where &, = <I>z =0 and &, = ¢y /27r.

Now average over the thickness d of the film. Ifid « A, A and } arenearly
constant in the thickness. Call J the total current J = jd. Then

c 1
=07 — (@A)
4n Aeff

Az
Aeff =4
Now replace the film by a infinitesimally small current carrying sheet in the
plane z = 0, the current density being J&(z). This_iwill be valid when d is much

smaller than the range of the electromagnetic region.
In terms of the current sheet the equation valid for all space is

curl curl A = curlh = 2 § = =L 5(2)@ -/ &)
¢ Aefi‘

or (since curl curl A = —V2A in the London gauge)

1 1
~9A + A— b(z) = d— &(2)
VA A T

This result was derlvéd here from the London Eg.{3-29). Inactual thin films,
such a simple equation does not usually hold. But|it is still correct to assume
a linear current response of the form J = (°/4")‘ef[ N® — A), where Ay i8

some unknown constant, which ca_n"be obtained from another experiment ()‘eff

is, in fact, the effective penetration depth in parallel fields, which could be mea-
sured on a hollow cylinder made with the same film).
To solve the cquation for A, introduce the three-dimensional Fourier trans-

form.

Aqk = [ Alxyz)exp i(gyx + ayy + kz) dx dy dz

' and the two-dimensional transforms
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A == [dk A, =
q =3 k = [A8(2) exp ilayx + q y) dx dy dz
A, = [A(
q JAtxy) exp Mgy x + qy y) dx dy = i%g n, xq
Then

—(q? + R)Age + ——A, =——3
TE7 Regr T Ay 9

Solve for Aqk and integrate over k:

1 1
A, =— [dk = (A — 1 1
q =2 [T U ) 5 Ty Ba %)

1
A = —_—
q q,q 1+ 2 )‘eff

From this, all required information can be extracted:
(a) The current has components

' 2qA
J = C @ —A) = c & eff
q 41.'Aeff q q 41|'Aeff 91 + Zq)\eﬂ‘
¥ -1 .
When q > Aeff' Jq is proportional to <I>q . Thus at small distances r from
the center of the vortex

Ir) = ——— &(r)
4ﬂ'Aeff

c oy

SR (¢ < r <« A ;)
B A T eff

‘he -1
When  « Acff

-~ < . C o inz xq
a " Iy Meit®a T T q
Coy
I dn et (r > Agpy)

The size of the screening region is )\-c“.. But even hevond A, J decreases only

o’
slowly with distance.
(b) The normal ficld component h, in the film is derived from

¢y
h i X A 2 —e——
a TN fq T T A

e S A

R comcen+.. I

b e

{(¢) The self-energy of the vortex is derived fro
components of h and curl h at the core surface (¢

The result is

0 log
Aeff £

16 heff 3

2 A A
E = (ﬂ) 1 eff _ 137 fic Aeff

4r

Typically Aggy ~ 1000A and E ~ 30eV.

(d) The force between two vortices is

Flz = ‘% nz x J(Rﬂ)

Vo

rent J

m Eq. (3-26); the required
<« Aeff) are quoted above.

Note that at long distances J ~ 1/R? and the repxllsion energy decreases only

like 1/R. This long range is due to the fact that m

place not through the superconductor, but through
below.

Interactions between Vortex Lines
TWO VORTEX LINES

ost of the interaction takes
the empty space above and

Consider two parallel lines directed along the z axis with po-
sitions 1, = (X, ¥,), T2 = (x,¥,). The magnetic field distribution is

determined by the equations

h + A2 curl curl h = ¢ lo(r — 1)) + 5(r — 1,))

which is the generalization of (3-29). The so

(3-44)

lution h is the superpo-

sition of the fields h, and h, due to the filaments (1) and (2).
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Bhats
hl (r) + hz(r) %

® - ' (3-45)
h (r) = 21;2 K, < . I‘1>.

The energy of the system is still written

DUCTIVITY

h(r)

n

- h? + 22 (curl h)? A2
F f 87 dr = a7 fh X curl h-do (3-46)

Here the integral [do is to be taken over the surfaces of the two hard'

c::':;e, ({r - ry | = &); writing explicitly the two contributions to h we
obtain

_ A?
F=% J (o, + do,)* (h, + h,) X (curl h; + curlh,) (3-47)

There are 8 terms that we regrou i indivi : ‘
p as follows: First th '
energy of each filament s @ individual

12

'e_w[fdol'hl X curl h, + fdaz-h2 x curl h,] = 23
then the terms

J(h, + h,)-(curl b, x do, + curl h, X dg,)

‘which tend toward 0 in the limit where £ << A because h, + h, and '

cur.l h, are finite in the domain of integration /do,. There remains
an important contribution '

U = BT f(h1 X curl h,-do, + h, X curl h,-do,) (3-48)

In effect, curl h, is proportional to 1/|r — r,} for |r — r,| << a

from (3-33) and after integration one obtains a finite result as £ — 0,
I we set

h, = h(r,;) = h,(r,) =2f£2 K, (rl ; r2> (3-49)

then using (3-33) we obtain

- ¢0h12
Uy, = (3-50)

'SECOND KI

0o

F,, represents the interaction energy (per c¢m) of two filaments. This

is a repulsive energy which decreases as (1/4r,,) e-r"/k at large

distances, and which diverges as In(|x/r,, {) at short distances.

A remark aboul forces. Let us compute the force' f, experienced by line 2,
as due to the interaction Uy,

_8Up _ _ 4 Bhe

3-51
1.9} 4m 0Xj (3-51)

fox =

Introduce now the current § = n_ev, which would exist, in the presence of linel

alone, at the point X;y,. Then jy = —(c/4ndhy, /8%,) by Maxwell’s equation
and we have

fox = -%“ y = %hnvy (3-52)

When more than one line is acting on line 2, Eq. (3-52) remains valid provided
we interpret v as the total superfluid velocity at poijnt (x2¥2)-
|

Cbnclusion. A line is in static equilibrium when| the superfluid velocity at
any point on the line is 0. )

MAGNETIZATION CURVES

We now form the Gibbs function, minimize it, and deduce the den- '
sity of vortices existing in the sample in thermal equilibrium.

BH
= ] L - 22 3-53
G =np3 + Zl% Ui] y ( )

The first term represents the individual energies of the lines, nj, is
the number of lines per cm?, related to the induction B by

B = nL ¢0 (3'54)

(This expresses the fact that each vortex carxi'ies a flux ¢,.) The sec-
ond term in (3-53) describes the repulsive interactions between vor-
tices; the explicit form of Uij is given by (3-49) and (3-50). Finally,

the last term gives the effect of the field H;ancl favors large valufzg
of B. It plays the role of a pressure that tenc11s to increase the density

of vortices. ) ]

In order to numerically evaluate the inte?action term, it is useful
to distinguish several regions: |

(1) In the small induction region (ny, A% <i< 1), only the interaction



etween nearest neighbor vortices is important and the sum ZUij con-
erges rapidly. '
(2) When B is larger (nL)@ >> 1), the range X of the interaction

ecomes large compared to the spacing of the filament lattice, and
ther methods are preferable to evaluate ZUiJ-.

(3) Finally, when ny, becomes comparable to 1/£2, the hard cores
egin to overlap and the elementary methods used in this section are
o longer valid. . But, qualitatively, we may guess that when the hard
ores do overlap, superconductivity is destroyed in the bulk. This cor-
esponds to inductions B ~ ¢,/¢2.

'HE FIRST PENETRATION FIELD H,,

At very low line densities (low B), the interaction term in Eq. (3-52)
5 small and we shall first neglect it completely. Then, using Eq.(3-53)
e get

G=B (—3; - {%) (3-55)

When H < 413/¢,, G is an increasing function of B. The lowest G
s obtained for B = 0 (complete Meissner eifect).

When H > 4r3/¢,, we can lower G by choosing B = 0. There is
ome flux penetration.

We conclude that the first penetration field is given by

_ 4m3 b, log A
c1 by am\Z 96 ;

(3-56)

I., is often much smaller than the ‘‘thermodynamic’’ field H, defined

Cy
y (3-1). For T = 0, for example, on using (3-40) and (3-41), we find
H
Ca L4 _§ A
——— B — ln — -
H, 724 A (e) (8-57)

“he result is therefore H, /Hy ~ &/x and this may be much smaller
han 1. A measurement of I-Ic and H,, in principle, allows a deter-
nination of £ and X. For example, for V;Ga, if at T = 0, H, ~ 6000 G
ind H, ~ 200 G, one finds from (3-56) that A. £ ~ 80 and then, from

3-56), A ~ 20004 and £~ 25A. These orders of magnitude are still
‘ather inaccurate because of current uncertainties in H, and H(._l . but

t is hoped that the situation will improve in the near future.
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: : |
FIELDS SLIGHTLY LARGER THAN Hcl

For finite line densities (finite B’s) we must take into account the
interaction term in Eq. (3-53). To minimize{this repulsive energy,
the lines will take a regular arrangement, Detz:Liled calculations based
on (3-53) show that, at all B’s, the most favorable arrangement is tri-
angular, as shown on Fig. 3-5 (J. Matricon, 1964).

If H is only slightly larger than H, . we ca'n guess that the equilib-

rium density of lines n will be small and thus the distance between
neighboring lines d will be large. If d > A, we may keep only the
nearest neighbor contributions to the interac tion term in (3-53) and

write
~ B _ L %o d -
G = ym [Hcl H + 210«2 K, < >] (3-58)

where z is the number of nearest neighbors o% one line (z = 6 for the
triangular lattice), d is related to the induction B through the rela-

tion

B = donp, = = 2. %0 (triangular lattice) (3-59)

Equation (3-59) can be easily verified on Fig. 3-5. The function G(B).
is represented in Fig.3-6. Since H>H, , the initial slope (3G/? B)g-o

\J

D 1
rorex < D )
@ ¢

Figure 3-5
A triangular lattice of vortex ling (after Kleiner,
Roth, and Autler, Phys. Rcr. 133A 1226 (1964).
The plane of the figure is norm: il to the field di-
rection. The contours give the lines of constant
ng. This figure describes the situation at high

ficlds (nearly overlapping cores)
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Figure 3-6
The thermodynamic potential § as a function of the in-
duction B (B = np, ¢y measures the number of vortices

per cm? np,). The equilibrium value of B [Bg (H)] cor-
responds to the minimum of g.

is negative. As B increases, the interaction term begins to contribute
but rather slowly, since it is proportional to K,(d/A). When d > A we
may write, according to (3-36)

X, (g) ~ exp (—- %) = exp [—1‘.07 \]%] (3-60)

‘Thus the interaction term is exponentially small at small B’s. At larger
B’s however. it dominates the over-all behavior and G(B) increases.
There is a minimum of G for some value B = B(H). B(H) is the in-
duction found at equilibrium in the field H. The theoretical B(H) or
M(H) has been computed along these lines by Goodman and is shown
on Fig. 3-7. together with experimental results on a particularly good
MoRe alloy.

