Superconductivity Lab: Week 2 **AP 4018 Columbia University (Spring 2021)**

- Measure the resistance vs. temperature
- Measure the influence of magnetic field on the resistance and critical temperature

Objective

VOLUME 58, NUMBER 9

M. K. Wu, J. R. Ashburn, and C. J. Torng Department of Physics, University of Alabama, Huntsville, Alabama 35899

P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu^(a) Department of Physics and Space Vacuum Epitaxy Center, University of Houston, Houston, Texas 77004 (Received 6 February 1987; Revised manuscript received 18 February 1987)

A stable and reproducible superconductivity transition between 80 and 93 K has been unambiguously observed both resistively and magnetically in a new Y-Ba-Cu-O compound system at ambient pressure. An estimated upper critical field $H_{c2}(0)$ between 80 and 180 T was obtained.

This Lab: Repeat the Famous Experiments Reported by M.K. Wu and co-authors, PRL, 2 March 1987

PHYSICAL REVIEW LETTERS

2 MARCH 1987

Superconductivity at 93 K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure

and

Superconductivity is influenced by temperature, magnetic field, and mechanical strain

The temperature dependence of R determined in a simple liquid-nitrogen Dewar is shown in Fig. 1. R initially drops almost linearly with temperature T. A deviation of R from this T dependence is evident at 93 K and a sharp drop starts at 92 K. A "zero-R" state is achieved at 80 K. The variation of χ with T is shown in Fig. 2. It is evident that a diamagnetic shift starts at 91 K and the size of the shift increases rapidly with further cooling. At 4.2 K, the diamagnetic signal corresponds to 24% of the superconducting signal of a Pb sample with similar dimensions. In a magnetic field, the R drop is shifted toward lower T. At our maximum field of 5.7 T, the "zero-R" state remains at a T as high as 40 K.

(In our experiment, the applied magnetic field is only 0.18 T.)

4

Two Commercial Samples from American Superconductor (<u>https://www.amsc.com</u>)

	Swire	
Second generation HT	Swire	
• HTS wire laminated on both sides with	344 superconductors are A new 3-ply, 4.4 mm wide se	merican Superconductor's econd generation HTS wires
hardened copper for		
strength	Specifications:	
s Calala (Cira a c	Thickness (avg):	0.20 (+/- 0.02) mm
 Solder fillets at edges 	Width (avg):	4.35 (+/- 0.05) mm
Corrosion protection	Max. Rated Tensile Stress (RT):	150 MPa ⁱ
and enhanced	Max. Rated Tensile Strain (77K):	0.4%
electrical stability	Max. Rated Compressive Strain $(7/K)$: Min Bend Diameter (RT):	35 mm ⁱ
	Will, Delid Dialicter (RT).	
Stabilizer material	Customer Options:	
can be tailored for	Min. Ic:	70 A ⁱⁱ
specialized applications	Continuous piece length	up to 100 m
	iWish 0.59/ La statestic	
	" 77K, self-field, 1µV/cm	
1	*	
1		
í.		
	American Superconductor REVOLUTIONIZING THE WAY THE WORLD USES ELL	ECTRICITY
	American Superconductor Corporation 64 Jackson Road Devens, MA 01434 USA Toll-free: 800 315 3319 tol. +1 978 842 3362	1AX
	fax +1 978 842 3364 www.amsuper.com	117

Yttrium Barium Copper Oxide (YBCO or Rare-Earth Barium Oxide)

bismuth strontium calcium copper oxide Bi₂Sr₂Ca₂Cu₃O₁₀

Most promising today... but with stronger support wraps

Fig. 2. Cross-section micrograph of AMSC's standard 2G HTS wire, called 344 (or 348) superconductors.

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 17, NO. 2, JUNE 2007

Yttrium Barium Copper Oxide (YBCO or Rare-Earth Barium Oxide)

Two Commercial Samples from American Superconductor (<u>https://www.amsc.com</u>)

1 Inside a superconducting wire The cross-sections of high-temperature superconducting wires. Top, a Bi-2223 tape with dimensions of 4.1 mm x 0.2 mm. Middle, a Y-123 tape comprising 36,000 wire filaments that was made using a metal-alloy processing technique. The tape measures 3 mm x 0.6 mm. Bottom, a magnified view of the left-most bundle of filaments. The tapes were manufactured by American Superconductor Corporation.

bismuth strontium calcium copper oxide $Bi_2Sr_2Ca_2Cu_3O_{10}$

Solder Fillet

6

Styrofoam Dewar

Recipe: YBCO tape, thin films are deposited onto a silver/copper/steel tape.

Four-Point Measurement of Resistance (or how does one measure "zero" resistance?)

Figure 2: Schematic of Four Point Probe

Applying a Magnetic Field

0.18 T

What is Contained in Data Files?

- Bi-2223 (bismuth strontium calcium copper oxide):
 - Bi-2223-No-B.mov
 - Bi-2223-With-B.mov
- YBCO (yttrium barium copper oxide):
 - YBCO-NO-B.mov
 - YBCO-With-B.mov

Bi-2223 at Room Temperature

- Using a four-point measurement technique, measure the function of temperature, and
- as a function of magnetic field.

resistance of superconducting tape (Bi-2223 and YBCO) as a