The following points must be noticed:

‘The theoretical curve has an infinite slope (@8M/8H)y-g = = at

c1

the first penetration field. Physically. this reflects the fact that the

lines repel each other like e-d/ A. that is, we may think of their in-
teraction as having a finite range A. At field slightly larger than Hcl

it is thus possible to form many lines in the sample without competing
against the interaction energy. The experimental curve does not show
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Figure 3-7

Experimental magnetization of a molybdenum-rhenium alloy at T = 0.52T,
(after Joiner and Blaugher, Rer. Mod. Phys., 3|6, 67 (1964). Also shown are
two theoretical magnetization curves (after B. B. Goodman). The broken curve
is for a laminar model, the continuous one for vortex lines.

a very large slope ('E)M/&)H)H=Hc ; this isinot very surprising since
1

in the région of interest the interactions between lines are very weak

and the lines can easily be pinned by structjural defects. However, as
we depart from Hcl by more than 10%, we get good agreement between

theory and experiment.

A similar theoretical curve can be drav{n for another model where
the flux-carrying units are not vortex lin(?s, bqt laminas (see prob-
lem, p. 71). If the distance between lam'ina‘ls is d. we again find a re-
pulsion between units proportional to e_d( )‘. However, in this case,

the induction B is proportional to d-, while in the line case it is pro-
portional to d~? as shown by Eq. (3-59). Tl:ms the fall of M(H) for H>
H., is more rapid in the laminar model thfm in the vortex line model.
The two theoretical curves are compared on Fig. 3-7; it is apparent

that the vortex line gives a better {it, as emphasized by Goodman.

1 1

DOMAIN F<< ny << —E
In this region the vortices form a rath’er dense lattice and the in-
teractions extend to distant neighbors. The interaction energy can then
be calculated by the following method: The field h(r) directed along
the z axis is the solution of




h+A2curlcurl h

¢0 E 62(1' - rl)
1

(3-61)

divh =0

it

where r; = (xi,yi) denotes the position of the ith vortex. The points
rj form a two-dimensjonal periodic lattice. We define the Fourier
transform h J by

hy=n; J 1 b(x;, i) explilyx + Jgy)] dx dy

Since h(xi, yi) is periodic, hJ is nonvanishing only when J is a re-

ciprocal lattice vector. From {3-61),

- _ 1, %
T TN (3-62
Finally the free energy becomes
-1 2 4 a2
§ = ﬁ;f(h + A2 curl? h) dr
= _.1.. 2 3 2 12y = EE ___._1__
g o M52 = 2 30 e
J J
. B B 1
o= > S (3-63)
J+0

In the sum % J+ 0’ the minimum magnitude of the vectors J is of the

order 1/d ~ \fl{ and A2J% ~n; A* >> 1 in the domainof interest. There-
fore 1/(1 + A2J2%) can be replaced by 1/3?J2. Finally we must per-
form the sum ZJ¢ 0 1/J2, which depends on the particular lattice con-

sidered. Here, we will simplify the calculation by replacing the sum
by an integral

D B Uy g Lo S Ty L
2 2
J (2m)? ny, J 27n '} min J
1 J max
" 2mng, J min

with.J min~ 1/d and J max ~ 1/£ (the Fourier components relative
to the interior of the hard core must be excluded). We finallv find

b
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B B In Bd/ ¢
gr  4m "G Ina/¢

1]

. ¢ _BH
G=F-%
In (3-64) 3is a numerical constant of the orde

lattice, Matricon has calculated g = 0.381).

(3-64)

r unity (for the triangular
The B(H) relation is ob-

tained as usual by imposing 3G/3B = 0. This gives

1n!'3'°—‘)
H=B+H,

In =
i
where B’ = B eV? and where d is always re
The logarithmic dependences predicted by (
agreement with the experimental data on r
curves in.materials with x >> .

DOMAIN ny ~ £°2

Here, as already pointed out, our sirhple
we shall need a more elaborate approach ba

{3-65)

lated to B by Eq. (3-59).
3-65) are in rather good
eversible magnetization

model breaks down, and
sed on the Landau-Gins-

burg equations (Chapter 5). The upper critical field H, is of order

$,/&2. This, physically, corresponds to the
the hard cores.

onset of overlap between

Problem. Compare the Gibbs function in the filamentary structure described

above with that of a possible laminar structure.

Solution. As before, we shall limit our considerations to the case A >> §.
The laminar structure will be formed of planes, for example, perpendicular to
the x axis, and equidistant (spacing d)(Fig. 3- 8). In the neighborhood of each of
these planes, over a thickness ~2¢, the superconductivity is strongly perturbed

|

(N regions). In the remainder (S regions), the density of superconducting elec-
trons has the value ng. Such a model has been discussed in detail by Goodman

(1961). The fields h{x) (parallel to the z axis) ar
equation

d*h

- 22
h =X 52

except in the thin (N) regions. The solution is of

h = Hp, cosh (x/A)/cosh P

e determined by the London

the form

where P = d/2A and Hm is the field in the N regions. The free energy of the

(S) regions becomes, from (3-26), \
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Figure 3-8
The laminar model for the Schubnikov phase. Thin nor-
mal sheets N of thickness ~2{ alternate with super-
conducting sheets S. The N sheets repel each other.
The range of the repulsive forces is the penetration

depth A.
dhy
e + z_) 2
F=gfd/2dx Mlax) _ Hm tanh p
17d 8n L P

gr d _ 81 Px

vhere « = A/t. Finally, to obtain the Gibbs function, we must add a term

B __, Um taoh p

4m 4r p
G _ Al tamnp HE tanh P
laminar = G |Hm Tp *p T HHyp T

)n minimizing G with respect to H,, we obtain H = Hp, .

SECOND KIND SUPERCONDUCTO

1 H:
[N S P2 7] 2 _c
Glaminar = 87P [ H® tanh* P + P ]

For H < Ho/Vk the minimum G is obtained for {

RS 73

nfinite P, which corresponds

to a complete Meissner effect. For H > He /vy the minimum occurs for

finite P. The initial field for penetration is there
model. This is to be compared with the result
Eq. (3-56).

He

kil
H,yy=— — b |
o =g Ink (x )

for k > 1, Hey < Ho/k. For Hey < H < Hy /K

Gvortex < GMeissner

Glaminar = GMeissner

therefore, G <G
vortex laminar

the weak induction domain.

fore H, /Vk for the laminar
for the vortex line model,

z’ we have

; that is, the vortex state is more favorable in

It is also possible to make the comparison in the region where H is larger
(H ~ H,, for example). We are then in the region P <« 1 for the laminar model

i
By expanding tanh P & P~ P¥/3 and minimizing G

4/3 1y2/3
H? (3)”’ H B

Glaminar = "B 2K 87

In the vortex line model, the potential is determ

L - uy

Gyortex = " gy

1In A/d Hg
= P ——
In & K

H' = Hgy

where v is a constant of order unity. For T =

In the region of interest H' << H and

_ —_EE + HHC
vortex = 8n ¥ 4nx

G

S PR R

, we obtain

ined from (3-64) and (3-65)
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HZ
Glaminar + 5, KH, 13
—33 = const\{——
G i H

vortex *

when H < «kH, (which roughly corresponds to the upper critical field Hg,),

Glaminar > Gvortex . Thus the vortex state is still most stable in the inter-
mediate and high field regions,*

Problem. Discuss the equilibrium magnetization curves for a second kind
superconductor in the form of an ellipsoid of revolution, the field being applied
along the ellipsoidal axis.

Solution. The equations div B = 0, cur!l H = 0, and B = (H/ IHl)Be(H),

where Be (H) is the equilibrium induction in the presence of a field H mea-

sured for a long cylinder, allow a solution where B and H are constant in the
ellipsoid with H = Hp — NM = Hy; — N(B — H)/4r where N is the demagnetiz-
ing coefficient of the ellipsoid. The relation between B and the applied field is
therefore given by the implicit formula

- T
G-Be -'1 N
4ar

B is nonzero for Hy > Hey (1 — N/4n). The slope (dB/dHy); _ , 1s finite and

equal to 4r/N. The upper critical field remains equai to H¢, since B(H¢y) = Hey
when the transition is second order.

Problem. Discuss the scattering of slow neutrons by a regular lattice of
vortex lines in a superconductor.

Solution. The interaction between neutron and lines is u p hir) where p, =

1.91 eli/Mc is the neutron moment and M the neutron mass. Consider a scat-
tering event where the neutron momentum changes from hky to hi(k, + Q). The
corresponding scattering amplitude is given by the Born approximation formula

M

a=-—
2rh?

[ughte) €377 ar

This is nonzero only if @ = J, where J is a reciprocal lattice vector associ-
ated with the two-dimensional “line lattice.”” From (3-62) we find

4These elementary calculations of G are not sufficient in the neighborhood
of He,. We return later to a study of the region using the Landau-Ginsburg
equations.

(]

T A3 T T+ N

h Y . n \"
fh(r) eiJ T o BV L %o

where V is the sample volume and nj, the number of lines per c¢m?. Thus

nyV

= 1 —_—
ay = 31.91 1T+ 202

For a triangular lattice of lines with nearest neighbor distance d, we have
ny, = (2/V3)(1/d?) and, for the first reflection, J = (47/¥3) d-1, Taking B =
2000 G (n, = 10'°), we get d ~10° & and J ~6.7 10° cm™!. For A = 10004 this
gives (AJ)? 45 >> 1. We compute the amplitude a *)er atom (since this is the
quantity familiar to experimentalists). Inserting for V an atomic volume of
3043 we get a = 0.7 10-18 ecm. The corresponding ‘“‘coherent scattering cross
section” is 4ra® ~ 5 x 10-% cm? = 0.5 millibarns—a small, but measurable

|
value.
The scattering angle 6 for this first reflection i;s very small 6 = (J/kg) =

(2/vf§)(kn /d) where we have introduced the neutron wavelength A, = 2r/kq. At

best, with subthermal neutrons we can make A, as liarge as ~5A, For the above

example this leads to angles 6 ~ 6.10~3 rad (or 20' of arc). The experiment
has been performed on Nb metal (Cribier, Jacrot, et al., 1964). Due to the

1/(1 + A2J?) dependence of a, it has been possible only to observe the first
reflection (with the smaliest J). (See Fig 3-9.)

4 Intensity (arb. units)

(enlarged)

1640 oe

H = 4100 oe (> ch)

~

-

10 15 20 . O(min. of arc)

Figure 3-8
Neutron scattering by an array of vortex lines in niobium metal at
T = 4,2°K. (Courtesy of D. Cribier.)
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. Probiem. Calculate the broadening of a nuclear magnetic resonanceline arising
rom the field inhomogeneities associated with the vortex state(P.Pincus, 1964),

Solution. In intermediate fields Hg, << H << H,, where the vortices form
1 dense lattice, the field distribution is given by the Fourier transform of Eq.
13-62). A knowledge of all the moments of the field distribution would com-
pletely determine the nuclear magnetic resonance line shape (if this were the
only source of broadening). However if the line does not have anomalous wings,
as is often the case (Jaccarino and Gossard, 1964), the second moment is a
good measure of the line width (see A. Abragam, Principles of Nuclear Mag-~
netism, Clarendon Press, 1961). Thus the line width is given by

AH = [<h2) —_— _<h)2]l/2

where () denotes a spatial average. The term (h} is just ny, ¢y = B. (h» can
easily be calculated from Eq. (3-62):

(h?) =51 [h¥(r) do = ] hyh_j =nd o] 25 (1 + W]
J J

where S is the surface area of the sample perpendicular to the field. On re-
placing the sum over reciprocal lattice vectors by an integral in a similar man-
ner as is done in the text after Eq. (3-63), we obtain

B d 21I'A: -1/2
H=——=]1+{—
vir A [ ( d ) ]

where for simplicity we have assumed a square lattice. This result is valid in
the domain d > £. In the intermediate field region d <« A, this leads to

1 [
AH = — x —mm——
v 2 (2.”)3/2 )\2

Notice that this width is of the order of Hey (for V3Ga, A ~ 2000:7\, AH = 20 Oe)
and remains nearly field independent on to fields of the order of He, where the
inhomogencous broadening vanishes. For fields near Hey (d 5 \), the broaden-
ing is more severe: More detailed calculations of the line shape using Eq. (3-62)
have been performed by Matricon.

Problem. Compute the energy of a vortex line near the surface of the spec-
imen, the line being parallel to the surface,

Solution. Let the line, and the ficlds, be parallel to the z axis, the limiting
surface being the yo0z plane, the sample occupying the half-space x > 0. The
field h(r) is governed by the equation

"SECOND KIND SUPERCONDU
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ry, = (xy, 0)] and ¢, is a vector, of length ¢, along z. The boundary condi-

tions on the surface are

h=H {curlh)y = 0 (0 normal current)

where H is the applied field. The solution h(r) will be written as

h=hl+h2

_where hy = H exp (—x/A;,) represents the field penetration in the absence of

any line, while h, is due to the line, and can be obtaiped by a method of images.
To the line (xy,, 0) we add an image of opposite sign located at (—xy,, 0) and

take for h, the algebraic sum of the field due to thF lipe and image. Thus l.lz
automatically vanishes on the limiting surface x = ] 0 and the boundary condi-
|

tion is satisfied.

Having constructed h(r), we now compute thei thermodynamic potential

|
|
h + A (curl h)> _H-h
g = fdr{ S:u - an } %

|

The integral is taken in the sample volume (x > 0) except for the core region
of the line, which is excluded. The last term is the microscopic analog of the
standard B*H/4r term for macroscopic systems. We transform S into a sur-

|
face integral, using the London equation for h, andwe obtain

A2

LA «(4h — H) x curlh
4n j(core and piane) da-(} )

g =

The surface integral [ do includes the surface of the hard core(giving'g con-
tribution -§’) and the surface of the specimen {giving a contribution §"). A8
usual the only important term in J core do (in the limit ¢ — Q) comes from

the singular term in curl h, and the result is

' _ 9 _
§' =, hirp) — H)

" The second term §” may be written as

A2
" =— f do-h x curlh
< plane :
87 |

R el emh S fotelr L) since on the sample surface h = by = H. Writingg curlh = curl hy + curlh, \;'19
can separate in §” a term involving h, x curl hy, whichis the energy in the

| absence of the line, an additive constant we drop from now on. We are left with

where 1 represents the two-dimensional coordinate of the line lwe shall take

I
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w_ A
8 e fplane do*h; x curlh,

We rewrite this integral as

S

plane = f core+plane - f core

By making use of London’s equation for h, in the region outside the core, we

have
‘];:ore +plane do-hy x curiby = fcore+plane

do+h, x curlh,

h; is not singular near the line axis; thus the core contribution to the right-
hand side vanishes when ¢ — 0. The integral on the plane also vanishes since
(hy )y = ¢ = 0. Finally

0 _ A $oh, (rp)
9 = a‘fcore dc’hi x curl hz = —OE:__'

g = -;2 [H exp(—xy,/A) + $hy(ry) — HI

[Note incidentally that § = 0 when X = 0, that is, when the line is just on
the surface, since hy(x = 0) = 0.] If we analyze h,(ry,) into a direct term and

an image term, the direct term gives as a contribution to ¢ the line self-en-
ergy 3 = ¢ Hc1/4w. The image term describes an attraction between line and
image, of value —(§p/8r) h(2xy,) where h(r) is the function giving the field at

distance r of a single line (Eq. 3-35). Finally
§ = 2 (5 expl—xp,/A) - bhiz -
= 4y (H exp xp,/X) $h(2xp,) + Hey — H]

Discussion
(1) The term (¢gH/47) exp(-xL /X) describes the interaction of the line

with the external field and the associated screening currents. It has the same
form as Eq. (3-50). It.is a repulsive term.

(2) The term — ¢oh(2x,)/87 represents the attraction between the line and
its image. The magnitude of this energy differs from Eq. (3-62) by a fac-
tor 5. But the force derived from it has the conventional magnitude ¢gj/c lwhen
differentiating h(2x,) with respect to x3,, we geta factor 2].

{3) The aspeet of §(x; ) for various values of the applicd field H is shown
on Fig. 3-10. When U ~ Hgy there is a strong barrier opposing the entry of a
line. We can understand this barrier as follows: When H < Hey, Q(XL = () =

S(xL = ) -0, if we start from xp large and bring the line closer to the surface,

CTIVITY

(a)

(3]

e [y SR S

@ ;
X
! (b)
\ ?”Hc!'HS>H>HCI
478
ol |
L o x
(c)
jH - ch H > Hg
A

Figure 3-10 |
Surface barrier impeding the entry of the firgt flux line is a Type Il su-
perconductor. (a) When H < Hey, the force on the line alwgys points' to-
wards the surface: no lines can exist (in an ideal specimen). (b) When
Hg > H > Hg, the line gains an energy ( $y/4n) (’H — Hg, ) as it reaches thg
deep inside of the sample. But there is a bar:rier near the surface, an
the line will not enter if the surface is clean.:(c) When H > Hg, the bar-

rier disappears. ;
&

i
| ’ (~exp(—2xp, /N
the repulsive term {~ exp(—xp, /) dominates thg image term (~exp L/MN-

Thus § becomes positive and we have a barrier.j The barrier disappears,. how-
ever, in high fields as is clear in Fig. 3-13. When H > Hg = ¢ /ATAE, n.ecaat:
be seen from the equation for § that the slope (3% /‘BXL)XL'_‘ £ becomes neg

tiveS

ic Qnalysls that the field Hg thus
eld H,.

SWe shall see later from the microscop

defined is of the order of the thermodynamic ¢ritical fi



The conclusion is that, at field H < Hg, the lines cannot enter in an ideal
pecimen (although their entry is thermodynamically allowed as soon as H >
Ic‘)- These surface barrier effects have been predicted independently by Bean
nd Livingston and by the Orsay group. They have been observed experimen-
ally on lead thallium alloys (Tomash and Joseph) and on niobium metal (de

llois and de Sorbo). (The sample surface must have very few irregularities
n the scale of A.)

fortex Line Motions

Consider the two antiparallel vortices of Fig. 3-11. According to
iq. (3-50) they attract each other. Will they move under the action of
his force, or will they stand still? This question is very much de-
)ated at the present time. My personal belief is that in a pure metal
rach line will drift in the other’s velocity field. They will thus both
nove at right angle from their common plane, with a velocity

Varift =~ iz (3-66)

where v,, is the superfluid velocity at point 2 due to the presence of
line 1.

A

\“_h!____../\ B
Vs1 Y h,

® ®

Figure 3-11
Two antiparallel vortex lines in a pure superconductor
of Type IL. vg; (Vg,) is the superfluid velocity induced
by line 1 (2). Each line drifts with the local superfiuid
velocity v. For that particular geometry both lines go
with the same velocity. Note that v is normal to the
plane ABCD of the lines.

—
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Such drift motions should lead to amusing c:ollective modes for an
assembly of vortex lines in a very pure rnetal1 of Type IL. (P. G. de
Gennes, J. Matricon, 1962.) i

In dirty superconductors, on the other hand, friction between the
lines and the lattice will dominate the motion. The two antiparallel
vortex lines AD and CB will then move toward one another, as shown
on Fig. 3-12, with a velocity

- -4 3-67
Varit @ = Varit™D = 3 (3-67)
where f is the attractive force between the lines.as given by Eq. (3-.52)
and 7 is a viscosity coefficient. We can estimaglte n with the f_c?llowmg
assumptions: suppose that the currents due to i?line 1 are not d1s}ortgd
near the core of line 2. This core then carries a current density j =
nev,,. But this core is essentially normal. Th\;lS we expect a loss (per

unit length of line 2)

i
W = oy

"~

E
|
where ¢ = ne?7, m is the normal state conducti\?ity and £ the core zadius.
This power dissipation must also be equal tog £V 4rift (2) = 1/7f%. Re-
calling from Eq. (3-52) that f = inhv,,. we oPtain
_ _n7h? (3-68)
T = Zame’ |

Viscous motions which are reasonably welll described by this type

in di eri i d co-
of damping have been observed in dirty mat{ermls by Kim an

workers. |
; Ju
%t (1)
Figure 3-12 ' \\\
Two antiparallel vortex lines in a dirty super- E N
conductor of Type 11z the lines move toward_ eafch; Varist @
other with a drift velocity controlleq by friction: T

with the lattice.

i
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3—-3 NONEQUILIBRIUM PROPERTIES

pp to‘ now, we have restricted our attention to the reversible be-
havior of second type superconductors. We have seen that when the

coherence length ¢ is small, they can remain superconducting up to
very high fields, of order H, ~ ¢,/8.

From a technical point of view, however, what is most interesting
is to obtain superconducting wires that can carry high currents, But
this condition cannot be realized at thermal equilibrium, as shown by
the following argument: Consider a cylindrical wire of radius a car-
rying a total current I. (When I is weak, this current is, in fact, en-

tirely carried by a surface sheet, of thickness A, around the cylinder.)

The field at the surface of the wire is

H=— (3-69)

The situation is stable when H < Hcl . When H> H oy’ vortex lines
1

begin to appear. They are bent in circles {following the lines of force).
Once created at the surface, with radius a, they tend to shrink (to de-
crease their line energy) and tinally annihilate near the axis of the
wire. This process dissipates energy. Thus in an ideal specimen we
have 0 resistance only if H < Hc: or I < (ca/2) Hcl . If we want to

carry higher currents with our wire, we need to pin the vortex lines,
that is, to quench their motion by suitably chosen lattice defects, and
achieve a nonequilibrium situation. While the field Hc2 is an intrinsic

property of the metal (or alloy), the critical current measured on a
wire is extremely sensitive to the metallurgical state of the sample.
This distinction between the factors ruling Hc2 and I was stressed
first by Gorter.

In practice, a favorable defect structure is obtained by the follow-
ing procedures:

(1) imperfect sintering (e.g., Nb,Sn)

(2) cold work (e.g., MoRe alloys)

(3) precipitation processes (e.g., lead alloys)

The resulting materials, with high critical currents, are called hard
supevconduclors.

The coupling mechanisms between the lines and the defects are only
vaguely known at the present time. A rather simple case is met when
we have large cavities, due to imperfect sintering, in the supercon-
ducting material. A vortex tends to remain pinned to the cavity, since
this corresponds to a smaller length of line in the superconducting ma-
terial, and thus to a smaller line energy. The mechanical stresses re-
alized by cold work impose slight modifications to the condensation

SUPERCONDUCTIVITY
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energy and to the local density of superconductir;xg electrons ng. This

results in local modifications of A, &, and thus bf__ the line energies J
and interactions U. These interactions are rather complex, and in the
following we only present a phenomenological description of their ef-
fects. :

Critical State at Zero Temperature

Consider a hard superconductor in an applied magnetic field H
(along Oz). In equilibrium the line density would ‘have the value B(H)/ ¢,
and be the same at all points. We now consider a metastable situation
where the induction B is not equal to B(H) but varies from point to
point —say in the x direction. Thus (1) the line density is not constant,
(2) there is a macroscopic current J = (c/4m)(2B/ax) flowing in the
y direction. The forces acting on the line system can be decomposed
in the following way: First, because of the repulsive interactions be-
tween lines, the regions of high line density (high B) tend to expand
towards the regions of low density. This may be described in terms
of the pressure p in our two-dimensional line system.® The force (per
cm?) is —3p/8x. This has to be balanced by a pinning force due to the
structural defects. This pinning force, however, cannot become ar-
bitrarily large. It must stay below a certain thx:eshold value o,

|o2| < @m (3-70)

If at some point |8p/8x| is larger than a, then the lines §tart moving
and dissipation occurs until condition (3-70) is again satisfied. In prac-
tice the line density (1/¢,)B(x) will thus adjust itself so that the
threshold condition is just realized at all points | equality in (3-170)].
The state thus realized is called the critical state, and was firs.t .de-
scribed by Bean. We can get some physical feeling for tl‘}lS critical
state by thinking of a sand hill. If the slope of the sand hill exceeds .
some critical value, the sand starts flowing QOwnwards (avalanche).
The analogy is, in fact, rather good, since it has been shown (by care-
ful experiment with pickup coils) that, when the system becomes over-
critical, the lines do not move by single units, but rather in the form
of avalanches including typically 50 lines or more.

We now proceed to compute explicitly the pressure p of .the li.ne
system, to be inserted in (3-70). We consider a group of N lines in-
tersecting a surface S in the xy plane. Their energy (per cm along
0z) is . |

Swe make an isotropic approximation and neglect the tensor properties of p.

!
t
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Figure 3-14
Magnetization measurements on a cylinder
(external field increasing). The flux lines
penetrate only in the hatched area.

(1) ¥ R is much smaller than Ax, the induction is nearly uniform
in the sample, B = B(H), ¢ = mR2B(H).”

(2) I R >> Ax we have essentially a one-dimensional situation.
I x denotes the radial distance, we may write

¢ = 27R dx B(x) _ (3-74)

R

R~Ax
At the edge of the flux (x = R — Ax), we have B = 0, H(B) =
H,. At the surface of the cylinder (x = R), again assuming no sur-
face barriers, we have the equilibrium value of B corresponding to

the external field H. B = B(H). Transforming dx by (3-72)and (3-70),
we get

B?(H)

H
6 =21R [ dH
Hc: 4m’mH

"We assume that there is no surface barrier impeding the entrance of vortex
lines in the cylinder. Surface barriers do occur sometimes, but their effects
can easily be separated.

.Y

i
o

R

Figure 3-15
Principle of the Kim experimentsfon hollow cyl-
inders of hard superconductors. An external field
H is applied. The field H' inside the cylinder is
measured. ?:

where L stands for am[B(H)]. Of particular interest is the de-

rivative of ¢

d¢ _ R B?(H) : (3-75)
dH .2 O'mH
Thus Ix;om magnetization measurements in: increasing fields, we may

derive o H and a (B). Another method, devised by Kim and co-

workers, makes use of hollow cylinders as shown in Fig. 3-15. A [ield
H is applied on the outside of the cylinder and the field H' in the cyl-
inder is measured. When H is increaseq from 0, H {irst stays
strictly equal to 0. Then, when the flux frpnt reaches the inner sur-
face of the cylinder, H' starts to increase (ideally H' would first jump
abruptly to H’c1 , and then grow steadily). :The interest of the method

is to give a direct determination of Ax, for that particular value of H
where H' starts to increase. ‘

More complicated situations are met if ‘the field H is alternatively
increased and decreased, as shown in Fig. 3-16. Then we meet regions
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Figure 3-186
Flux distribution in a hard superconductor
when the applied field is first raised to H,
{(broken curve) and decreases to Hj (full
curve).

with dB/dx > 0 and regions with 8p/8x < 0, but the absolute value
|ep/ax| stays equal to o, . This permits a detailed calculation of
all hysteresis cycles when o, (B) is known,

Flux Creep at Finite Temperatures

At finite temperatures, if 8p/ox # 0, the vortex lines will tend to
move (from the regions of high B towards the regions of low B) by
activated jumps across the pinning barriers. We call the average flow
velocity of the lines (in the x direction) vy . Various methods can be

used to detect this flow, or ‘‘creep’’:

(1) Magnetic measurements, with thick cylinders or hollow cyl-
inders. In the latter case, for instance, if H has been raised from 0
to some value and then kept constant, we observe that H' increases
slowly in time.

(2) Electrical measurements. If the lines of force are moving, they

‘create electromotive forces that can be measured directly. The most
simple situation is represented in Fig. 3-17. A wire (in the y direc-
tion) carries a current of density J, and is submitted to an external

'

X vortice$
vortex drift velocity '

Figure 3-17
Electrical measurements on a hard superconductor
wire. There is a current J = —(c/47)(8B/8x) in the
y direction, thus 8B/8x < 0. The lines are more
closely packed on the left side of the wire: they
drift with a velocity v, towards the pc}sitive x axis.

field H in the z direction. Thus we have a nfonzero aB/8x = 4nJ/c
and the lines (pointing along Oz) tend to drift in the x direction. The
resulting electric field Ey is along the wire axis (Oy) and in the limit

H > H,. it is given by

E, = X | (3-76)

To prove (3-76) we compute the power dissipation per unit volume: this
is the work done by the presence gradient onthe lines, that is, (ap/ax)vy .

By setting this equal to EyJ and making use bf (3-72'), we get (3-76).
Thus we need an electric field E.y to maintainfthe current J. As pointed

out by Anderson and Kim, this dissipative effect in the superconducting
state explains many features of the resistive behavior of hard super-
conductors. ﬁ

The main difference between (1) the magnetic measurements and (2)
the electric ones lies in the order of magnitude of the velocities in-
volved. In case (1) the creep typically is measured over intervals of
hours or days, and the velocities are of order 1 mm/day or 107°
cm/sec. In case (2) taking B = 104 Ey =1 pV/cm, we get vy ~ 1072
cm/sec. The main difficulty of (2) is related to possible inhomoge-
neities in the wire; experimentally it is found that different portions
of the same wire have different Ey’s . ’
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The results show unambiguously that
(a) the creep velocity has an activation energy behavior

vy =V exp(—E/kBT) (3-77)

Vo is x.lot very accurately known, but may be in the range of 10® cm/sec
in typical cases. The energy E may be as high as 100°K.
(b) the energy E depends on the pressure gradient ap/ax

op

E=E, - o

p* | (3-78)

where p has the dimensions of a length, and is typically of order 500A.
We can relate E, and p to the critical pressure gradient o, if we

notice that for T — 0 the velocity v, will depart from 0 only when
E=0 :
- Eo

om == (3-79)

©

These results (mainly obtained by Anderson, Kim. and co-workers) have
various important consequences. First, since v, varies rapidly with E
according to (3-77), it is possible to extend the crictical state concept
to finite temperatures. Define a limiting velocity v .. below which
the line motion cannot be detected. Then, if

_E_ %o

KgT > log v

min

the line structure is frozen. Thus the critical state at temperature T
corresponds to

Vo

Vmin

E, — p*

c_lle -
ax kBT log

(3-80)

|§P_‘ =0 1 - kpT log Yo

dx ¥ m E, Vmin
In general o, will depend on T (since aq, involves A, &, and the
condensation energy, which are all temperature dependent), But if T
is much smaller than the transition point T, this dependence may be
neglected and all the temperature variation in (3-80) comes from the

gle
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factor kyT. A linear dependence of |dp/dx| on T has indeed been

observed experimentally by Kim on various :«)j.ll‘oys and compounds —
the critical currents of hard superconductors are strongly tempera-
ture dependent even when T < T,. [

Another important consequence of (3-77), pointed out by Anderson,
is the possibility of severe thermal instabilities. If in a small region
of the sample the pinning energy E, is slightly smaller than else-
where, the vortex lines in this region will dissipate a large power,
[(ap/2ax) "x] per cm3, and this will tend to r:aise the local tempera-

ture, if the thermal conductivity of the materi;al is low. This tempera-
ture rise will, in turn, increase the line velocity vy according to (3-77)

and may finally result in an instability. Thesej thermal processes have
to be taken into account in the design of supericonducting coils.

CONCLUDING REMARKS [

Our description of pinning and creep has ll)een strictly phenomeno-
logical. Of course, we would like to interpret E,, p, and v, in terms
of microscopic processes. There are two difficulties:

(1) What is the coupling between defects and lines? As pointed out
earlier an important term is related to local :modifications of the pene-
tration depth A by strain or by impurity graqients. Another, more ob-
vious, contribution stems from local modifications of the supercon-
ducting condensation energy. There may be other contributions.

(2) How can we describe the metastable équilibrium and the irre-
versible motions of strongly coupled vorte:% lines in the presence of
random perturbations? Coming back to the sand-hill analogy, we need
a theory for the equilibrium slope of the sanb hill and a theory for the
avalanches—both are complicated. For the vortex line system there
is an interesting suggestion, due to Frank—creep may take place by

_a motion of dislocations in the two-dimensional line lattice.
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A nother chapter is unfolding in the con-
tributions to modern technology by
advanced ceramics, with the advance-
ments surprising the researchers involved,
as well as the general scientific commu-
nity. Specifically, ceramics as supercon-
ductors scems 8 contradictory concept
since the more common ceramics for util-
itarian and technical uses are insulators
- intrinsically.

Thus, the announcement by Bednorz
and Mucller in Z. Phys. B. of the discov-
ery of superconductor groperli:l in
La,CuO, brought nothing but skepticism
from both the physics and ceramic com-
munities. This was heightened by the lack
of convincing proof in their experiments
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fect and may be determined by evaluat-
ing the magnetic susceptibility of & ma-
terial, i.c., the magnetic susceptibility of
a superconductor drops to zero as it is
cooled below the critical temperature.
Superconductivity results from atomic
and crystallographic ordering such that
the lattice vibrations of the atoms in the
crystal structure of the materials (pho-
nons) have little interaction with the con-
ducting electrons, and the conducting
electrons are ordered into Coorer pairs.
The theory, termed BCS for John Bar-
deen, Leon N. Cooper, and John Robert
Schricffer, indicates that conducting elec-
trons of opposite spin act in unison,
The specific heat associsted with

and the fact that previous su rconduclor“;:: changes in kinetic energy of the electrons

testing of La,,,Ti,- O, and
ceramics revealed no improvements over
metal alloy materials such as Nb,,Al,Ge
and Nb,Ge, i.c., a superconductor tran-
sition temperature beginning at 13 K vs
21-23 K for the metal alloy.

However, certain ceramics are proving
to be the best thing for superconductivity
since the theory was first developed. Be-
fore explaining how ceramics onrare-
and alkaline-earth copper oxides are ad-
vancing superconductivity, a brief expla-
nation of the phenomenon and its histor-
ical development is in order.

Superconductor Principles

The most basic phenomenon of super-
conductivity is the complete disappear-
ance of electrical resistivity as a material
is cooled below some critical tempera-
ture. This is the phenomenon associated
with the discovery of superconductivity,
and it has long been linked to properties
of materials, particularly metals and metal
alloys, at temperatures approaching ab-
solute zero (0 K). Disruption of the zero
resistivity property of the materials at
temperatures below the critical temper-
ature is found when cither a current ex-
ceeding a specific value, the critical cur-
rent density, is passed through the material
or & magnetic field of strength greater
than a critical ficld strength is applied to
the material. _

A sccond phenomenon associated with
superconductors below the critical tem-
perature is diamagnetism or the expulsion
of magnetic ficlds that would otherwise
permeate magnetizable materials and
create a magnetization within them. This
phenomenon is termed the Meissner ef-

*Member, the American Ceramic Society.

1-:B1,0; «s* in superconductors undergoes a sharp

transition at the critical temperature. (The
specific heat of the electrons is the dif-
ference in specific heat for the lattice—
the same for normal state and supercon-
ducting materials of equal atomic and
X-ray density—and the total thermal en-
ergy applied to the material.) The relation
of the specific heat of the electrons (C.,.)
in a superconductor to temperature has
two discrete ranges. Well below the crit-
ical temperature, log C, is proportional
to 1/T. Nearer the critical temperature,
the relation is more closely approximated
by C,xT* This means an encrgy gap
exists for electrons in & superconductor
between the superconducting condition of
Cooper pairs to normal conducting or in-
sulating unordered electronic structures.
The value for this energy gap, according
to the BCS theory, is 24,=3.537..

So, for materials with higher transition
temperatures, the bonding energy be-
tween the Cooper pair electrons is greater.
Values for the energy gap are determined
from tunneling experiments, where the
voltage required to create a sharp rise in
the current ing from a superconduc-
tor through an insulstor into a normal state,
ncgative biased conductor without sup-

plying thermal excitation to the electrons -

determines the encrgy gap, ie, V=Afe.
When two superconductors are sepa-
rated by an insulating film which has low
resistivity, a Josephson junction is ft
This configuration of materials is cur-
rently being explored for use in electronic
devices for its unique capability of pass-
ing current in the form of Cooper pairs
via tunneling from one superconductor to
the other through the insulating film with-
out apﬁvlied voltage. The current flow is
controlled by magnetic ficlds in the junc-
tion and decrecases with higher field
strength.

[ect, trappi

Oscillating currents result in Josephson
junction configurations when voltages are
applied across the junction. The frequen-

of the Cooper pairs passing thm‘ﬁ:
2: junction increases by 4.84x10'
for cach volt applied. current car-
rying capacity, J, or critical current den-
sity, is directly associated with the ther-
ma! ene p of the Cooper Eir elec-
trons. At bhigher current values, large den-
sities of current carriers are present in the
superconductor and the interactions with
phonons (lattice vibrations), dislocations
in crystal structure, and grain boundarics
increase significantly. The critical current
density is both a function of the current
carrier density (number of Cooper pairs
per unit volume) and materials process-

ll"l'he transition of superconductors to a
normal (conductor or insulator) state can
be effected by an external magnetic field
as well as temperature increase. As al-
ready noted, the ficld strength at which

this occurs is a riately termed the
critical field (}}:fr?hm geld stre
values are measured on long, thin cyli
drical or ellipsoidal samples where the field
is oriented parallel to the long axis of the
sample for a sharp transition to s normal
state. In other orientations, slower tran-
sitions occur involving increased portions
of the sample as the field strength in-
creases. Sharp transitions in the a
pristc oricntation are indicative of what
are termed Type-1 superconductors. Even
for ficlds oriented paralle! to the long axis
of mreonducling sample, some su-
pe uctors undergo & more gradual
transition to normal Wtjc suscepti-
bility. These are refe: to as Type-11
superconductors.
¢ Meissner effect, or the complete

expulsion of an applied magnetic flux as
heratures s fouod only for Typo ] super

rature, is or Type-1 super-
gnducton with the ygeomctry and ori-
entation in the ficld already described. -
Other materials, and other onentations of
samples, have only a ial Meissner ef-
ing some of the magnetic flux.
Just which m'm‘rasic material properties
cause magnetic flux trapping or pinning
for alloys, scmieonducton.lﬁ other Type-
I1 superconductors depends on bulk ma-
teriafs propertics, as is the case for the
critical current density. In fact, the two

_are related through magnetic flux quan-

tization or the doarcte magnetic flux val-

. ues {fluxoids) that can enter the Type-11

supercondectors. Currents passing through
the superconductor tend to move these
fluzoids from different pinning locations
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and thus heat the materials, causing them
to transform to a normal state.

A skin effect also pertains to the Meis-
sner phenomenon. For even Type-l su-
perconductors the magnetic flux due to
an applied field is not expelled complete-
ly. Instead, an clectromagnetic penetra-
tion depth exists where the magnetic flux

--~ig-pinned -in the sample, ranging from 39 .

to 130 nm for different materials.

Superconductivity occurs in many ma-
terials including 27 of the metallic ele-
ments in their usual crystaliographic form
at atmospheric pressure. For 11 chemical
clements that are metal, semimetal, or
semiconductor, superconductivity occurs
at low temperature in conjunction with
high pressure. Some materials that are
pot superconducting in their usual crys-
tallographic form can be made so by pro-
ducing a highly disordered crystal struc-
ture. By the same considerations, some
compounds of materials, e.g., Ag,F, can
be superconducting even though the con-
stituents are not. The best superconduct-
ing materials produced until recently were
V,Ga, Nb,Sn, Nb,,Al,Ge (T,=21 Ky). and
Nb,Ge (T.=23 K).

The pmfress in production of these
commercially employed superconductor
alloys has been slow in comparison to the
events of the past year. Most of the delay
in employing the materials, despite the
distinct advantages of superconductive
materials at superconducting conditions,
has been the Limitations of engineering
refrigeration systems to maintain the ma-
terials below their critical temperatures.
Ceramic superconductors have begun to
alleviate needs for complex engineering
of liquid He (boiling point at 4.2 K) re-
frigeration systems capable of maintain-
ing temperatures below T, for these metal
alloys. But before examining that ad-
vancement, & chronology of the devel-

ments in superconductivity is needed to

ce the engincering aspects in proper.

perspective.

Discovering High T,

Dutch physicist Heike Kamerlingh
Onnes discovered superconductivity in
1911. While working with metals at low
temperatures he observed that the elec-
trical resistivity of mercury practically
disappears when the materizl is cooled to
near 4 K. Onnes was awarded the Nobel
Prize for his rescarch in low temperature
physics in 1913. There was no theory to
explain such phenomena, so it was as-
sumed that superconductors were similar
to other materials, with the only differ-
ence being their electrical resistance was
zero at Jow temperatures.

In 1933, more advances were brought
to the attention of the scientific commu-
nity. Previous superconductivity theories
were shattered, as it was discovered that
such materials were diamagnetic. Exper-
imental evidence soon enabled scientists
to formulate a theory of electromagnetic
properties of superconductors. As tech-
nology progressed in the 1950's, more
daring researchers not only defined sep-
arate interrelationships in superconduct-
ing materials, but also promulgated a the-
ory of superconductive mechanisms.

The efforts of Bardeen, Cooper, and
Schriefler, who were involved in definin
those mechanisms, were rewarded in 197
when they reccived the Nobel Prize for
physics. The BCS theory of supercon-
ductivity was thus born. Recently, John
Bardeen, one of the original authors of
the BCS theory, qualified the mechanism

—as.being adequate for near-absolute zero

temperatures, up to =40 K. He suggest-
ed the necessity for another mechanism
at =90 K.

The experiments conducted until the
1950’5 involved metals or metal alloys as
the best materials for demonstrating su-

rconductivity. Yet, progress in obtain-
ing a higher T, was still lacking. In 1973,
J. R. Gavaler obtained the alloy Nb,Ge,
with 2 T, of 2 modest 23 K. In practical
terms, this simply meant that supercon-
ductors were still at a premium, not only
from a manufacturing standpoint, but also
from a maintenance perspective. Liquid
helium had 10 be used to maintain the
very low (emperatures required for their
adequate functioning. Uses for supercon-
ducting metals or alloys were found in

iant particle accelerators, medicine, and
ast transportation. But the costs involved
were still prohibitive, primarily due to he-
lium cooling requirements. ﬁeccnl dis-
coveries in this field involve the attain-
ment of a much higher—in fact, previously
unimaginable—7T .

Superconductors had been known as
metallic compounds. In fact, oxidizing
these materials was thought to inhibit su-
rerconductivit . Yet, two researchers at

BM Zurich Research Labs, Karl Alex
Mueller and Johannes Georg Bednorz, took
a different approach in studying super-
conductivity. In 1983, they began re-
searching metal oxides. In December 1985,
Mucller and Bednorz finally obtained a
very promising mixed oxide of barium,
lanthanum, r (BaLaCuO) whose
critical superconducting temperature
reached 35 K. This discovery drastically
improved previous results by 12 K. The
rescarch work had been thoroughly doc-
umented and published by April 1986. In
February 1986, two Japancse scicntists,
Tetsuya Ogushi and Yoshihisa Dsono, re-

ed superconductivity at 44 K in nio-
ﬁ;um-gcrmanium-aluminum-oxygcn thin

ms.
Obviously, the scientific community
quickly questioned the validity of these
results. In fact, due to the lack of sensitive
equipment at IBM Zurich, Mueller and
Bednorz could not test the diamagnetic
roperties (Mcissner effect) of their new-
f J?L:oovered oxide. The structure of the
thin film reported by the Japanese re-
searchers was also questioned. Reproduc-
ible superconducting properties were soon
by researchers in China, the

U.S., and other countries. AT&T Bell Labs
undertook a special project on these com-
pounds, accompanied by other major in-
dustrial and academic organizations. Soon,
AT&T Bell Labs scientists Bertram Bart-
logg and R. J. Cava superseded the 7, of
35 K reached by Mueller and Bednorz,
attaining 38 K. .

During latc-1986 and carly-1987, dis-
coveries of superconducting materials with

ever higher T, made ncws almost daily.
This sudden enthusiasm was spurred
largely by a team of scientists at the Uni-
_\;c-,_hrsit)'r,e Houston ledhbcy Paul C. ‘ngl?:l
¢y began varying the pressure
to the lo-ulled’gnLnC compound. The
results were startiing. Chu and coworkers
attained the highest temperature ever
known to allow superconductivity, S2.5 K.
The reported discovery made headlines in
January 1987. Encouraged by the results,
Chu varied the composition of the oxide,
by replacing barium with strontium and
then calcium, and by replacing the lan-
thanum with yttrium, reasoning that pres-
sure and smaller cation size might induce
a different superconducting mechanism.

Since Chu's first announcement, many
other teams have successfully obtained
higher T.'s. In March 1987 Marvin Co-
hen and coworkers at Lawrence Berkeley
Lab announced a new yttrium-barium-
copper-oxygen compound becoming su-
perconductive at 100 K. In April 1987,
Chu again reported superconducting
transitions a1 97 K in materials whose
composition is similar to the original ox-
ide, but otherwise undisclosed.

Given the overwhelming amount of data
recently reported and the pace of scien-
tific discoveries in this ficld, one can only
begin to understand to what extent. our
daily existence might be aflected by a new
superconductor era. Implications on the
engineering aspects of large scale pro-
duction of superconductors are still large-
ly 10 be determined.

Materials Processing Factors

The key to developing the supercon-
ducting materials based on YBa,Cu,0; or
other rare-carth-alkaline-carth copper
oxides is the processing parameters used
to establish the superconducting phase and
produce materials which are {ree of the
so-called “green™ phase, or Y,BaCuO,,
which is not superconducting. At least this
is consistent with the findings of those re-
searchers working in materials prepara-
tion and finding sharper T, transitions for
purer materiuls. While it is possible to
produce the superconducting compound,
or 123 as it is known, through traditional
powder eroccssiné methodology such as
milling Y,0,, BaCo,, and CuO powders,
chemical precipitation methods are pre-
ferred for the production of pure mate-
rials and control of impurities. W. F. Ham-
metter and others from Sandia National
Labs indicate they have coprecipitated all -
of the cations for the Y-Ba-Cu-O com-
pounds through metal salt solution pre-
cursors in a mixing cell reactor when the
pH of the system was held at 13.5.

Regardless of the source of the raw

ders, all rescarchers reporting to date
indicate that a caicining process after
milling is essential. Generally, this is best
accomplished by pressing the powder to
240 and surrounding it with addi-
tional powder to isolate it from the cal-
cining crucible (alumina is preferred).
Howcver, some reccarchers report only

_calcining the dried, milled powder with-

out prior compaction. In either case, there
is still some discrepancy on the best cal-
cining temperature to use. For instance,
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P.E.D. Morgan of Rockwell Int’l reports
using 500°C calcining temperatures for
chemically ﬁrecipilalcd powders; most
other rescarchersindicate calcining at 900°
to 950°C. However, precautions on the
upper end of this calcining temperature
have been issued by K. G. Frase, E. G.
Liniger, and D. R. Clarke of IBM and R.
S. Roth of NBS from work being con-
ducted on the phase diagram of the Y,0;-
BaO-CuO system. They indicate that for

_compositions which might be deficient in

Y,0, a liquid phase begins to form at
«930°C

A sccond milling of the material has
been reported as standard processing pro-
cedure for homogenizing the prereacted
powder. In some cases the reground ma-
terial has been sieved, with the finer ma-
terials being used to produce research
materials and the coarser grades being
used as crucible packing for either cal-
cining or sintering stages. The initial cal-
cining has been reported to last from 0.5
to 8 h. One precaution on the reacting
Ebases and starting materials chosen was

rought out at the special program on High
T, Superconductor Oxides conducted at
the American Ceramic Society’s 89th
Annual Meeting in Pittsburgh, PA, on
April 29: the 1400°C decomposition tem-
perature of BaCO,, i.e.,, materials cal-
cined at the reported temperatures and
times are not fully free of carbonaceous
materials if BaCO, is used as a starting
material. Alternative materials such as
Ba(OH), were suggested during the meet-
ing. For most reports dealing with ma-
terials processing to date, air atmosphere

is satisfactory for calcining these mate- &

rials, although some may prefer oxygen
atmosphere.

Sintering formed ceramic supercon-
ductor material is generally being re-
ported at 950°C, ibly taking advan-
tage of some liquid phase formation in
cases where materials are Y,0; deficient.
Tarascon has reported firing as high as
1120°C over a 12-h period and held there
for 36 h in phase analysis studies, and
Hammetter has reported firing at 1100°C
for 2 h for the sintering of tape cast spec-
imens.

Because this material, in fact the whole
group of copper oxides being examined
as superconductors, can be considered to
be oxygen sponges, the atmosphere dur-
ing sintering is critical to the supercon-
ductivity of the final product. In fact, the
role of oxygen in the structure of the ma-
terials is critical to the formation of either
an insulator or a superconductor. All re-
searchers report using at least flowing air
during sintering to try to preserve the ox-
ygen content of the material. Most are
using flowing O,.

Oxygen-Structure Interactions

Cooling of these materials has been re-
ported at 100°C/min, 200°C/min, fur-
nace cooled, and air quench, depending
on the type of study. The cooling rate along
“with the firing temperature, atmosphere,
and soak at temperature all affect the ox-
ygen content of the material and thus its
structure. It is the basic structure of the
materials that seems to be controlling the

Fig. 1. Shown here magnified =20 million
times is the first picture, taken by IBM sci-
entists, of the atomic structure of the new
high temperature superconductors. The ver-
tical columns of lighter spots consist of cop-
per and oxygen atoms; they are flanked by
dark vertical columns of barium atoms. in-
side the columns of barium atoms are stoms
of yttrium, a rare earth element. The box
encioses three atoms that form the basic unit
cell which is repeated throughout the ma-
terial. The box is 1.2 nm long.

superconductivity. Oxygen content alters
that structure, as does temperature.

All researchers report that both the
La,CuO, and YB3,Cu,0, materials are of

¢~ K;NiF, perovskite structure. This
structure has a basal planc consisting of
copper and oxygen atoms and is layered
such that Ba and Y atoms are stacked in
the ¢ direction of the unit cell (Fxg. 1).
The greatest controversy in the physics of
these superconductors lics in the function
of cach atom within the unit cell and its
effect on the formation of Cooper pairs.
In studies of the effects of Sr doping on
the superconducting propertics of La,CvO,,
the optimum concentrationof Sr was found
to occur where the material was on the
verge of a transition from tetragonal to
orthorhombic symmetry.

In studies of the YBa,Cu,0, material,
effects of rare earth substitution were found
by Chu to be insignificant, even when
magnetic ions—previously believed to de-
stroy superconductivity—were intro-
duced. When Chu substituted smaller ions
for Ba, changes in the T, were not strictly
related to the ion size and the shifts from
tetragonal to orthorhombic structure be-
cause of possible substitutions of Ca oc-
curring in the Cu lattice sites. Some re-
scarchers, among them Bednorz and
Mucller, believe that the alkaline carth
jons may substitute for rarc carths in the
structure, yielding a mixed valence state
of Cu?* and Cu’* and, thus, an enhanced
phonon-clectron interaction between ox-
ygen p electrons and copper d clectrons
in the basal plane of the La,CuO,_, crys-
tal structure. They also find that those
materials that arc doped 1o sufficiently
distort their structure to just short of the
transition to orthorbombic at room tem-

perature bave the highest T, for onset of
superconductivity, i.c., they are the eas-
jest to force into a transition to ortho-
rhombic symmetry upon cooling below

room umtnture.

Most related to the firing stages of pro-
ducing these superconducting materials
arc the transitions in the materisls struc-
ture with oxygen content. For instance,
the YBa;Cu,0, msterials will have 2 to-
tragonal structure if x=6.5 and an or-

- thorhombic structure when x=69. P K.

Gallagher of IBM and others report that
these materials will go from insulating to
superconducting to insulating again as ox-
ygen is added to the structure. ma-
terials with x=6.38 arc insulating, and
when x>>7.1 they also are insulating. The
bect6 ;:pcroonducton are found with
x=6.98.

: Co:dlrolhng the oxygen contm}t of the
material requires greater control in pro-
cessing than just supplying flowing O,
during firing. Observations of weight loas
in these materials during firing at >900°C
even in oxygen atmospheres indicates that
anncaling is necessary. Most research has
shown that low temperature (500°C) an-
nealing proves better at restoring the ox-
ygen coatent of the material to values close
to YBa,Cu,0,.

Anncaling times at 450°-500°C are
being set anywhere from 2-3dto 16 h
for the best restoration of oxygen into the
structure. However, some rescarchers ro-
port annealing at 900°C with favorable
result in T, while others are using slow
cooling to maintain oxygen stoichiometry.
Gallaghber reports that to keep the oxygen
content from going beyond the optimum
of 6.98 it would be necessary to reduce
the P,, in the furnace atmosphere as the
sample cools to near room temperature
and, therefore, annealing at tcmperatures
where oxygen pickup occurs may not be

to achieve stoichiometry, E;o-
vided cooling through the oxygen pickup
regime (900°—430°C) is done slowl]
enough to reach chemical equilibrium wi
the flowing O, atmosphere of the furnace.
However, Chu reports (Science, vol. 235,
p. 567) that the best su uctivity
results on (L&, Ba;,;)Cu0O,_, he pro-
duced were for samples that were fired in
air for 26 h at 925°C, after calcining at
900°C for 4 h and again for 8 h, when
heat treatments at 900°C in a reduced O,
atmosphere were .

Early reports of the discovery of these
superconducting matcrisls indicated an
oxygen defect structure might be playing
a key role in the hi temperature onset
of superconductivity. There is still some -
controversy over this position. In the basic
structure of the material, the Y atoms
require 8-fold coordination, and the Ba
require 10- or 12-fold coordination. This

ives the appecarance of oxygen vacancies
in the layered structure. As oxygen con-
tent of the material is lowered to <7 the -
effect is more pronounced but is not crit-
ical to the superconducting jes of
the material as long as the oxygen content
remains within the limits ichi
ometry already defined. For La,Cu,0,,
a ing to P.E.D. Morgan, an oxygen
vacancy structure in an orthorbombic
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Fig. 2. [BM scientists Robert B. Laibowitz
and Roger H. Koch shown measuring a su-
perconducting thin fiim. The graph on the
upper PC monitor shows the sudden drop
in electrical resistance of the fim as its tem-
perature drops below the fvi
transition temperature after immersion in lig-
uid nitrogen.

material does exist with one-half O va-
cancy per unit cell. However, Morgan has
been able to achieve superconducting
properties for this material at 4 K.
Almost all rescarchers find that as these
materials cool past their 7, values a shift
in the structure accompanies the super-
conductivity phenomenon. As this shift in
structure occurs, it is believed that the
Cu-O bonds in the basal planc of the
structure become compressed. This
compression yiclds greater overlap of the
Cu d and O p orbitals and formation of
Cooper pairs between these electrons.
Testing to determine the lattice vibration
interaction has so far yielded negative re-
sults, possibly requining new theoretical
treatments for these materials.

Transition Temperaturs Dependence

The push to obtain materials with high
T, has revealed several key criteria to ma-
terials processing for these materials, and
how materials processing and composi-
tions influence the transition tempera-
ture. The most readily reported influence
on T, for these materials, coming as a
result of the advances produced by Chu,
is the material purity influence. When more
than onc phase is present in the ceramic,
both the value of l;‘, (as measured for re-
sistivity) and its sharpness in transition
are affected. Purer materials generally have
high T, values and sharp transitions in
resistivity dropoff (Fig. 2) on the order of
<2 K. However, this does not mean that
chemically doped materials may not have
sharper transitions and larger 7, values.
Some rescarchers have identified that Sr
doping of La,CuO, at 0.15% produces
higher T, values and sharper transitions
in resistivity with temperature. Rather, it
is the single phase ceramic as com
to multiphase materials that generally have
better transitions.

For instance, Wayne State University
rescarchers have observed an anomaly at

240 K for a material which has an onset
of temperature vs resistivity drop at 100
K that does not become superconducting
until 60 K. Chu has confirmed that this
matcrial is multiphase, accounting for the
gradual transition in resistivity with tem-
perature.

Other chemical influences on T, values
have been speculated and tested. The first

~~of these was the influence of the lantha-

nide ion being used. This was, in fact, how
Chu made the initial discovery of the
YBa,Cu,0, material, by substituting Y
for La ip the materials examined by Bed-
norz and Mueller. Extensive tests con-
ducted by Chu indicate that the rare earth
jon has no influence on the onset of su-
perconductivity in these materials; even
allowing magnetic ions to exist at the lan-
thanide site did not destroy superconduc-
tivity and had little influence on T-

Substitution for Ba in these materials
does change the 7, value. When smaller
Sr ions arc used, the structure of the ma-
terial collapses and the transition tem-
Perature is significantly reduced to 77 K

rom 97 K. However, when Ca ions are
substituted, 7, also drops, ibly due to
some Ca ions locating in the basal plane,
according to Chu. A combination of both
Sr and Ca substitutions has been indi-
cated as also producing superconductiv-
ity. The size of the magnetic ficld that
will cause restoration of normal (nonsu-
perconducting) properties of these ma-
terials also is somewhat dependent on the
transition temperature, at least on how
close to the transition temperature the
materia! is when subjected to the magnet-
ic field. For instance, Chu has investigated
the upper critical field for YBa,Cu,0,, re-
porting 200-500 T, or 2-5x10¢ G. This
18 compared to a value of 0.5 G for the
Earth's magnetic field. Close to the tran-
sition temperature, the value for the crit-
ical field will drop to zero, as will the
critical current density. The high critical
field value means that materials could
potentially be used to generate very large
magnetic fields when used as the conduc-
tor of an electromagnet, provided suffi-
cient current can be passed through it and
large enough ferromagnets can be pro-
duced. This is the maJyor subject of dis-
cussion for Supercollider debates.

Initial investigation by R. J. Cava and
others on the YBa,Cu,0; materials showed
that critical current Jemitieo of 1100 A/
cm? could be achicved. Even though this
is roughly equivalent to the current den-
sities of copper wire at room temperature,
the expectations of much higher current
densities for superconductor materials
initially scemed to be a road block for
these materials.

At the beginning of May 1987, IBM
rescarchers overcame this problem by
producing bulk single crystals of the ma-
terials of the order of scveral millimeters
wide by 200 um thick and measuring the
critical current in them at 77 K. They
discovered that the J, exceeded 100 000
A/cm? and that a bias in current flow oc-
curs in thicker films. The rescarch team
also Lroduced thin film single crystals 1
p#m thick by 2.54 cm in diameter. While
these single crystals cannot be equated to

Fig.3. By adapting a technique calied plas-
ma spraying, IBM scientists Richard Guar-
nieri and Jerome Cuomo and their research
team were abie to coat a variety of largs and
smaler objects with high temperature su-
perconducting material. The varisty of shapes
shown here, including spirals, a large copper
panel, and spherical vesseis, demonstrate
the potential of the IBM technique for mak-
ing superconducting objects and coatings for
advanced scientific research and industrial
appiications.

the currentcarrying needs of coils for
electromagnets, this research shows that
the critical current values obtained by
Cava were not indicative of an intrinsic
my O{tlll:: ceramics bmpu&ere an
y o processing or polycrys-
talline nature of the mtlg‘mk
Other advances have continued since
the discovery of 94-100 K superconduc-
tivitg onsct 1n the YBa,Cu,0, materials
by Chu and others. The first (if any came
before others in this fast-b field)
of these was the discovery of 105 K su-
perconductivity onset identified by the re-
scarch team at Alfred University beaded
by Robert Snyder. This material shows
sgarp reducli&nn;n resistivity with drop tl:'e‘
temperature. ! ing investigations at
Nuclear Research Center at Karlsruhe,
Fed. Rep. of Germany, under the direc-
tion of Constatin Politis, show T, onset of

- 120K for a slight variant of the YBa,Cu,0,

.

material. They have been trying to in-
crease the polaron effect in the material
by substituting F for O, producing

Ba,Cu,O,F. For some time rescarchers
at Wa State University have insisted
that they sce the beginning of supercon-
ductivity in Y-Ba-Cu-O materials at 240
K. However, the materials they are using
are relatively impure and multiphase. They
have only seen sharp drops in resistivity
beginning at 100 K and full supercon-
ductivity at 60 K.

1000
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Fig. 4. Cioseup of a ceramic substrate pat-
terned with high temperature superconduct-
ing wires made with & new IBM plasms spray
technique. Such wires might be used to con-
nect iogic and memory chips in computers.
The superconducting wires were appiied by
IBM scientists in a pattern similar to those
used to connect today's computer chips. The
abiity to make such wiring patterns from high
temperature superconducting material is an
important step toward adapting the material
for possible future use in computers.

Almost all other research teams work-
ing with the Y-Ba-Cu-O sysiem say they
can duplicate some anomaly in the resis-
tivity vs temperature curve at 240 K, but
few think it represents superconductivity.
Some researchers have even speculated
that the anomaly could be the onset of
semiconductor properties in the material.
The rescarchers at Wayne State believe
that they have superconductivity at 240
K for at least a portion of the material
due to the generation of an ac current in
the material while it is subjected to mi-
crowaves, something predicted by the BCS
theory for Josephson junctions. They
therefore speculate that their material
contains phases of superconducting ma-
terial separated by nonconductors on a
microscopic scale in their samples. Be-
cause of these anomalous results, most
rescarch teams are relying more heavily
on magnetic susceptibility measurements
rather than bulk resistivity measurements
to determine superconductivity.

The most recent announcements of high
transition temperatures came from scp-
arate sources. Energy Conversion Devices
Inc. claimed it produced a supercon-
ducting material with zero resistivity at
155 K on May 7, 1987. This was only two
weeks after it had found 125 K materials.
The firm is holding the composition con-
fidential until it can publicize its findings.
Chu has also made major new announce-
ments of increased T, for this group of
ceramic materials. He identified local
surface superconductivity in multiphase
ceramics with a temperature of 225 K or
—47.7°C. Soviet rescachers claim super-
conductors with T, values of —37°C.
However, most of the scientific commu-
nity remains skeptical of these claims un-
til further reports are available.

Products st Ready

One outstanding aspect of the super-
conductivity research is the strong rush
for commercially feasible products within
a few months of initia! discovery of the
materials and an as yet unexplained phys-
ical phenomena. Typically, 20 yr may go
by before commercial realization of a ma-
terials science development. Perhaps IBM,
AT&T, GTE, and many other companics
involved sense the great potential for these

“developments (akin to the development

of the transistor or integrated circuit) and
are juggling for patent positions. What-
ever the reason, not only are researchers
working with pressed pellets and disks
roduced by hot prusing_at 349 MPa, but
. W. Johnson of ATAT has shown that
ceramic tape with limited flexibility (50-
200 um thick) can be produced with crit-
jcal current densities at 200 A /cm’. Pres-
ently, he has not disclosed why tape cast-
ing has been one of the preferred means
of product production.
ers, including the group at AT&T,
have been approaching the problem of
producing flexible wires with reasonable
critical current densitics. The AT&T group
uses the scheme of placing the ceramic
superconductor into an Ag tube and cold-
drawing the tube to fine wire thickness.
After drawing and coiling to conform to
a magnet shape, the wire is fired to con-
vert the ceramic to the fired supercon-
ductor material. They indicate that T,
values for these wires are >90 K. There
is some discrepancy as to whether Ar-
gonne National Lab researchers or those
at Toshiba Corp. produced the first wires
solely using the ceramic material, but in
cither case the ucts are far from the
practical materials nceded for supercon-
ducting electromagnets. Argonne cx-
trudes their wire in 0.2 mm diameter. Ini-
tial testing of the critical turrent density
of this wire showed values of only 5 A/
cm’. However, later reports indicate that
191 A/cm? is now being achieved.
Techniques of spraying the ceramic
material onto the surface of other mate-
rials after drawing the substrate into wire
form are the focus of current investiga-
tions at Alfred University, according to
Robert Snyder. This line of production
investigation was brought to the attention
of most research groups by IBM, which
suggested plasma spraying as means to
coat the ceramic superconductor material
onto large substrates of complex shape,
and fabricating conductor lines onto ce-
ramic substrates (Figs. 3 and 4). Most of
the resecarch tcams sce these materials
being commercially employed within 2-5

erhilc superconducting magnets, with
the Supercollideras an ideal testing ground
since it is government funded, are the
principal dnvinsMrorcc for many of the
investigators, IBM is focusing strongly on
the electronic applications of these ma-
terials. Joscphson junctions are one form
of electronics technology in which these
materials could be employed, even though
IBM at onc time abandoned Josephson
junction technology as too costly, with lit-
tle commercial application in their cur-
rent product line. Other firms, such as

Fig. 5. Sesn here magnified >500 times,
thin-fim

fisids caused by electrical currents in the hu-
man brain. Made from a ciass of new su-
perconducting matarials discovered by 1BM
scientists, the new SQUID is only 1/100 the
thickness of & human halr. Surtace imregu-
farities are In a layer of goid deposited on
top of the superconductor.

HYBRES, Eimsford, NY, have devel-
oged Josephson junction technology IC
chips with rise times of 5 ps, 70 GHz
bandwidth, and sensitivities of 50 uV
using Nb superconductors, and sbouid
be anxious to emplay these ceramics in
film form. IBM has developed supercon-
ductin% uantum interference devices
(SQUIDS) (Fig. S) from these ceramics
which work as extremely sensitive mnf
netic detectors (on the order of the field
strength generated by electrochemical-
necurological impulses produced by syn-
apses in the human brain).

While there is still a great deal of skep-
ticism, especially among thosc involved in
the production of metal alloy supercon-
ductors, the developments in ceramic su-
perconductors will lead to & wide range
transformation in technology. y en-
visioned as benefiting from these ceramic
superconductors because of their ability
to superconduct when cooled to liquid ni-
trogen temperatures (let alone the pos-
sibilitics from the outside chance of
supcrconductors operating st freon cool-
ant refrigeration system temperatures) are:
(1) power gencration through supercon-
ducting magnets, generators, and cloctro-
motors in both the conventional fuel and
nuclear fusion industries; (_2) transporta-
tion electromagnetically clevated
trains battery-powered automobiles
with highly efficient superconductor clec-
tromolors; (3) microclectronics and com-
puters through increased use of Joseph-
son junctions, zero resistivity interconnects,
and high power integrated devices, (4)
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' ulDSO'C.‘M Ccmu Mater., nprn
. Anderson, “The

medncd diagnostics through lower cost
nuclcar ma u’neuc resopance imaging and
ne mm‘hmurch. (5) agriculture lnﬁ
ense remotc sensing in sate
lite uses; and (6) mining and mineral re-
sources through im magnetic sep-
arators for ore purification.
'l'hcfu“rneeofducoverymlhuﬁeld
is generated both by a sense of greatness
in the nch:cvemcnu by the individual ro-
search teams, some talk of Nobel Prize
possibilitics arising from the discoveries,
the potential impact on socicty, and the
large potential gains that can be achicved
u: commercnl applications. In efforts to
support the pace of rescarch, both the
'Dept of Energy (DoE) and National Sci-
ence Foundation (NSF) have directed some
of their materials rescarch funding to su-
perconductor rescarch. The DoE has $10
lmlhon dedicated 1o superconductor re-
scarch at the present ume, while NSF
doubled its budget to §5 million as the
high 7, announcements were being made.
Unchnractemucally. NSF allo ear-
marked $1 million for three of its mate-
rials research labs—University of Illinois,
Northwestern University, and Stanford
University—for basic research and
$600 000 for research into froceu of
these materials into usable forms
this will do a great deal to sustain tbe
effort, panelists st & recent Conference
beld by the House Republican Task Force
on High Technology and Competitivencas
encouraged Congress to release $100 mil-
lion for superconductor rescarch and de-
velopment, 75% earmarked for manufac-
turing implementation to prevent the U.S.
from losing the technology transfer race
in superconductors to Japan, as has hap-
pe in other instances.
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THE FOUR POINT ELECTRICAL PROBE

The four point electrical probe Is a very versatile device used widely In physics for the Investigation of
electrical phenomena.  Colorado Superconductor Inc. has especially designed two four point
superconducting devices from the YBa,Cu;0; and the Bi,CaSr,Cu,0q materials for such investigations.
The Complete Exploration Kit an the Super Exploration Kit contain four point electrical probes.

When a simple measurement of the electrical resistance of a test sample Is performed by attaching two wires
to it, one inadvertently also measures the resistance of the contact point of the wires to the sample.
Typically the resistance of the point of contact (called contact resistanée) s far smaller than the resistance

" of the sample, and can thus be Ignored. Howaever, when one Is measuring a very small sample resistance,

especially under variable temperature conditions, the contact resistance can dominate and completely
obscure changes in the resistance of the sample itself. This is the situation that exists for superconductors.

The effects of contact resistance can be eliminated with the use of a four point prabe. A schematic of a four
point probe Is shown in figure 2. -In this diagram, four wires (or probes) have been aftached to the test
sample. A constant current is made to flow the length of the sample through probes labeled 1 and 4 In the
figure. This can be done using a current source or a power supply as shown. Many power supplies have
a current output readout built into them. If not, an ammeter In serles with this circult can be used to obtain
the value of the current. A 5 Watt power supply capable of producing about 0.5 Amp Is required for the
experiments described for our superconducting devices.

If the sample has any resistance to the flow of electrical current, then there will be a drop of potential [N
voltage) as the current flows along the sample, for example between the two wires (or probes) labeled 2.and
3 in the figure. The voltage drop between probes 2 and 3 can be measured by a digital voltmeter. The
resistance of the sample between probes -2 and 3 is the ratio of the voltage registering on the digital
voltmeter to the value of the output current of the power supply. The high Impedance of the digital voltmeter
minimizes the current flow through the portion of the circuit comprising the voltmeter. Thus, since there Is
no-potential drop across the contact resistance assoclated with probes 2 and 3, only the resistance
assoclated with the superconductor between probes 2 and 3 is measured.

1 ®Ammeter
! =

dc power

supply Digital

mVoltmeter
-©—

Voltage ‘
- Probes <] ] g:%eprlionductor
Current Probe ”"1 > 3 4 Current Probe-

Flgure 2: Schematic of Four Point Probe
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The four point probe devices in the Complete Exploration Kit and the Super Exploration Kit are both

encapsulated In rugged brass casings. On one side of the casing, the superconductor disk Is visible. An

aluminum end cap has been:inserted on the back side of the brass casing to sealed and to protect the

probe connections with the superconductor. Please do not attempt to remove the end cap. A matched

thermocouple has also been attached to the superconductor in this casing. This thermocouple Is a type
' ‘T’, and has been described in detail on page 11.

The B,CaSr,Cu,04 superconductor four point electrical probe casing is larger than the YBa,Cu,z0, casing.
| The former Is stampad with a ‘B’ and the latter with a ‘Y’ for further identification.

The lilustration in figure 3 below, shows the sallent features of the four point probe devices. The pair of
black wires are current leads for the input of current from the power supply, and have been labefled probes
1and 4.infigure 2. The palr of yellow wires are the voltage measurement probes for measuring the voltage
drop across the superconductor with the help of a digital voltmeter, and have been labelled probes 2 and
3 in figure 2. The red and blue wires are leads for the thermocouple.

o
660

Yellow ( 2&3 )
Voltage Probes

&2
a &

Thermocouple

Leads

Superconductor
Disk.

z224
Black (1 & 4 )

Sheath Current Probes

' / /Thérmdcouple

= N\ Leads

b
1 Yellow ( 2&3 )
Voltage Probes

Figure 3: The 'Supercpnducting Four Point Probe
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